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PROBLEMS WITH RATIONAL EXPONENTS IN

ELEMENTARY MATHEMATICS

TERUTAKE ABE AND FIROOZ KHOSRAVIYANI

Abstract. The concept and de…nitions of the common power nota-
tion used in elementary mathematics will be discussed with a focus on
formalizing an introductory de…nition and avoiding misconceptions by
students and teachers alike.

1. Introduction

The common power notation , with rational exponent , works …ne as
long as  is positive and we are considering only the positive value of the
power. But as soon as we allow the base  to be negative or imaginary, or
even with a positive base , if we are to consider more than just positive
values of its powers, then there are many pitfalls, where the rules or even the
familiar de…nitions fail to work. For example, one common error made by
students in dealing with powers and roots is of the following type:

p
(¡8)2 =

¡8 [1, Misconception 9, pp 5–6]. This result obtained by students may be
based on the following sequence of calculations:

p
(¡8)2 = (¡8)

2
2 = (¡8)1 = ¡8,

or more simply put, by a cancellation of power and root:

/
q

(¡8) /2 = ¡8.

Each step of the calculation above seems valid in view of the de…nitions
of root and power, yet the result is invalid. We will try to analyze the
root cause of the misconceptions that underlie errors of this type. For that
purpose we reexamine de…nitions of fractional powers and problem situations
associated with them, en route to consideration of rational exponents. Then
we will suggest that if some extra care is paid by the textbook authors
and instructors when treating powers and roots, such misconceptions can
be largely avoided.
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2. Summary of Known Results

Before starting, we …x some notation and state a few results that we use
in our discussion. Let N = f1 2 3    g, Z, Q, R and C denote the set of
natural, integer, rational, real and complex numbers, respectively. Also, if
 is a ring / …eld, we use ¤ to denote the set of all elements of  that
have multiplicative inverses in . Thus, if  is a …eld, for example  = C
or  = R, then ¤ consists of all non-zero elements of .

Proposition 2.1 ([3, p.22]). Let  be a mapping with the sets  and  as
domain and codomain, respectively. Then


¡
¡1 ( )

¢
=  8 µ  ()  is onto (surjective).

Note: Throughout this article, ¡1( ) denotes the inverse image of the
set  under  . The notation ¡1 should not be confused with that of the
inverse function: when  is not bijective, the inverse relation ¡1 exists, but
it is not a function.

Proposition 2.2 ([3, p.22]). Let  be a mapping with the sets  and  as
domain and codomain, respectively. Then

¡1 ( ()) =  8 µ  ()  is one-to-one (injective).

De…nition 2.3. Let  be a group and  an integer. Then, the th power
function of  is de…ned as the function that maps each element  of  to
its th power .

In this article, we will discuss the power functions in the cases where
 = C¤, and where  = R¤. In these cases, we denote the respective th
power functions as  and , respectively:

(1)  : C¤ ¡! C¤ () = ,

and

(2)  : R¤ ¡! R¤, () = .

Proposition 2.4 (Law of Integer Exponents, [3, Theorem 3.12]). Let  be
a group, then

 = () = () 8 2 , 8 2 Z.

For  = C¤, this law can be written, in terms of the power functions  (1)
as

 =  ±  =  ±  8 2 Z

Proposition 2.5 ([3, Theorem 7.11]). Let  2 C¤ and  2 N. Then  has
exactly  distinct th roots. If we write  in polar form as  = jj ¢, where
jj  0 and  2 R, then the th roots of  are

³

p

jj 



´
¢
³

2


´
,
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where 
p

jj denotes the principal (positive) real root, and  ranges over a
complete system of residues modulo , for example,  = 0 1 2     ¡ 1.

Note that 
2
 is an th root of unity (that is, an th root of 1), so that the

value (
2
 ) depends only on the congruence class of  modulo . Further-

more, in terms of the power functions (1), this translates to
¯
¯¡1 ()

¯
¯ = ,

where jj for a set  denotes the cardinality of . In particular, this implies
that the fucntions  are onto (surjective) unless  = 0, but not 1-to-1
(injective) unless  = §1

Proposition 2.6 ([8, Theorem 4.6]). Let  2 Z and  2 N be relatively
prime. If  µ Z is a complete system of residues modulo , then so is
 = f j  2 g. In particular, by choosing  = f0 1      ¡ 1g, we have
that  = f0  2     ( ¡ 1)g is a complete system of residues.

