
Texas College Mathematics Journal
Volume 3, Number 2, Pages 10–26
S applied for(XX)0000-0
Article electronically published on February 3, 2006

A GENETIC ALGORITHM FOR DRAWING ORDERED SETS

BRIAN LOFT AND JOHN SNOW

Abstract. An order relation is a binary relation which is reflexive, antisym-

metric, and transitive. Order relations occur naturally in many areas of math-

ematics (two basic examples are the ordering of the real numbers and the

subset relation). The structure of a small set with an order relation can often

be completely described by drawing a diagram called a Hasse diagram.

A genetic algorithm is a problem solving technique which treats potential

solutions to a problem as biological lifeforms which compete and reproduce
in a process similar to natural selection in hopes of generating an acceptable

solution.
In this manuscript, we introduce the basics of genetic algorithms and de-

velop a genetic algorithm for drawing Hasse diagrams of ordered sets.

1. Introduction

A genetic algorithm is a problem solving technique which mimics the process
of natural selection. Potential solutions to a problem are viewed as biological life-
forms which can reproduce. The process begins with a random population of these
lifeforms which are tested to see how close they are to being solutions. The better
solutions are deemed more fit than other members of the population and are allowed
to mate to produce offspring which will compose a new population. This process is
repeated until an acceptable solution to the problem is found.
Ordered sets arise naturally and frequently in all areas of general algebra. Or-

dered sets consisting of subalgebras, normal subgroups, and ideals are some common
examples. An indispensable tool when working with ordered sets is the ability to
draw diagrams of small ordered sets which expose the structure of the order. In this
manuscript we develop a genetic algorithm for drawing ordered sets. The purpose
for this algorithm is to generate a clear enough picture of an ordered set so that
it may be recognizeable if it is a familiar ordered set. The diagrams which result
can often be manipulated to obtain diagrams of higher quality which can be used
for publications. Unless otherwise noted, all of the ordered sets in this manuscript
were drawn using the genetic algorithm.
Section 2 of this manuscript is a basic introduction to genetic algorithms in

general. There is no original material in this section, and everything included here
could be found in any survey of genetic algorithms such as [6, 7, 8]. The reader
may refer to these for a more thorough treatment of genetic algorithms. Section 3
briefly defines ordered sets and the Hasse diagrams which we will be drawing. Our

Received by the editors August 22, 2005.

1991 Mathematics Subject Classification. Primary 68W20; Secondary 06A06.

Key words and phrases. genetic algorithm, ordered set.

c©2006

10



A GENETIC ALGORITHM FOR DRAWING ORDERED SETS 11

specific genetic algorithm for drawing ordered sets and some examples drawn by
the algorithm are presented in Section 4.

2. Genetic Algorithms

The idea of employing an “evolutionary strategy” in problem solving was intro-
duced in a 1973 paper of I. Rechenberg [5]. His ideas lead to the development of
the concept of a genetic algorithm in 1975 by John Holland and his students [3].
We present a restricted model of a genetic algorithm here as a basic introduction
to the idea.

2.1. Biological Inspiration. The characteristics of a biological lifeform are de-
termined by genes (blocks of DNA) linked together in strings called chromosomes.
When two lifeforms reproduce, corresponding chromosomes from each parent are
twisted together in a process called recombination or crossover to form a chromo-
some in the offspring. This process occurs in the following way. A chromosome from
Parent A is paired with a chromosome from Parent B. A random crossover point
along the chromosome is chosen, and the two parent chromosomes are cut at this
point. The genetic material from Parent A’s chromosome before the crossover point
is glued together with the material from Parent B’s chromosome after the crossover
point to form a new chromosome for the offspring (see Figure 1). Recombination

Crossover Point

A

B

Figure 1. In recombination, the genetic material from the
first parent’s chromosome before the crossover point is combined
with the material from the second parent’s chromosome after the
crossover point.

has the property that if both parents share a particular pattern in their chromo-
somes then this pattern will carry over to the offspring. Therefore, good (and bad)
qualities which are shared by the parents can be passed on to the offspring.
The process of copying genes from the parents to offspring is imperfect. There

are sometimes errors in copying which we call mutation. This mutation introduces
a certain randomness into the genetic material of the offspring. This randomness
might be negative or positive. It may even have no noticeable effects on the off-
spring.
If an organism is strong and survives long enough to reproduce, then some of its

genetic material is passed on to the next generation. If an organism is too weak
to survive long enough to reproduce, then its genetic material is removed from the
population.



