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ENCOURAGING THE INTEGRATION OF COMPLEX NUMBERS

IN UNDERGRADUATE ORDINARY DIFFERENTIAL

EQUATIONS

JOHN EHRKE

Abstract. In this article we will demonstrate how introducing students to an
alternative to the method of undetermined coefficients for solving for particular

solutions of linear differential equations can be used to lead students to a

more intuitive treatment of other topics in a typical undergraduate differential
equations sequence. Given budget and staffing restrictions placed on smaller

universities the techniques discussed offer a means for obtaining a higher level

of student competency in complex numbers with a minimal resource and time
investment.

1. Introduction

In many ways complex numbers and more specifically the properties of the complex
exponential provide a means for condensing several techniques commonly encoun-
tered in an undergraduate differential equations course. Surprisingly, many of the
contemporary texts for these courses relegate exercises involving complex numbers
to end of chapter projects or deliver such exercises in relative obscurity compared
to the abundance of real number examples they offer. While this may be fine for
larger universities who can devote ample listings to courses in complex variables
and Fourier analysis such luxuries are often not realized for two year colleges or
smaller four year universities and the end result is students suffer from an incom-
plete mathematical foundation. In past years this may not have been a big issue,
but with increasing pressure from physics and engineering applications complex
operations and arithmetic are poised to assume a prominent role in the future of
undergraduate mathematics. To this end, we will consider three areas in which a
complex approach may be suitable.

2. Undetermined Coefficients

It is likely that even if you do not teach differential equations on a regular basis
you are intimately familiar with the method of undetermined coefficients. In a first
semester differential equations course the method arises as a means to solve for
particular solutions of linear differential equations with constant coefficients of the
type
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(2.1) a
d2y

dx2
+ b

dy

dx
+ cy = f(x)

where f(x) is normally restricted to linear combinations of the form

(2.2) q(x)ekx cos(mx) or q(x)ekx sin(mx)

for some polynomial q(x), with constants k and m (usually real). The method’s
importance cannot be understated given its applicability to the areas of mechanics
and electrical circuits, but it can be terribly tedious and is generally unrevealing.
For example, using the method of undetermined coefficients if one were to try and
write down the form of a particular solution to the equation

(2.3) y′′ + 2y′ + 2y = 5e−x sin(x) + 5x3e−x cos(x)

they would quickly discover that there are no less than eight separate constants for
which solutions must be obtained. Integrating complex arithmetic in this method
is fairly straightforward as detailed in [5], but we will consider another method for
accomplishing the same result in a more intuitive way. This result is expanded to
a recursive algorithm in [3].

We will begin with a simple demonstration of the technique followed by a discussion
of its importance relevant to this discussion. Consider the inhomogeneous second
order linear differential equation

(2.4) y′′ − 3y′ + 5y = e−3x sin 2x.

Finding a particular solution of an equation such as this is a fairly standard ap-
plication of undetermined coefficients in most texts. We begin by rewriting the
differential equation in its D-operator form and complexifying the right hand side.
This reduces (2.4) to

(2.5) p(D)y = e(−3+2i)x

where p(D) = D2 − 3D + 5 is the appropriate differential operator (D = d/dx). It
can easily be shown that a particular solution, in this case called the exponential
response, ȳ, for the complex equation (2.5) can be obtained using properties of the
exponential and is given by

(2.6) ȳ =
e(−3+2i)x

p(−3 + 2i)
.

The next step is one that often gives students problems but is a necessary skill for
students to possess, that is, recover the imaginary part of (2.6). Upon doing so one
obtains the desired particular solution

(2.7)
18

685
e−3x cos 2x+

19

685
e−3x sin 2x.

One advantage of this method is that by finding the real part of (2.6) one can obtain
the exponential response for the same equation with cos 2x appearing on the right
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hand side. Finding the exponential response relies heavily on the application of
exponentials and the properties of D. That is, it is straightforward to show that
for α ∈ C,

(2.8) Dk (eαxu(x)) = eαx(D + α)ku(x)

or more generally,

(2.9) p(D)eαxu(x) = eαxp(D + α)u(x).