De…nition 2.7. Let F denote the set of all fractions with a natural number
as denominator:

F =
n



¯
¯
¯  2 Z,  2 N

o


Then the set of rational numbers is de…ned as the set of equivalence classes
of fractions

Q »= F/ »

where » denotes the usual equivalence relation de…ned by 
 » 0

0
def

()
0 = 0. Thus, each rational number has multiple representations by
distinct but “equivalent” fractions.

The reason why we adopt this de…nition, allowing only positive denom-
inators, is to avoid having to consider a radical with a negative index, like
“ ¡5

p
8”, when a fraction is used as the exponent. Note however that this

de…nition has a certain disadvantage in another context, in that the rule
¡



¢¡1
= 

 does not hold and has to be replaced by a more complicated
¡



¢¡1
= sgn()¢

jj , where the absolute value function removes the sign from

the denominator.
In this paper, the reader should be clearly aware of the distinction be-

tween a fraction and the rational number represented by the fraction: a
fraction is an explicit notation like 

 , whereas a rational number is a more
abstract concept de…ned as an equivalence class of fractions. In particular,
the reader should carefully distinguish between a “fractional power” and a
“rational power”. We cannot properly talk about the latter until we verify
that the value of the fractional power remains unchanged when the expo-
nent is replaced by any of the equivalent fractions. How and when we can
unambiguously de…ne a rational power, indeed, is the main subject of this
article.
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One more item needs to be mentioned in this introduction before getting
to the core of the discussion. We need to use a terminology for a “proposed
de…nition” that has been absent from the mathematical literature. A state-
ment is proposed as a “Conjecture” before it is a¤orded the title “Theorem”.
Similarly, we need a terminology to use for “proposed de…nitions / de…ni-
tions in their developmental or inductive stages” while we attempt to …nd a
valid de…nition. The terminology we use is “Prede…nition” (see [6]).

3. Complex Number Case

Let us …rst consider the case where we allow the base to be a complex
number. This is advantageous because, as with many situations in algebra,
we get a fuller picture only when we consider the case for complex numbers.
In fact, often, as is the case here, considering complex numbers simpli…es
the problem and makes it more transparent. In contrast, the real number
case, though interesting in its own right, only gives an imperfect, partial
view of the situation.

The basis of our consideration are the power functions  (see (1)), where
 is an integer. Consider the expression , where the exponent  is the
reciprocal of a natural number . In view of the laws of exponents, this
means considering the “th roots” of the complex number . As is customary,
we de…ne a th root of  as a complex number whose th power equals .

Because of Proposition 2.5, the expression 
1
 cannot be well-de…ned as a

single complex number. In other words, “th root” is not a function in the
usual sense.

Still, we would like to treat “th root” as a function on the same footing
as the integral power function, and so we are led to consider both the power
and root functions as set-valued functions. In doing so, to ease the notation,
it will be convenient to introduce the following de…nitions and notations for
“raising a set of numbers to a power”.

De…nition 3.1. Let  µ C¤. For an integral exponent , the set-valued
power function  is naturally de…ned as giving the set of th powers of the
elements of , namely

 def= f j  2 g

This is just the image of the set  under the th power mapping :

 = ().

De…nition 3.2. For any set  of non-zero complex numbers and a natural
number  we de…ne


1

def
= f 2 C¤ j  2 g.

This is equivalent to considering the inverse image of the set  under the
th power function :


1
 = ¡1 ().
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Our major interest still lies in the powers and roots of a single complex
number, that is, in the case where  is a singleton set. In this case, we
introduce the following abbreviated notation.

De…nition 3.3. For a non-zero complex number  and a natural number ,
we apply De…nition 3.2 to the singleton set  = fg, and write


1
 = fg

1
 = f 2 C¤ j  = g = ¡1 (fg) .

In other words, we agree to interpret “ raised to the power 1
” as the set

of all complex numbers whose th power equals , i.e. the set of th roots
of . For example,

1
1
4 = f1g

1
4 = f1¡1 ¡g,

and

1
1
3 = f1g

1
3

= f1 
2
3
 ¡

2
3
g

=
n
1¡1

2 +
p
3
2 ¡

1
2 ¡

p
3
2 

o

= f1  2g,

where we adopt a common notation  = 
2
3
, so that ¡

2
3
 = ¡1 =  = 2.

