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A SHORT (LATTICE) PATH FROM BEATING YOUR KIDS TO
PERMUTATION STATISTICS

TOMISLAV DOSLIC

ABSTRACT. Motivated by a simple card guessing game, we consider the prob-
lem of enumerating grand Dyck lattice paths with respect to the number of
turns. An explicit solution to this problem is given and subsequently applied to
enumeration of permutations of {1,...,n} according to the number of parity
changes. Some properties of the enumerating sequences, such as their symme-
try, unimodality, and the position of the maximal value are briefly investigated,
and some further possibilities of research have been suggested.

1. RED OR BLACK

A couple of years ago, while T was still a young and relatively inexperienced
father, I came across an article with a very intriguing title: “How often should
you beat your kids?” [1]. As it happened, I had already formed a rather strong
and clear opinion on this question, but I decided to read the article nevertheless.
Although it started with a shocking conclusion that one should beat one’s kids
every day except Sunday, it soon became clear that the article does not advocate
regular physical abuse of children. Instead, it was concerned with establishing
the probability of winning in a simple card guessing game; the beating from the
title was only metaphorical. I have not regretted reading the article. Its delayed
time effects are still felt (and appreciated) whenever my daughters are occupied by
playing the card guessing game described there. Besides, the game provided me
with the motivation for the present note.

The game considered here is so simple that it was undoubtedly reinvented many
times. It was introduced into the mathematical literature in the paper “How to
beat your kids in their own game” ([2]), that prompted the article mentioned in the
introduction. It is quite possible, and even likely, that some of its mathematical
aspects were studied even earlier, but I am not aware of any such references.

The game consists in guessing the color (red or black) of the top card in a deck of
playing cards. After each guess the top card is removed, and the game ends when
the deck is empty.

There are various strategies for playing the game, but they are not the concern
in this note. Their performances were discussed and compared in the already men-
tioned references, and the analysis was further refined in [3]. Instead, this note is

Received by the editors June 9, 2004 and, in revised form, December 15, 2004.

1991 Mathematics Subject Classification. Primary 54C40; Secondary 46E25.

Key words and phrases. lattice path, grand Dyck path, permutation statistics.

The author was supported in part by the Welch Foundation of Houston, Texas, via Grant #
BD-0894.

©2005



6 TOMISLAV DOSLIC

concerned not with the game, but with the deck. More precisely, we will try to
find the probability that in a well-shuffled deck there are exactly k& color changes.
Equivalently, we ask how many ways there are to have a deck with &k color changes.
In fact, we consider the following more general problem.

Problem: What is the number of decks with m red and m black cards which
have exactly k color changes?

Let us denote the number of such decks by p(2m, k). If we disregard for the
moment the differences in suits and values between the cards of the same color, we
get an auxilliary problem that can be formulated (and subsequently solved) in the
terms of lattice paths.

2. LATTICE PATHS

There are several advantages in casting our problem in terms of lattice paths.
First, the lattice paths provide a convenient way of visualizing the problem. Second,
the lattice paths are a well-researched area, with lot of connections to other areas
of combinatorics, statistics and probability ([4], [5], [6]). Finally, the lattice paths
were already employed in the references [2] and [1] to analyze our game.

A lattice path of length n between the points Py and P, in the (z,y) coordinate
plane is any sequence P of n segments (Pj_; Pj);.;l both of whose endpoints have

integer coordinates. The segment P;_; P; is called the j-th step of the path P.
By imposing various restrictions on the size and orientation of steps, on the initial
and final points, and on the areas of the lattice that must be visited or avoided
by the path, we obtain different classes of lattice paths. All lattice paths in this
paper will be self-avoiding, i.e. no point in the plane will be visited more than once.
Further, they will be directed, in the sense that for any step P;j_; P; the coordinates
of P; are not smaller than the corresponding coordinates of P;_;. Finally, the
lattice paths considered here will use only two types of steps: the R steps, whose
endpoints’ abscissas differ by one, while the ordinates are the same, and U steps,
whose endpoints have the same abscissas, and their ordinates differ by one. A
sequence of consecutive steps of the same type is called a block. A place where a
step of one type is immediately followed by a step of another type is called a turn;
if an R step is followed by a U step, the turn is of RU type; otherwise, it is of
type UR.