12 BRIAN LOFT AND JOHN SNOW

Genetic algorithms attempt to mimic this situation. Possible solutions to a
problem are envisioned as organisms each with a chromosome that contains the
genetic material which encodes its individual traits. This chromosome is simply a
list of symbols – usually 0’s and 1’s. At the simplest level, recombination works
as described above. A crossover point is chosen at random. The two parents’
chromosomes are cut at this crossover point. The first segment of one is glued
to the second segment of the other to form the chromosome of the offspring. The
offspring’s chromosome is then mutated by randomly changing some of the symbols
in it.
The genetic algorithm employs a fitness function which determines how good of

a solution a particular lifeform is to the problem being addressed. Those organisms
which display a greater fitness are given a greater chance to reproduce. First, a
random population of organisms is generated, and the entire population is tested for
fitness. Then some of the members of the population are selected for reproduction
with the most fit organisms being more likely to reproduce. Some of the genetic
material in the offspring is mutated. Then the new generation of offspring replaces
the previous generation. To insure that the new generation is at least as fit as the
previous generation, some of the most fit members of the parent generation may be
included with the offspring. This is called elitism. The process is repeated until an
acceptable solution is found. Here is an outline of a typical genetic algorithm:

(1) Initial Population: An initial population of organisms is randomly gen-
erated.

(2) Fitness Testing: The fitness function is applied to each member of the
population.

(3) Solution: If an acceptable solution is found in the population during test-
ing then the algorithm terminates.

(4) Reproduction:
4.1 Selection: Pairs of organisms are selected from the population for

mating with probability based on fitness.
4.2 Recombination: A crossover or recombination operation is applied

to the chromosomes of each pair selected for reproduction to produce
a new organism.

4.3 Mutation: The chromosome of the new organism is mutated with
some small probability.

(5) Next Generation: Some or all of the offspring produced in the previous
step are chosen to form the new population. This population may also
include the most elite members of the previous population.

(6) Repeat: Goto step 2.

2.2. Encoding and Fitness. The structure of a genetic algorithm is quite general.
The means of selection, recombination, and mutation are often not tied to the
problem at hand. The specific problem affects most directly how organisms are
encoded and how fitness is computed. The most popular means of encoding a
chromosome is as a sequence of 0’s and 1’s as most data can usually be represented
in this way. However, genetic algorithms have been applied with chromosomes
that are strings of integers, floating point numbers, and arbitrary symbols. John
Koza has even applied the ideas behind genetic algorithms to “breed” computer
programs in genetic programming [4]. Recombination may be more complicated in



A GENETIC ALGORITHM FOR DRAWING ORDERED SETS 13

these more general chromosomes, so we isolate our attention to strings of 0’s and
1’s.
By far the most difficult and most important step in building a genetic algorithm

is constructing the fitness function. This is also the most problem-specific step. As
we will demonstrate with our genetic algorithm for drawing ordered sets below, the
fitness function can be influenced by a variety of parameters. The fitness function
must be fast because the fitness of every organism in a population must be tested
every generation in a genetic algorithm.

2.3. Recombination. The simplest type of recombination is one point crossover.
Chromosomes are strings of symbols (here, 0’s and 1’s). We begin with two chro-
mosomes, one from Parent A and one from Parent B, both the same length. A
crossover point is selected randomly. The two chromosomes are cut at this point,
and a new chromosome is formed by using the chromosome from Parent A before
the crossover point and from Parent B after the crossover point. This is depicted
in Figure 2.

Parent A: 0 1 1 0 1 0 1 1

Parent B: 1 0 1 1 1 0 0 0

0 1 1 Initial segment of A

1 1 0 0 0 Final segment of B

Offspring: 0 1 1 1 1 0 0 0

Figure 2. One point crossover.

A first generalization of one point crossover is two point crossover. In two point
crossover, two crossover points are randomly chosen. Genetic material is copied
from A before the first crossover point. Between the crossover points, material is
taken from Parent B. After the second crossover point, material is again taken from
A. This is depicted in Figure 3.