Next, we need to de…ne the power  for an arbitrary rational number  =

 . For that purpose, we will need to combine, or compose, the De…nitions

3.2 of the root and 3.1 of the integral power. In light of the commutative
property of multiplication, we can write  =  £ 1

 = 1
 £ . Consequently,

there are two plausible ways for composing the root and integral power
functions in order to de…ne the rational power. Namely, for a set  of
nonzero complex numbers, we may try to de…ne  according to either of the
two conjectural de…nitions below, which we shall refer to as “prede…nitions”
because they will not be full-‡edged de…nitions until their well-de…nededness
is established.

Prede…nition 3.4. Let  µ C¤,  2 Z,  2 N and  = 
 . Then  is

de…ned by

 = 

 =

³

1


´
= (

¡1
 ()).

Prede…nition 3.5. Let  µ C¤,  2 Z,  2 N and  = 
 . Then  is

de…ned by

 = 

 = ()

1
 = ¡1 (()).

Are these two prede…nitions equivalent? If they are not, then is either of
the two “better” than the other?

To answer these questions, the …rst test is that of well-de…nedness. Recall
that a single rational number have many representations as a fraction. A
good de…nition of rational power should not depend on such representations.
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Thus the question is: if 1
1

and 2
2

are two equivalent fractions, both repre-

senting the same rational number , does each of the Prede…nitions 3.4 and

3.5 above give the same result for 
1
1 and 

2
2 ? If under either of the pre-

de…nitions the resulting value is dependent on the fractional representation
of rational numbers, then that de…nition is not well-de…ned.

As an example, the interested reader may examine (¡1)
1
2 and (¡1)

2
4

according to both Prede…nitions 3.4 and 3.5, in order to gain insight into
the di¤erence between the two. A part of this computation is illustrated in
the proof of Theorem 3.7.

The simplest example that demonstrates an answer to the above questions
is the case of the …rst power 1. Let  be a natural number. Since 1 = 

 , we

expect our de…nition of rational power to give 

 = 1 = , in particular

we expect 

 = fg.

First, we consider Prede…nition 3.4. We have



 = fg


 = (fg

1
 ) by Prede…nition 3.4

= (
¡1
 (fg)) = fg by Proposition 2.1

because  is an onto function. More intuitively, by de…nition, any element

of fg
1
 is an th root of , so when raised to the th power it evaluates to

. This leads us to one of the main results of this article.

Theorem 3.6. Suppose 
 ,

0

0 2 F are equivalent fractions representing a

rational number , where 
 is in the lowest terms but 0

0 is not. Then, under

Prede…nition 3.4, 

 = 

0

0 holds for any subset  µ C¤. Thus, the general
rational power given by Prede…nition 3.4 is well-de…ned.

Proof. Since 0

0 is not in lowest terms, 0 and 0 have the greatest common

divisor   1, and we have 0 =  and 0 = . Hence by Proposition 2.4
we have 0 =  ±  and 0 =  ± . Therefore


0

0 = 0(
¡1
0 ()) by Prede…nition 3.4

= ( ± )(( ± )
¡1())

= ((
¡1
 (¡1 ())))

= (
¡1
 ()) by Proposition 2.1, because  is onto

= 

 by Prede…nition 3.4

This establishes that we have a well-de…ned rational power  of . ¤

More intuitively, in the case  = fg, what is happening here is as follows.

Since fg
1
 consists of  distinct th roots of  whose th powers are all

distinct, we have
¯
¯
¯
³
fg

1


´¯¯
¯ = . Similarly, fg

1
0 consists of 0 distinct 0th

roots of . But some of their 0th powers are equal — in fact, 0 roots are
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partitioned into  blocks, called cosets, each consisting of  roots whose

0th powers are equal — hence

¯
¯
¯
¯

³
fg

1
0

´0
¯
¯
¯
¯ =  also, and in fact we have

fg

 = fg

0

0 .
Next, we consider Prede…nition 3.5. Under that prede…nition,



 = (fg)

1
 ,

which consists of  distinct th roots of  (one of which is ). So we

have fg

 6= fg, in fact fg


 ) fg in this situation. The cause of this

discrepancy is the fact that the power function  is not a one-to-one function
if jj  1. Recall that by Proposition 2.2, ¡1(()) =  is true for every
subset  of the domain of  (if and) only if the function  is a one-to-one
function.