As noted in [2], each game of Red or Black corresponds to a lattice path in the
(z,y)-coordinate plane that connects the points (0,0) and (m,m) using only the
steps R and U. For each red card removed from the top of the deck we make a
step to the right (an R step); for each black card, a step up (a U step) is made.
The number of color changes in a deck is the same as the number of turns in the
corresponding lattice path. Hence, we are left with the task of enumerating lattice
paths from (0,0) to (m,m), that use only the steps R and U, with respect to the
number of turns. A lattice path of this type with 4 turns is shown in Fig. 1.

The directed self-avoiding lattice paths from (0,0) to (m,m) that use only the
steps R and U are known in combinatorial literature as grand Dyck paths. There
are (2::) such paths, since each of them is uniquely determined by deciding which m
of its 2m steps are of the type R. If an additional constraint is imposed, namely that
such a path is not allowed to wander above the line y = z, we get the class of Dyck
paths. The Dyck paths are among the best researched combinatorial families; we
refer the reader to [7] for a recent survey. In particular, it is well known that they
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FI1cURE 1. A grand Dyck path of 14 steps with 4 turns.

are enumerated by the Catalan numbers, Cy, = -1 ("), and with respect to the

number of RU turns, they are enumerated by the Narayana numbers. For given
1

positive integers m and k, the Narayana number N(m,k) = L (7)(/™) is the
number of Dyck paths on 2m steps with exactly & turns of the RU type. Hence,
> N(m,k) = Cy,. As a Dyck path with k¥ RU turns has exactly ¥ — 1 UR turns,
the Narayana numbers also enumerate Dyck paths with respect to the total number
of turns.

For the grand Dyck paths, the situation is a bit different, since a grand Dyck
path with & RU turns can have k — 1, k, or k + 1 UR turns. That was, probably,
the reason that a search of the literature failed to produce an explicit formula for
the number of grand Dyck paths on 2m steps with exactly k turns. We denote the
number of such paths by ¢(2m, k). Fortunately, the formula for ¢(2m, k) can be
easily derived as follows.

Let us first consider the case of an even k, k = 2. Any grand Dyck path with
such a number of turns must start and end with a step of the same type. Let it be
a step of the type R. Now, the m steps of the type R must be partitioned in [ + 1
blocks of consecutive steps, and the m steps of the type U must be partitioned in [
blocks. The first partition is completely determined by the positions of [ breaks in
the sequence of m R steps, and these positions can be selected in (mfl) ways. As
the same reasoning can be applied to the steps of the type U, it follows that there
are (ml_l) (71”:11) grand Dyck paths that start and end by an R step with exactly 2!
turns. By switching the roles of R and U steps, one obtains the following formula
for the number of grand Dyck paths on 2m steps with 2[ turns:

q(2m, 20) = 2 (m . 1) <”;__11>

When the number of turns is odd, k¥ = 2[4+ 1, the same reasoning gives the following
expression:

2
q(2m,21+1):2<ml_1> .
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The above two results can be expressed in a single formula, using the floor and
ceiling functions |z| and [z]. (For a given real number z, |z| is the greatest
integer that does not exceed z. Similarly, the ceiling function [z] is defined as the
smallest integer that is not smaller than z. The reader unfamiliar with the || and
[z] functions should consult the book [8] for an excellent introduction.)

s =o{250) ()

Namely, for an even k = 2[, we have [ = [k%l], I—1= L’“2;1J, while for an odd
k=20+1, we have | = [Ex1] = | E=1 ]