Parent A: 0 1 1 0 1 0 1 1

Parent B: 1 0 1 1 1 0 0 0

0 1 0 1 1 Initial and final segments of A

1 1 1 Middle segment of B

Offspring: 0 1 1 1 1 0 1 1

Figure 3. Two point crossover.

From two point crossover, one can imagine three point crossover, four point, five
point, and so on. The logical conclusion of this is uniform crossover. In uniform



14 BRIAN LOFT AND JOHN SNOW

crossover, each symbol in the offspring’s chromosome is chosen randomly to be
equal to the corresponding symbol of the chromosome of either Parent A or Parent
B. This is depicted in Figure 4.

Parent A: 0 1 1 0 1 0 1 1

Parent B: 1 0 1 1 1 0 0 0

Offspring: 0 0 1 0 1 0 0 1

Figure 4. Uniform crossover. The underlined symbols are the
ones chosen for the offspring.

One observation we should make about crossover in any of these forms is that
if a pattern appears in the chromosomes of both parents, then recombination will
preserve that pattern. For example, both parents above have 1’s as the third and
fifth symbol in their chromosomes and 0 as the sixth. You can see that in one point,
two point, and uniform crossover the offspring has the same pattern.

2.4. Mutation. Mutation is usually applied after the process of recombination.
The simplest manner in which this is done is to select a small number of symbols
in the offspring’s chromosome and replace them with random symbols. If the only
symbols are 0 and 1, then this amounts to selecting a few random symbols and
toggling them between 0 and 1. In most circumstances, mutation should only be
applied in a very limited way.
If a population possesses a few very fit members then it may only take a few

generations before the entire population resembles these members – even if they are
not acceptable solutions. Mutation helps to avoid this premature convergence. In so
doing, mutation helps to provide a deeper gene pool so that the genetic algorithm
may have more chances to find a good solution.

2.5. Selection. Selecting organisms from a population to breed can be done in a
number of ways. One popular method is roulette wheel selection. The sum S of
the fitness values of the entire population is calculated. For any organism x in
the population, denote the fitness of x as F (x). Organisms are selected randomly
from the population so that the likelihood of selecting any particular individual x
is F (x)/S. Of course, for this to work F (x) must not be negative.
The problem with this means of selection is that a single organism’s fitness

might account for so large a portion of the total sum of fitnesses that it is chosen
too frequently for reproduction. This can be avoided by employing a rank function
rather than directly using the fitness function. Individuals in the population might
be assigned ranks, 1, 2, 3, and so on (with 1 being the worst) based on fitness.
These ranks can then be used in place of fitness for roulette wheel selection.
Another alternative is to sort the population by fitness and apply a fixed prob-

ability of selection to the most elite organisms. For example, one might insist that
the top ten percent of the population is chosen for reproduction eighty percent of
the time. An extreme version of this is that the elite of the population are chosen
to mate with each other, and the rest of the population is abandoned.



A GENETIC ALGORITHM FOR DRAWING ORDERED SETS 15

2.6. The next generation. Once the population has been tested for fitness, par-
ents have been selected, recombination has occurred, and mutation has been ap-
plied, then the next generation of organisms must be chosen. One way to do this is
to simply use all of the offspring to make the new generation. A problem with this
is that recombination and mutation are not always successful in creating more fit
organisms. The children may be less fit than the parents. By throwing away the
parent generation, the algorithm would be accepting worse solutions. An alterna-
tive is to always include the most fit parents along with the offspring to form a new
generation. This is called elitism.

2.7. Islands. As generations pass, genetic algorithms tend to converge. After sev-
eral generations, the population may be biased towards certain genetic patterns,
and all of the organisms my resemble each other. Mutation helps to slow this con-
vergence down until the algorithm has had time to explore the gene pool more
thoroughly. Another tool for avoiding bias and insuring genetic variety is using
multiple populations.
The algorithm can begin with multiple random populations rather than just one.