This example, and others, show that Prede…nition 3.5 is not a “correct”
way of de…ning rational powers. Indeed, we have the following result.

Theorem 3.7. Suppose 
 ,

0

0 2 F are equivalent fractions representing a

rational number , where 
 is in the lowest terms but 0

0 is not. Then, under

Prede…nition 3.5, 

 = 

0

0 does not hold in general. Thus, the general
rational power as proposed by Prede…nition 3.5 is not well-de…ned.

Proof. Let  2 C¤ and  = fg. Then, when computed according to Prede-

…nition 3.5, fg

 consists of  elements ( distinct th roots of ), whereas

fg
0

0 consists of 0 elements (0 distinct 0th roots of 
0
). Since 0  , we

have fg

 6= fg

0

0 , and in fact, we have fg

 ( fg

0

0 . So, the rational
power fg is not well-de…ned in this setting. ¤

We further illustrate this by calculating a simple example below.

Example 3.8. Consider the base  = ¡1 and the rational exponent 1
3 =

2
6 . The power (¡1)

1
3 , under the computation rules of Prede…nition 3.5,

evaluates to

f¡1g
1
3 =

n
¡1 12 ¡

p
3
2 

1
2 +

p
3
2 

o
= f¡1¡¡2g

On the other hand, f¡1g
2
6 , under the same rules, evaluates to

f¡1g
2
6 =

¡
f¡1g2

¢ 1
6

= f1g
1
6

=
n
§1§

³
¡1
2 +

p
3
2 

´
§

³
¡1
2 ¡

p
3
2 

´o

= f§1§§2g
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In other words, f¡1g
2
6 consists of six sixth roots of 1, whereas f¡1g

1
3 consists

of three cube roots of ¡1 when calculated according to Prede…nition 3.5.

Theorems 3.6 and 3.7 establish conclusively that Prede…nition 3.4 is a
correct de…nition of rational powers but not Prede…nition 3.5. Thus we
adopt the former as our de…nition:

De…nition 3.9. Let  µ C¤,  2 Z,  2 N and  = 
 . Then  is de…ned

by

 = 

 =

³

1


´
= (

¡1
 ()).

Finally, we give a condition under which Prede…nitions 3.4 and 3.5 give
the same result, namely a condition under which the operations of extracting
a root and raising to a power commute.

Theorem 3.10. Let  2 C¤,  2 Z, and  2 N. Then
³

1


´
= ()

1
 holds

if and only if  and  are relatively prime, namely, when g.c.d.(p,q)=1.

Proof. If  and  are not relatively prime, with the greatest common divi-

sor , then by Theorem 3.6,
³

1


´
=

³


1


´
and this set consists of 



elements, whereas ()
1
 consists of  elements. Therefore

³

1


´
6= ()

1
 .

This shows that the condition is necessary. To show the su¢ciency, assume
that  and  are relatively prime. Write  in polar form as  = jj , with
jj  0 and  2 R. Then, using Proposition 2.5, we compute, on the one
hand,

³

1


´
=

½³
jj


 




´
¢
³

2


´
¯
¯
¯
¯  = 0 1      ¡ 1

¾

,

where jj

 =

³

p

jj
´

with the root being the principal (positive) real

root. On the other hand,

()
1
 =

½³
jj


 




´
¢
³

2


´
¯
¯
¯
¯  = 0 1      ¡ 1

¾

.

But since  and  are relatively prime, Proposition 2.6 implies that each
of f j  = 0 1      ¡ 1g and f j  = 0 1      ¡ 1g is a complete

system of residues modulo . Therefore, since the expression (
2
 ) de-

pends only on the congruence class of the exponent  modulo , the two

sets

½³

2


´
¯
¯
¯
¯  = 0 1      ¡ 1

¾

and

½³

2


´
¯
¯
¯
¯  = 0 1      ¡ 1

¾

are

equal, and hence
³

1


´
and ()

1
 are equal. ¤
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4. Real Number Case

Next we consider the real number case. We consider real base  and only
the real values of its power , for a rational exponent . Here, it will turn
out that even the “good” de…nition given as De…nition 3.9 does not work
unconditionally.