This method can of course be expanded to solve equations of the form

(2.10) p(D)y = eαxr(x)

for all the typical functions r(x) to which the method of undetermined coefficients
is desirable with the added feature of being easily generalizable to higher order
equations. The benefits of emphasizing this technique and forcing students to come
to terms with complex arithmetic are far reaching. This approach reinforces the
concept of phase response in relation to amplifiers, filters, and resonance encoun-
tered later in the course not to mention provides a basis for motivating the concepts
of transfer and weight functions associated with the Laplace transform.

3. Extension to the Laplace Transform

It is suggested that any discussion of the Laplace transform begin with inspection
of the Fourier transform which is not possible unless a commitment to dealing with
complex numbers has been established. The reason for this suggestion is that the
Laplace transform is really just a special case of the Fourier transform. Consider
an integrable function f defined on R with f(t) = 0 for t < 0. In this case, the
Fourier transform of f is given by

(3.1) f̂(ω) =

∫ ∞
0

f(t)e−iωt dt,

where ω can be treated as complex, so that the integral (3.1) defines an analytic
function on this domain. There are several forms of the Fourier transform which
are suitable for discussion in this regard. In fact for many of the transform formulas
there are both real and complex versions. The complex versions have a complex time
domain signal and a complex frequency domain signal. The complex transforms are
usually written using complex exponentials as shown in (3.1), though equivalent
forms in terms of sine and cosine can be obtained as an application of Euler’s
relation. In the end, the specific version of the transform used in this paper is
chosen for its easily observable connection to the Laplace transform formula used
in [1], given by

(3.2) L {f(t)} =

∫ ∞
0

f(t)e−st dt

defined for all values of s for which the improper integral converges. In the case
of a complex ω, a restriction of ω to the half-plane Im ω < −α means we can
relax the integrability condition on f and (3.1) will converge for any functions f(t)



ENCOURAGING COMPLEX NUMBERS IN ODE’S 21

of exponential order. This is a statement commonly presented in textbooks with
minimal support for its importance, but in this setting become apparent since a
function f(t) is of exponential order at t→ +∞ if there exist constants a, b, and t0
such that

(3.3) |f(t)| ≤ aebt

for t ≥ t0. In this situation it is convenient to make the change of variable s = iω
from which we obtain the Laplace transform

(3.4) L f(s) = F (s) = f̂(−is) =

∫ ∞
0

f(t)e−st dt.

It is worth mentioning that the Fourier inversion formula can be adapted to obtain
the inverse Laplace transform as well. Once these ideas have been established, an
elementary, but insightful treatment of the poles of the transform function F (s)
where s is complex is possible. We will explore this idea in an example.

The approach taken by most textbooks in obtaining L −1F , where F (s) is a proper
rational function of s (this is the most common example encountered), is to decom-
pose F (s) into partial fractions and use an inversion formula such as

(3.5) L −1 (s− a)−n−1 = eat
tn

n!
.

This method is neither enriching, nor revealing (much the same as undetermined
coefficients) mathematically. As an aside it is worth mentioning the role of the
exponential in “shifting” functions in the s and t domains. (Where have we seen
something similar?) A more enriching approach would be to develop and use the
fact that

(3.6) L −1F (t) =
∑

all poles of F

Res F (s)est (t > 0).

Put in perspective, (3.6) allows one to obtain the same information left to partial
fractions applications in most texts without resorting to contour integration which
would be rather sophisticated for students at this level. However, based on the ex-
amples above, i.e. F (s) is a rational function of s, one can get the “residue/poles”
treatment of the topic minus the contour integration, just by thinking of partial
fractions–without actually implementing partial fractions. This idea is not particu-
larly new or novel as it turns out. For a more thorough discussion of the “residue”
idea as it relates to simplifying partial fractions computations the reader is di-
rected to [4]. To clarify these points, consider the second order ordinary differential
equation,

(3.7) x′′ + 2x′ + 5x = f(t), x(0) = a, x′(0) = b.

Letting F (s) = L f(s) and X(s) = L x we have

(3.8) s2X(s)− (as+ b) + 2sX(s)− 2a+ 5X(s) = F (s)

which leads to



22 JOHN EHRKE

(3.9) X(s) =
F (s)

s2 + 2s+ 5
+
as+ b+ 2a

s2 + 2s+ 5
.