Each of these populations we will call an island. Each island is tested for fitness
and undergoes selection, recombination, and mutation independent of the others.
Genetic material from the islands can then be mixed by migrating organisms from
island to island. This migration helps to spread around genetic patterns which
develop on different islands. An alternative to migration is letting the islands
develop for several generations in isolation until they begin to converge. Then
the elite of each island are collected into one elite population on which the genetic
algorithm can operate, hoping to combine the best traits from the islands to find
an organism which is an even better solution than any one island could produce.

2.8. Why does it work? Suppose that chromosomes are sequences of 0’s and 1’s
of length k. (For the examples in this section only, we take k = 8.) Any sequence of
0’s, 1’s, and ∗’s we will call a schema. A chromosome will be said to fit a schema if
it matches the schema in all of the places which are not ∗’s. For example, 00110101
and 00110100 both match the schema 0 ∗ 11 ∗ 10∗, but 11110000 does not. The
set of all chromosomes which match a specific schema will be called a hyperplane.
There are 3k − 1 schemas (ignoring the one that is all ∗’s), and each chromosome
lies in 2k−1 hyperplanes. Each chromosome is completely determined by the 2k−1
hyperplanes which contain it. One method for attempting to maximize a fitness
function F on the set of all chromosomes is this:

(1) List all possible schema.
(2) Select a random sample from the hyperplane associated to each schema in

the list.
(3) Find the average fitness value for each random sample.
(4) Remove from the list those schema for which the random sample gave low

average fitnesses.
(5) Goto step 2.

The process is repeated until there are few enough schema in the list so that it is
possible to tell where the maximum value(s) of F may occur. The problem with
this brute force approach is that if k is very large at all then there are too many
schema to list in this manner. The genetic algorithm approximates this search.
Each chromosome of each individual in a population is a representative of 2k − 1



16 BRIAN LOFT AND JOHN SNOW

hyperplanes and can be thought of as a member of a random sample of each these
hyperplanes. Thus the chromosomes of one population represent random samples
of many hyperplanes. Moreover, if two chromosomes lie in the same hyperplane,
then any recombination of those chromosomes will also lie in that hyperplane.
Thus selection and recombination of fit lifeforms amounts to performing further
sampling in hyperplanes with witnesses of high fitness. By focusing on the lifeforms
rather than the hyperplanes, genetic algorithms attempt to sample and test multiple
hyperplanes in parallel.

3. Lattices and order

A binary relation ≤ on a set A is an order relation if for all x, y, z in A the
following three conditions hold:

(1) x ≤ x (≤ is reflexive).
(2) If x ≤ y and y ≤ x, then x = y (≤ is antisymmetric).
(3) If x ≤ y and y ≤ z, then x ≤ z (≤ is transitive).

These are all properties of the usual order relation on the real numbers. The set A
along with the order ≤ is called an ordered set.
For any two elements x and y of an ordered set, if x ≤ y and x 6= y, then we

can write x < y. If x < y and there is no z with x < z and z < y, then we will say
that y is a cover of x. In symbols, we write this as x ≺ y. If x and y are elements
of an ordered set and x ≤ y or y ≤ x, then we say that x and y are comparable.
Otherwise, x and y are incomparable.
A Hasse diagram of an ordered set is a picture of the ordered set drawn in the

following way. Each element of the ordered set is represented by a small circle. If
x ≤ y in the ordered set, then the circle for x must be located lower in the diagram
than the circle for y. Lines segments are then added to the diagram to depict the
order relation. If x ≺ y, then a line segment is drawn from the circle for x to the
circle for y.
For example, suppose that A = {0, 1, a, b, c, d} and the order on A is such that 0

is covered by a, b, and c, each of a, b, and d is covered by 1, and c ≺ d. Then the
Hasse diagram for this ordered set is depicted in Figure 5.

0

1

a

b

d

c

Figure 5. An example of a Hasse Diagram.