The basis of our consideration is again the power function  (2), but
now with both domain and codomain restricted to be the set of non-zero
real numbers R¤. As in the complex case, and keeping the same notation,
we consider powers and roots as set-valued functions. Namely, we will give
the following de…nitions.

De…nition 4.1. Let  µ R¤,  2 Z. Then

 = f j 2 g = ().

De…nition 4.2. Let  µ R¤,  2 N. Then


1
 = f 2 R¤ j 2 g = ¡1 ().

De…nition 4.3. For a non-zero real number  and a natural number , we
write


1
 = fg

1
 = f 2 R¤ j = g = ¡1 (fg) .

Then we have:

² If  is even, then


1
 = fg

1
 =

½
f 
p
¡ 

p
g if   0

; if   0
.

² If  is odd, then


1
 = fg

1
 = f


p
g.

The case of an odd  is simpler than that of an even . In fact when 
is odd we have the single-valued th root. This is because the th power
mapping  from R¤ to R¤ is one-to-one and onto (bijective) if  is odd,
whereas  is neither one-to-one nor onto if  is even.

For the general fractional power 

 , let us examine the two Prede…ni-

tions 3.4 (which we have adopted as De…nition 3.9) and 3.5 (which we have
discarded as not well-de…ned) that we studied in the complex case, but re-
stricted to real numbers (in other words, with  and  replaced by  and
, respectively). As before, we shall refer to these conjectural de…nitions
simply as prede…nitions.

Prede…nition 4.4. Let  µ R¤,  2 Z,  2 N, and  = 
 . Then  is

de…ned by

 = 

 = (

1
 ) = (

¡1
 ())
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Prede…nition 4.5. Let  µ R¤,  2 Z,  2 N, and  = 
 . Then  is

de…ned by

 = 

 = ()

1
 = ¡1 (())

Let’s …rst look at the “problematic” Prede…nition 4.5.

Example 4.6. Let  = 3
2 . Then  can also be written as 6

4 . Then on the
one hand

f¡1g
3
2 = (f¡1g3)

1
2 = f¡1g

1
2 = ;,

but on the other hand

f¡1g
6
4 = (f¡1g6)

1
4 = f1g

1
4 = f§1g.

So, we have f¡1g
3
2 6= f¡1g

6
4 .

Thus, as expected, rational power is not well-de…ned under the Prede…n-
ition 4.5.

Next, let us try Prede…nition 4.4, which is analogous to the “good” de…-
nition given in Section 3 (De…nition 3.9) for complex numbers.

Example 4.7. Let  = 3
2 = 6

4 . Then

f1g
3
2 = (f1g

1
2 )3 = f§1g3 = f§1g,

f1g
6
4 = (f1g

1
4 )6 = f§1g6 = f1g,

so that f1g
3
2 6= f1g

6
4 .

This example establishes that even our “good” Prede…nition 4.4 is not
well-de…ned in the real number case, that is, it does not de…ne rational
power  properly within the set of real numbers.

In order to salvage the situation, what we must do is to insist on writing
the fractional exponent in the lowest terms. In other words, for a nonzero
real number  and a rational number , we shall de…ne the real-valued power
 as follows.

De…nition 4.8. Let  be a non-zero real number and  be a rational number.
Write  = 

 , where  2 Z,  2 N,  and  are relatively prime (i.e. consider

the standard / lowest-terms repesentative of ). Then we de…ne the real-
valued power  by

 =
³


p

´

,

where 
p
 is taken to be the principal root, provided it exists as a real number.

Under this de…nition, we have the following familiar result.

Theorem 4.9. Let  be a non-zero real number and  be a rational number.
Write  = 

 , where  2 Z,  2 N,  and  are relatively prime. Then, under

De…nition 4.8, we have,
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² If  is even (so  is necessarily odd) then

fg

 =

( n³

p

´

, ¡
³


p

´o

if   0

; if   0

² if  is odd ( can be either odd or even) then

fg

 =

n³

p

´o

Proof. The proof is familiar and is not included here. ¤

We have seen that the operations of raising to a power and extracting a
root within real numbers do not commute in general. The following theorem
determines when it will be safe to commute between the two operations.