The zeros of s2 + 2s+ 5 are s = −1± 2i and so by (3.6) we obtain

L −1
1

s2 + 2s+ 5
= Res−1+2i

est

s2 + 2s+ 5
+ Res−1−2i

est

s2 + 2s+ 5
(3.10)

=
e(−1+2i)t

4i
+
e(−1−2i)t

−4i

=
1

2
e−t sin 2t.

Also,

(3.11) L −1
as+ b+ 2a

s2 + 2s+ 5
= ae−t cos 2t+

1

2
(a+ b)e−t sin 2t.

which together with (3.10) gives the solution x(t) when one considers the convo-
lution of f(t) with (3.9). For more information on the application of poles and
residues to the Laplace transform the reader is referred to [2]. These methods are
of clear value to students interested in engineering or physics as the flexibility and
reliability of the Laplace transform makes it a powerful tool. Without the complex
interpretation of the Laplace transform though the full potential of its value is not
realized.

4. Beats

In studying the phenomenon of resonance in forced oscillations one will readily
find a discussion of beats in most texts. A beat is an audible variation in the
amplitude of a combined sound that occurs when the system is near resonance.
This phenomenon is effectively the means by which musicians tune instruments.
As far as I can tell there are no texts of the appropriate level which introduce this
topic in the manner we will below.

A derivation of the beats phenomenon in most texts involves the use of the trigono-
metric identity

(4.1) 2 sinA sinB = cos(A−B)− cos(A+B).

Consider a response of the form x(t) = a sinω0t + b sinω1t where ω1 ≈ ω0. This
gives rise to a beat, but using the above method, we can only treat the case
where a = b, i.e. the two oscillations have the same amplitude. (Technically,
a trigonometric result can be obtained from writing the response in the form,
x(t) = a(sinω0t+sinω1t)+(b−a) sinω1t, but the derivation of a such a result is not
nearly as intuitive as a complex treatment of the topic.) From a practical stand-
point, the case a = b, while important, obscures much of the underlying richness
of the model and subsequent applications involved. From the student’s perspective
as well, the manipulation of exponentials is more natural in practice than the use



ENCOURAGING COMPLEX NUMBERS IN ODE’S 23

of trigonometric identities which are largely derived and understood from suitable
complex identities in the first place.

To give a more complete treatment of the topic we will proceed using the complex
exponential. Since we are studying two oscillations that are very near (in frequency)
one another we will consider the sum of two complex exponentials of the form

(4.2) x(t) = αeiω0t + βeiω1t

where we think of ω1 = ω0(1+ε) for small ε. Here we assume α, β ∈ R are constants.
Under this assumption, we have

(4.3) x(t) = eiω0t
(
α+ βeiεω0t

)
which gives

(4.4) |x(t)| =
√
α2 + β2 + 2αβ cos(εω0t)

since |x| = xx̄ and |eiω0t| = 1. This is the magnitude of the response often referred
to as the envelope. Compare this with the equation for the envelope given in
most texts. Now describing the beats phenomenon is much more straightforward.
Observing (4.4), the maximum amplitude occurs for values of t which maximize
the cosine term. That is, t = 2nπ/εω0 for n = 0, 1, 2, . . .. The combined oscillation
that occurs as a result has period modified by the value of ε, given by 2π/εω0.
In this case we think of the beat as being a slight perturbation of the component
oscillations. At the values of t listed above the maximum amplitude of the beat is
α+ β, and when t = (2n+ 1)π/εω0 we have a minimal amplitude, |x(t)| = |α− β|.
From this point any number of examples can be done and more clearly understood
given the way in which the effect was derived. This also leads to a more interesting
treatment of resonance as you can investigate what happens to the beat and its
envelope as ε→ 0.

5. Closing Remarks

The application of complex numbers and the complex exponential can unify many
of the subjects taught in differential equations at the undergraduate level. While
many of the topics described are standard topics in a junior level mechanics or elec-
trical engineering course the degree to which these topics are treated as described
in this paper are somewhat lessened in a conventional undergraduate differential
equations course for mathematics majors. The immediate motivation for this ap-
proach stems from the rising need for general competency in complex operations at
this level among members of the mathematical community. The ease with which
these methods can be implemented is pedagogically relevant especially for smaller
programs which can not afford a more complete treatment of complex variables at
the undergraduate level. The methods described herein are but a small glimpse into
the vast, untapped potential of experiencing differential equations from a complex
perspective in undergraduate mathematics.
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