A GENETIC ALGORITHM FOR DRAWING ORDERED SETS 17

Most ordered sets obtained from algebraic structures (such as ordered sets of
ideals or subgroups) have two special properties: For any two elements x and y,
there is a least element which is greater than both x and y – called the least upper
bound of x and y. Also, for any two elements x and y, there is a greatest element
which is less than both x and y – called the greatest lower bound. For example, if
H and K are subgroups of a group G, then the greatest lower bound of H and K is
H∩K, and the least upper bound of H and K is the subgroup generated by H∪K.
An ordered set in which every pair of elements has a greatest lower bound and a
least upper bound is called a lattice. The ordered set in Figure 6 is not a lattice.
The elements x and y have no common lower bound (and hence no greatest lower
bound). They do have common upper bounds, but no least upper bound. Either
of these failure would have prevented the ordered set from being a lattice.

yx

Figure 6. An ordered set which is not a lattice.

An algorithm for drawing Hasse diagrams by hand might look something like
this:

(1) Scatter circles labelled by the elements of the ordered set on a page.
(2) Slide the circles around to get lesser elements of the ordered set lower on

the page.
(3) Draw line segments representing the covering relation of the order.
(4) Slide the circles around on the drawing to untangle the line segments.

In step 2, care should be taken to make sure that whenever x ≤ y the circle for x
is lower than the circle for y. The untangling should clean up the picture enough
so as to be aesthetically pleasing while at the same time exposing the structure
of the ordered set. For example, in Figure 7, the diagram on the left depicts the
same ordered set as the one on the right, but is essentially random. The one on the
right, although complicated, is spaced evenly, has many parallel line segments, and
exposes the structure of the ordered set as consisting of two identical components
(the lower left half looks just like the upper right). There are a variety of opinions
about what makes a good diagram of an ordered set. One could try to minimize
the number of line crossings or minimize the number of different slopes of the line
segments. In [1] diagrams are drawn to minimize the total length of all of the line
segments. In [2] R. Freese describes an algorithm which tries to balance attractive



18 BRIAN LOFT AND JOHN SNOW

forces between comparable elements and repulsive forces between incomparable
elements.

Figure 7. These two Hasse diagrams depict the same ordered
set. The one on the right does so in a clearer and more aesthetically
pleasing way.

4. Breeding Lattices

We will employ a genetic algorithm to draw ordered sets. Each circle in the
Hasse diagram of an ordered set A will be determined by a pair of coordinates
(x, y) with x and y varying between 0 and 255. The y (vertical) component of each
point is determined by the ordering of A independent of the genetic algorithm. A
chain in an ordered set is an increasing list of elements

a0 < a1 < a2 < a3 < . . . < al.

The length of this particular chain is l. The height of an element a in A will be the
length of the longest chain in A with top element a. We will denote this by h(a).
The depth d(a) of a is the length of the longest chain in A whose least element is
a. The height H of our ordered set is the maximum value of h(a) taken over all
a ∈ A. Two possible numbers that could be used to describe the height of a are
h(a) and H − d(a), depending on if we care about how far an element is from the
bottom or from the top of the ordered set. We will let the y coordinate of the circle
corresponding to a (denoted y(a)) be the average of these two measures scaled to
give a value between 0 and 255. That is, y(a) is the integer part of

h(a) + (H − d(a))

2
·
255

H
.

Assuming our ordered set consists of n elements and that we need only determine
the x coordinates of n points, it is convenient to encode each ordered set as a
chromosome with 8n symbols (or as n chromosomes, each with 8 symbols) – where
each symbol is either a 0 or a 1. Each 8 symbols (called a byte) represents the
binary expansion of the x coordinate of one of the circles in our diagram. The
numbers expressible by a binary integer of length 8 are 0 through 255 – hence the
range for possible x values.



A GENETIC ALGORITHM FOR DRAWING ORDERED SETS 19

4.1. Our specific genetic algorithm. We use an elitist genetic algorithm which
will breed through a fixed number of generations on multiple islands followed by a
fixed number of generations beginning with a elite population with representatives
from each island. The algorithm will use uniform crossover and a high rate of
mutation. We mutate an entire byte in the chromosome at one time. This mutation
seemed reasonable for this application as changing one byte amounts to changing
the position of one circle in the diagram. To balance the high rate of mutation, we
only accept those mutations that increase fitness.
Let E be a positive integer. We will have E different islands, each with a

population of E2 organisms. In each population, the E most fit members will
all mate with each other (and themselves) to form the E2 members of the next
population. When each organism mates with itself, the offspring is identical to the
parent, so the next generation will contain copies of the elite from the previous
generation. After a fixed number G of generations pass on each island, the most fit
organism on each island is selected to join a elite population. This population will
reproduce for G generations.
Here is the outline of our algorithm. We first list a routine for reproduction

which will be called by the main algorithm.
Routine: NextPopulation
Input: A population of E2 organisms.
Output: A population of E2 organisms.