When dealing with an enumeration problem, it is often very useful to check the
arising enumerating sequences against those listed in the On-Line Encyclopedia of
Integer Sequences ([9]). This reference contains a wealth of information on all kind
of integer sequences and on relations and connections between them. Curiously
enough, the sequence ¢(2m, k) does not appear among more than 100000 sequences
collected there. Apparently, either nobody ever bothered to enumerate grand Dyck
paths with respect to the number of turns, or, if the enumeration was done, the
sequence was not submitted to the Encyclopedia. Hence, we propose to call the
numbers ¢(2m, k) grand Narayana numbers, since they decompose the central
binomial coefficients in a similar way as the ordinary Narayana numbers decompose
Catalan numbers.

Before we turn back to our deck of cards, let us make a digression and count all
paths of the grand Dyck type from (0,0) to (m + 1,m) with respect to the number
of turns. The total number of such paths is (2":;'1). There are m + 1 R steps and
m U steps. Let us first consider the case of an even k = 2[. Again, a path with
an even number of turns must start and end with a step of the same type, say R.
The m + 1 R steps must be divided in [ 4+ 1 blocks of consecutive steps, and the
m U steps must be partitioned in [ such blocks. This can be effected in (7') (7}
different ways. By switching the roles of R and U steps, the number of paths with
an even number of turns is given by

= () () ()7

Let us now consider the case of an odd number of turns, & = 2/ + 1. If a path starts
with an R step, then it must end with a U step. There are [ breaks in the sequence
of m + 1 R steps, and [ breaks in the sequence of m U steps. These breaks can

be made in (7}") (™;!) different ways. By reversing the roles of R and U steps, we

obtain
q2m+1,20+1) = 2<”l"°> (l T_”1>

As before, both results can be written in a single formula, using the floor and ceiling
functions.

@2 d@mtLE)= <L£J> (szﬁ " <fﬁ1> CELJI)

By denoting the total number of steps in the considered path by n and assuming
n > 2, formulas (2.1) and (2.2) can be united in the following expression:

o= (2)(2)- (2)(Z)
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Formula (2.3) is, in a sense, the central result of this note. Besides being of certain
interest on its own in the context of lattice path enumeration (the sequence g(n, k)
not being in [9]), it readily yields the solution to our initial problem, and this,
in turn, leads to a result in the context of permutation statistics. Before turning
our attention to these questions, we list some properties of the sequence gq(n, k)
that can be easily verified, either by simple combinatorial arguments, or by routine
(although somewhat tedious) direct calculations.

Proposition 2.1. Let n > 2, m > 1, and k£ > 1 be integers, and ¢(n,k) the
sequence defined by formula (2.3). Then the following are valid.
(i) q(n,k) =0 for k > n.

(ii) q(2m,k) is even, for all m, k.
(iii) q(2m,k) = q(2m,2m — k), for all m, k.

(iv) The sequence ¢g(n, k) is unimodal in k, i.e., there is an index k,, such that
q(n,1) <... <q(n, k) > ... > g(n,n = 1).

(v) The index k,, is unique if n is not divisible by 4, and its value is equal to
2t + 1 for n of the form 4t + 1, 4t + 2, or 4t + 3. If n is a multiple of 4, then
km € {n/2—-1,n/2,n/2+1}.

(Vi) Sy atm k) = (3)-

Proof. Claim (i) is obvious, since the maximal number of turns in a path cannot
be equal to or exceed the number of steps. Claim (ii) follows from the explicit
formula (2.1), and (iii) is a consequence of the symmetry property for the binomial
coefficients. In order to prove (iv), we first note that, for a fixed n, the quotients
of consecutive elements of ¢(n, k) form a (weakly) decreasing sequence in k. For

example, qé%’g’il)l) = q(;gril;;)l) = 2= and similarly for an odd n. Further, for
all n we have ZEZ?; > 1 and ZEZZ:;; < 1. Hence, there must exist a k such that

q(qrgjkf)l) > 1 and % < 1. This, in turn, implies (iv).( T)he claim (v) can be
q(n,j

verified by finding the value j such that the expression -0 1 changes sign,
and showing that this value cannot be an integer unless n is divisible by 4. An
easier way is to check that the indicated values are greater than their immediate
neighbors, and then the rest follows by unimodality. Finally, (vi) follows from
the fact that summing over all possible number of turns gives the total number of

paths. O

The numbers ¢(n, k) can be ordered in a triangular array. The first few rows are
given in Table 1.