Theorem 4.10. Let  2 Z, and  2 N. Then the relation
³

1


´
= ()

1


holds for any subset  µ R¤ if and only if at least one of  or  is odd,
namely, when g.c.d.(p,q,2)=1. In other words, in the real number case the
operations of extracting a root and raising to a power do not commute if and
only both  and  are even. In particular, they commute if the fraction 

 is

in lowest terms.

Proof. The equality in question can be written as

(
¡1
 ()) = ¡1 (()).

The key facts used in the proof are the following two.

(1) When  is an odd integer, the th power mapping  is bijective.
Hence, it has the inverse mapping ¡1 (the th root mapping) that
satis…es  ± ¡1 = ¡1 ±  = , where  denotes the identity
mapping of R¤.

(2) For two integers  and , the th power mapping  and th power
mapping  commute:  ±  =  ±  (see Proposition 2.4).

First suppose that  is odd. Then  is bijective, hence it has the inverse
mapping ¡1 , and we compute

(
¡1
 ()) = (¡1 ± )((

¡1
 ())) Since ¡1 ±  = 

= ¡1 (( ± )(
¡1
 ()))

= ¡1 (( ± )(
¡1
 ())) Since  ±  =  ± 

= ¡1 ((( ± ¡1 )()))
= ¡1 (()) Since  ± ¡1 = 
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Next suppose that  is odd. Then  is bijective, hence it has the inverse
mapping ¡1 , and we compute

(
¡1
 ()) = (

¡1
 ((¡1 ± )())) Since ¡1 ±  = 

= (
¡1
 (¡1 (())))

= (
¡1
 (¡1 (()))) Since  ±  =  ± 

= ( ± ¡1 )(¡1 (()))
= ¡1 (()) Since  ± ¡1 = 

Finally, suppose  and  are both even, and let  = fg with  2 R¤. If

  0, then
³
fg

1


´
=

n³

p

´o

, whereas (fg)
1
 =

n³

p

´

¡
³


p

´o

.

If   0, then
³
fg

1


´
= ;, whereas (fg)

1
 =

n

p
¡ 

p


o
. Hence, if 

and  are both even, then
³
fg

1


´
6= (fg)

1
 . ¤

We have seen that in the real number case, even with the supposedly
good de…nition given as Prede…nition 4.4, we must insist that the exponent
be in the lowest terms in order to de…ne a rational power (as in De…nition
4.8), and Theorem 4.10 says that under that restriction of the exponent,
either of the Prede…nitions 4.4 or 4.5 coincides with De…nition 4.8. Thus
it may look as if it does not matter which of the prede…nitions we adopt
as far as we are dealing only with real numbers. However, as we showed
in the previous section, Prede…nition 4.4 is the one that generalizes well to
the complex number case, hence it is inherently better than Prede…nition
4.5. Therefore, for pedagogical reasons, even in the real case the instruction
should give a clear preference to the “good” de…nition given by Prede…nition
4.4 (as incorporated into De…nition 4.8), in order to better prepare students
for future more advanced mathematical experiences, for instance when they
may study complex numbers.

5. Conclusion: Implications to Teaching

In this section, we abandon our “set-function” notation for powers and

roots, and shall discuss the usual convention under which 
p
 = 

1
 denotes

the principal th root of . Then we will make suggestions as to how text-
books and classroom teaching should treat powers with fractional exponents.
Recall that the principal root means the following: if   0 then 

p
 denotes

the positive th root of ; if   0 and  is odd, it denotes the negative th
root of ; and if   0 and  is even, then 

p
 is “unde…ned” (as a real num-

ber). When complex numbers are included in consideration, the square rootp
, with   0, is often understood to mean the purely imaginary numberp
jj ¢ . We shall also refer to this convention in the discussion.
In many high-school or beginning college level textbooks, two computa-

tion rules are given as de…nitions of rational powers (of real numbers). One
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is

(A) 

 =

³

p

´

and the other is

(B) 

 =


p
.

Note that the rule (A) corresponds to our Prede…nitions 3.4 and 4.4 (which
we have adopted as De…nitions 3.9 and 4.8), and the rule (B) corresponds
to Prede…nitions 3.5 and 4.5 (which we discarded because they are not well-
de…ned). Usually textbooks present both of these two equalities, often writ-
ten side by side, giving the novice an impression that the two expressions
on the right hand sides are equivalent (reference instances are many and
we can not be exhaustive, we cite a small random sampling without any
implication: [2, 4, 7, 9]). But as we have clari…ed, these two rules are not
equivalent, (A) is the “correct” one, and (B) is not.