(1) Test the fitness of each organism in the input population.
(2) Sort the input population by fitness.
(3) For i = 1 to E and for j = 1 to E

3.1 Let x be a uniform crossover of input organisms i and j.
3.2 Let y be x with one chromosome byte randomly replaced.
3.3 Test the fitness of x and y.
3.4 Place the more fit of x and y in the output population.

(4) Return the output population.

Now we can outline the entire genetic algorithm:

Genetic Algorithm

(1) Fill each of E islands with a random population of E2 organisms.
(2) For each of the E islands do

2.1 For g = 1 to G replace island population P withNextPopulation(P ).
2.2 Test the fitness of each member of the population.
2.3 Sort the population by fitness.
2.4 Place the most fit organism from the population into the Elite Popula-

tion.
(3) For i = 1 to G replace the Elite Population with NextPopulation(Elite

Population)
(4) Test the fitness of each member of the Elite Population.
(5) Sort the Elite Race by fitness.
(6) Return the E most fit members of the Elite Population.

4.2. Recombination and Mutation Example. We give here an example of re-
combination and mutation in action with our ordered set lifeforms. Pictured in
Figure 8 are two random arrangements of the same ordered sets. Figure 9 depicts



20 BRIAN LOFT AND JOHN SNOW

0

z 1 y

xw

2

0

z1 y

x w

2

Figure 8. Two random arrangements of the same ordered set.

the recombination of the parents from Figure 8 with uniform crossover. Notice how
the elements 0, 1, and 2 have the same positions in both parents. This charac-
teristic is preserved by the recombination. Also notice that x is to the left of the
center and y to the right in both parents. This is also the case in the offspring. We

0

z1 y

x w

2

Figure 9. A recombination of the parents in Figure 8 using
uniform crossover. Notice how the configurations of 0, 1, 2, x, and
y which were common to both parents were preserved by recombi-
nation.

will now mutate the lifeform in Figure 9 by replacing one byte in the chromosome
randomly. This has the affect of randomly moving one circle in the diagram. The
mutation is depicted in Figure 10.

4.3. The fitness function. In designing the fitness function, we maintained two
basic values:

(1) Comparable elements should be close to each other.
(2) Incomparable elements with similar vertical positions should not be too

close horizontally.

We chose to measure:



A GENETIC ALGORITHM FOR DRAWING ORDERED SETS 21

0

z1 y

x w

2

0

z 1 y

x w

2

Figure 10. In this mutation the byte for element z is randomly replaced.

C: The average squared horizontal distance between elements a and b for which
a ≺ b.

Y : The average squared horizontal distance between elements with the same
y value.

H: The minimum squared horizontal distance between elements with the same
depth.

D: The minimum squared horizontal distance between elements with the same
height.

We chose our fitness function to be a linear combination of these variables so
that the coefficient of C is negative and the other coefficients are positive. The
effect of this is that large values of C (covers with large distances) lower fitness
while small values of C (covers with small distances) contribute to a larger fitness
value. Similarly, large values of other variables increase fitness, and small values
serve to make fitness lower. This should result in a genetic algorithm which tries
to make C small while making the other variables large.
A great deal of trial and error was necessary to find values of the coefficients

which would give acceptable diagrams for a variety of ordered sets. If the coefficient
of C is too large compared to the other variables, then the algorithm focuses too
much on the closeness of compatible elements and quickly converges to a diagram
in which all x values are equal. On the other hand, if the coefficients of the other
variables are too large, then the diagram which results typically has all x values of
0 or 255. For the examples below, we chose the fitness function to be

Y +
1

2
H +

1

2
D − 8C.

We arrived at these coeficients in the following manner. Since scaling the fitness
function would not change the rank of members of a population, we (arbitrarily)
selected the coefficient of Y to be 1. To maintain vertical symmetry (when it
exists), we decided that the coeficients of H and D should be the same. With this
arrangement, we needed only select two values, the common coefficient of H and D
and the coefficient of C. We ran the algorithm on a test suite of ordered sets with
values for these coefficients varying in magnitude from 0 to 10 by integer values.
The values of 0 and 8 or 1 and 8 seemed to give the largest number of acceptable



22 BRIAN LOFT AND JOHN SNOW

diagrams, so we selected −8 for the coefficient of C and then tested values for the
other coeficients between 0 and 1, finally settling on 0.5.