3. DECKS AND PERMUTATIONS

Let us now come back to our initial problem: How many decks of m red and
m black cards have exactly k color changes? If all cards of the same color were
identical, the answer would have been given by formula (2.1). However, they are
not identical - they differ by suits and values, and there are no two of them that
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n\k]1 23 4 5 6 7 89

2 2

3 2 1

4 2 2 2

5 2 3 4 1

6 2 4 8 4 2

7 2 5 12 9 6 1

8 2 6 18 18 18 6 2

9 2 7 24 30 36 18 8 1

10 |2 8 32 48 72 48 32 8 2
TaBLE 1. The first few rows of the array q(n, k).

have the same suit and value. Hence, we have to allow for different ways of ordering
cards of each color in their positions. Doing so, we obtain the following answer to
our initial question.

Proposition 3.1.

pam =2((i)) (s

Proof. In each of q(2m, k) decks counted by formula (2.1) there are m! ways to order
red cards in their positions, and m! ways to order black cards in their positions.
Therefore, the number ¢(2m, k) must be multiplied by (m!)2. O

The following two results are direct consequences of Propositions 2.1 and 3.1.

Corollary 3.2. The most probable number of color changes in a deck of m red
and m black cards is m, for an odd m. If m is even, then the decks with k = m —1,
m, and m + 1 color changes are all equally likely, and no other number of changes
is more probable.

Proof. The number of all possible decks is (2m)!, and hence the probability that a
given deck has exactly k color changes is given by p(2m, k)/(2m)!. As the denomi-
nator does not depend on k, this expression is maximized for the same value(s) of
k that maximize(s) p(2m, k). The claim now follows by applying Proposition 2.1,
(iv) and (v). O

Corollary 3.3. The expected number of color changes in a deck of m red and m
black cards is equal to m.

Proof. The expected number of color changes is defined [6] by

2m—1
kp(2m, k
B(k) = et ),
k—1 p(2m, k)
By grouping together the terms with k£ and 2m — £ in the numerator, and by using
the symmetry property (iii) from Proposition 2.1, we obtain

m—1

2 Z p(2m, k) + p(2m,m)
k=1

m

Fk)= ————
® o p(2m, k)

But again by the symmetry, the term in the square brackets is equal to i;nl_ ' p(2m, k),
and the claim of the Corollary follows. O
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Hence, in the standard case of m = 26, one can expect 26 changes of color in

0.1t
0.081
0.067
0.04r

0.02}

10 20 30 40 50

FIGURE 2. Probability distribution of the number of color changes
in the standard deck.

a well-shuffled deck. Since 26 is even, it follows from Corollary 3.2 that the decks
with 25, 26, and 27 changes are all equally likely. The probability for any of these
number of color changes is given by p(52,26)/52!, and this is close to 0.109. So, the
three most likely cases together account for about one third of all possible decks. On
the other hand, the probability of only one color change is approximately 4 -10~1?,
the same as the probability of a deck in which no two cards of the same color come
together. The distribution of the probability of k color changes for the standard
deck of 52 cards is shown in Fig. 2.

Let us now consider a deck of n cards of two colors such that the numbers of
cards of each color differ by at most one. By a suitable labeling of cards with the
first n natural numbers, we can use formula (2.3) to enumerate permutations of the
set [n] = {1,...,n} with respect to the number of parity changes.