There may be several reasons why the two rules are often confused. The
root cause of the problem we believe is the lack of awareness of the order of
operations. Students often are not clearly aware that the order of operations
matters, and implicitly assume the commutativity of order of operations in
many cases (after all our instructions have emphasized and reemphasized
it for them). Commutativity holds for multiplication of numbers, as in
1
 ¢ =  ¢ 1 , but it does not translate to the commutativity of the operations

of raising to a power and of extracting roots.
In fact, there is a tendency that between the rules (A) and (B) the “wrong”

rule (B) is not only accepted but actually preferred, especially by the stu-
dents. One, linguistic, reason for this may be that in the English language,
when one reads a fraction the numerator is read …rst and then the denomi-
nator. Thus it may be more “natural”, when people see the expression 


 ,

to raise  to the th power …rst, then take the th root. Another reason
may be typographical. The notation 

p
 is easier to read and write than³


p

´

, which requires parentheses. But these reasons are linguistic or no-

tational accidents, and should in no way take precedence over mathematical
correctness.

On the other hand, there are also factors that lend support to the “cor-
rect” rule (A). One is the fact that rule (A) often results in more e¢cient
numerical computation of the value of the power, as is often pointed out

in textbooks. For example, to compute 8
5
3 , if one uses rule (B), as many

students would do, one has to …rst compute 85, which perhaps requires a
calculator to do it quickly. But if one uses rule (A), then one …rst …nds the
cube root 2 of 8, and then raises it to the 5th power to get the result 32.
This can easily be done by mental arithmetic.

Still, computational e¢ciency is not the central reason why rule (A)
should be favored. Rather, the most fundamental issue in deciding which
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of the two rules should be adopted is a logical one, namely that of well-
de…nedness: whenever we use fractional expressions, we expect that two
expressions 

 and ¢
¢ to be equivalent and yield same results. Prede…ni-

tion 3.4, which is an extension of rule (A) to the complex numbers, meets
this expectation, but Prede…nition 3.5, which is an extension of rule (B)
to complex numbers, violates it, as we have seen in Section 3. Therefore,
Prede…nition 3.4 is logically sound, whereas 3.5 is logically de…cient as it
does not de…ne rational powers, only fractional powers.

A simple illustration of the contrast between the two is given by the
equality

(3) 

 = 

1
1 = 

which should be an identity if the de…nition of the power is a good one.

Under rule (A), the equality (3) translates to
³


p

´

=  , which is always

true (whenever 
p
 exists) by the very de…nition of the th root 

p
 of  as

a number whose th power equals . On the other hand, under rule (B), the

same equality (3) translates to 
p
 = , which is not guaranteed to be true,

because even though  is by de…nition an th root of , there are several

other th roots of . In fact, if we consider complex numbers, ()
1
 would

be -valued, and there is no canonical way of singling out any one of the 
values as the “principal” value of the root, either. Therefore, the expression

()
1
 is not well-de…ned if it were to represent a single value.

The simplest case of the above is the equality

(4) (¡1)
2
2 = ¡1.

We follow the convention under which
p
 denotes

p
jj ¢  when   0. With

rule (A) we have

¡p
¡1

¢2
= 2 = ¡1

hence the equality (4) holds. On the other hand, with rule (B), we have

p
(¡1)2 =

p
1 = +1

hence the equality (4) does not hold. This shows that, against our naive
expectation, the operations of squaring and extracting square root do not
commute. Correspondingly, in our set-function notation, we have a contrast
between

³
f¡1g

1
2

´2
= f¡g2 = f2 (¡)2g = f¡1¡1g = f¡1g

under the “good” Prede…nition 3.4, and

¡
f¡1g2

¢1
2 = f1g

1
2 = f1¡1g 6= f¡1g

under the “problematic” Prede…nition 3.5.
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On the basis of the above, our suggestions to textbook authors and mathe-
matics instructors regarding rational and fractional powers are the following.