4.4. Some examples. We include here some examples of diagrams drawn by our
genetic algorithm. Each diagram is scaled so that the ratio of the height of the
picture to the width of the picture is the same as the ratio of the height of the
ordered set to the width of the ordered set. Here, width corresponds to the largest
number of elements with the same y value. For these ordered sets, we used E = 20
and G = 30 in the genetic algorithm.

Figure 11. The lattices N5 (left) and M3 (right) are drawn by
the algorithm more or less as expected. (Although N5 might be
considered backwards.)

Figure 12. The lattice D2 as drawn with the default choices for
coefficients (left) and with a larger Y coeficient (right).



A GENETIC ALGORITHM FOR DRAWING ORDERED SETS 23

Figure 13. The eight and sixteen element boolean lattices are
drawn by the algorithm about as one would draw them by hand.

Figure 14. The 32 element boolean lattice comes out a bit less
symmetric but is recognizable.



24 BRIAN LOFT AND JOHN SNOW

Figure 15. The free distributive lattice on three generators as
drawn by the genetic algorithm (left) and as drawn by R. Freese’s
algorithm [2] (right).

Figure 16. The lattice FL(3+1) drawn by the genetic algorithm
(left) and drawn by R. Freese’s algorithm [2] (right).



A GENETIC ALGORITHM FOR DRAWING ORDERED SETS 25

Figure 17. The lattice FM(2 + 2) drawn by the genetic algo-
rithm (left) and drawn by hand (right).

Figure 18. A grid-like lattice drawn by the genetic algorithm
(left) and by hand (right).



26 BRIAN LOFT AND JOHN SNOW

5. Conclusion

In summary, the genetic algorithm here was successful at drawing Hasse diagrams
of ordered sets for the purpose of identification. Some of the diagrams generated
may not appear “crisp” enough for publication purposes, but the coordinates of
the circles in the generated diagrams can usually be adjusted by hand to give more
acceptable pictures.
Further work in this area may include a more rigorous manner of determining

useful fitness coefficients (for example, using a least-squares approach). Rather
than selecting one set of fitness coefficients, it may be more reasonable to select
multiple sets of coefficients, each of which perform well on certain types of ordered
sets, and then have the program output several options for a Hasse diagram. Per-
haps each set of coefficients could correspond to an island in the genetic algorithm
process. A more sophisticated approach would examine the ordered set and select
the coefficients to be used based on individual characteristics of the poset.

References

[1] A. Aeschlimann. Drawing orders using less ink. Order, 9:5–13, 1992.
[2] R. Freese. Automated lattice drawing. Lecture notes in artificial intelligence, 2961:112–127,

2004. Springer, Berlin.
[3] J. Holland. Adaptation in natural and artificial systems. University of Michigan Press, 1975.
[4] J. Koza. Genetic Progamming: On the programming of computers by means of natural selec-

tion. 1992.
[5] I. Rechenberg. Evolutionsstrategie: Optimierung technischer System nach Prinzipien der bi-

ologischen evolution. Frommann-Holzboog Verland, Stuttgart, 1973.
[6] L. M. Schmitt. Theory of genetic algorithms. Theoretical Computer Science, 259:1–61, 2001.

[7] M. Vose. The simple genetic algorithm: Foundations and Theory. MIT Press, Cambridge,
MA, 1999.

[8] D. Whitley. A genetic algorithm tutorial. Statistics and computing, 4:65–85, 1994.

Department of Mathematics and Statistics, Sam Houston State University, Huntsville,

Texas 77341-2206

E-mail address: loft@shsu.edu

Department of Mathematics and Statistics, Sam Houston State University, Huntsville,

Texas 77341-2206

E-mail address: jsnow@shsu.edu