Theorem 3.4. The number r(n, k) of permutations of [n] with ezactly k changes
of parity is given by the formula

2521\ (152 2N (521 | gy o
(31 r(n’k)_[(f%1><L%J>+<[’“2—11><L’“2—1J> BIlEE
Proof. Let us take a deck of m red and m black cards, and label the red cards by
the first m odd numbers, and the black cards by the first m even numbers. Every
such deck gives rise to a permutation of the set {1,...,2m}, and the color changes
in the deck correspond to the changes of parity between neighboring elements of
the permutation. By labeling a deck of m + 1 red and m black cards in the same

manner, one can also get the mapping between such decks and the permutations of
the first 2m+1 natural numbers. In both cases, the correspondence is bijective. [

Written in a more compact way, r(n,k) = q(n,k)[ 5 |![5]!. Again, the sequence
r(n, k) is new, in the sense that it is not listed in [9]. This comes as a bit of surprise,
since permutation statistics have a long history; the first results were given by
Euler, and the area was extensively studied by MacMahon at the begining of the
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20th century [10]. Among the most famous combinatorially interesting sequences
originating in this historical material are certainly the Eulerian numbers and the
Stirling numbers of the first kind. We refer the reader to Ch. 6 of [8] for more
information on these important sequences. The reader interested in making his
own permutation statistic may consult the recent reference [11].

For a fixed n, the behavior of the numbers r(n, k) is very much the same as for
the sequence ¢(n, k). Hence, for example, in a typical permutation of [n] one can
expect n/2 parity changes. The first few rows of the array r(n, k) are given in Table
2.

1152 3456 10368 10368 10368 3456 1152

5760 20160 69120 86400 103680 51840 23040 2880

0 | 28800 115200 460800 691200 1036800 691200 460800 115200 28800
TABLE 2. The first few rows of the array r(n, k).

n\k | 1 2 3 4 ) 6 7 8 9
2 2

3 4 2

4 8 8 8

5 24 36 48 12

6 72 144 288 144 72

7 288 720 1728 1296 864 144

8

9

1

4. FURTHER DIRECTIONS

The path that leads one away from beating one’s kids to counting permutations
can be followed even further. In what follows, we indicate several trails that an
interested reader might wish to explore.

First, it should be straightforward to extend our results to the case of unbalanced
decks, i.e., to the decks with m; red and ms black cards; the case m; = mo + 1
has been already solved. Further, it might be interesting to consider the case when
some of the cards are identical. Such a situation arises, for example, when one
combines two (or more) decks for certain games such as rummy. This case should
not be much harder than the solved one.

More difficulties are to be expected if instead of colors one considers changes of
suits. This problem can further be generalized to counting the permutations of [n]
with respect to the number of changes of congruences (mod s) for some s > 3. It
would be interesting to see how much of the symmetry of formula (2.3) (or (3.1))
would be preserved in such a case.

It was mentioned above that the sequences ¢(n, k) and r(n, k) do not appear in
[9]. However, there is a sequence there (A088855) that corresponds to the numbers
q(2m, k) /2. As a description, it is stated that this sequence enumerates symmetric
Dyck paths of semilength m with £ peaks. From there it follows that there should
exist a two-to-one correspondence between the set of all grand Dyck paths on 2m
steps with & turns and the set of all Dyck paths on 4m — 2 steps that are symmetric
with respect to the line z +y = m with k¥ RU turns. (Equivalently, there should be
a bijection between the set of all grand Dyck paths on 2m steps that start with an
R step and the set of all symmetric Dyck paths on 4m — 2 steps with & RU turns.)
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FI1GURE 3. Correspondence between grand Dyck paths and sym-
metric Dyck paths.

The corresponding sets for m = 2 are shown in Fig. 3. The reader is invited to
describe the correspondence for a general m and to verify that it is a bijection.
The author is indebted to Daniel Soll of Marburg, Germany, who brought to his

at

tention a mistake in earlier formulation of the bijection.
We conclude by mentioning that the results presented here may be also inter-

preted in terms of random walks on nonnegative integers. For more information on
this topic, we refer the reader to the monograph [6].

N —
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