² When introducing the fractional power 

 , use only the correct rule



 =

³

p

´

. We should not only avoid using the incorrect rule



 = 

p
 but provide counterexamples to demonstrate its invalidity.

In other words, emphasize that the operations of extracting a root
and raising to a power do not commute. A conspicuous case of non-
commutativity like this can be used as a lesson against errors caused
by careless assumptions of commutativity be it in the order of opera-
tions or for noncommutative binary operations. Note that incorrect
assumptions about commutativity of order of operations is a source
of many common student misconceptions and errors. Awareness of
these issues will prepare students to accept non-commutativity of op-
erations (for example, division, subtraction, matrix multiplication,
and function composition) as essential part of their mathematical
experience.

² When dealing only with real numbers, one may present examples

where the value of 

 changes when the exponent is replaced by an-

other equivalent fraction, even under the “correct” rule. But assure
the students that this discrepancy will be resolved with the intro-
duction of complex numbers, hence that the “correct” rule is indeed
the correct one!

One possible counterargument to our suggestions may be that if we limit
ourselves to positive real numbers, both rules work …ne and give the same

result, and therefore it is alright to treat both 
p
 and

³

p

´

as well-de…ned

and equivalent to each other. But that is dangerous, for the following two
reasons:

² The human mind has the tendency to reduce de…nitions and the-
orems to formulae. Namely, a component of the de…nition or the
theorem becomes a “formula” and other parts would be treated as

auxiliary and easily forgotten. For instance, once 

 = 

p
 is called

a formula, it becomes the main part of the theorem and everything
else, such as the restriction that  should be a positive real number,
becomes auxiliary.

² Habit of mind, once formed, is hard to correct.

Thus, students who are taught in such a way that deemphasizes the dis-

tinction between
³


p

´

and 
p
 are more likely to:

² have misconceptions similar to that given in the introduction to this
article,

² have di¢culty adjusting to new situations that arise with complex
numbers,
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² have the misconception that the operations of extracting roots and
raising to a power commute.

We also have the following suggestions regarding the treatment of powers
and radicals in general:

² When only real numbers are considered, the radicals exhibit sharply
contrasting properties for even and odd indices. This fact should be
treated in relation to the properties of corresponding power func-
tions: an odd power function is bijective (both one-to-one and onto)
whereas an even power function is neither one-to-one nor onto. These
di¤erent properties of the power functions account for the di¤erent
behaviors of radicals with odd and even indices. Such functional
viewpoint will prepare a common context in which to discuss power
and roots of complex numbers in subsequent courses. (In elemen-
tary courses, the concepts of one-to-one and onto functions can be
illustrated informally using the graphs of the power functions, if one
wishes to avoid going into their technical de…nitions, cf. [5].)

² When complex numbers are introduced, the new behaviors of the
radicals (roots) can similarly be understood in terms of the prop-
erties of corresponding power functions. Complex power functions,
in contrast to the real ones, are onto but not one-to-one, regardless
of whether the exponent is even or odd. As a consequence, in the
complex case the radicals with even and odd indices behave similarly
to each other (in other words, the distinction seen in the real case
disappears).

There are at least two underlying general principles that we advocate
and want to emphasize. First, we should try to minimize, or better yet to
avoid, reduction of de…nitions and theorems into formulae. (It should be
noted that reduction of de…nitions and theorems into formulae results in
oversimpli…cation and truncation. An e¤ective way to help students avoid
reducing de…nitions and theorems into formulae is for instructors to provide
su¢cient repetition of and to require students to cite all components of
de…nitions and theorems when using the formulaic components until the
whole concept becomes part of students’ schema.) Second, we should try to
minimize the adjustment students are required to make when they advance
to encounter more general situations of a given topic. In the case of the
de…nition of rational and fractional powers, it is thus much better, as we
suggested, to insist from the beginning on using correct de…nitions that do
not require modi…cations afterwards. It is much more e¢cient and hence
better not to have to force students to unlearn what they have learned with
real numbers when they encounter complex numbers! As another example of
the same principle, the functional viewpoint that we suggest gives a unifying
context in which to understand the seemingly quite di¤erent behaviors of
radicals in the real and complex cases, and thus will ease the transition
between the two topics for the students. When teaching elementary courses,
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we must take care, as suggested in this note, so that we may prepare the
students better both for their current and future studies and for their life
experiences.
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