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CALCULATION ACROSS CULTURES AND HISTORY

CARL R. SEAQUIST, PADMANABHAN SESHAIYER, AND DIANNE CROWLEY

ABSTRACT. This paper describes a series of activities for both students and
teachers that demonstrate various methods of calculation. Included are ex-
amples using Napier’s bones and other calculating rods, slide rules, abacuses,
Vedic mathematics, and a variety of paper and pencil techniques. The ac-
tivities are designed to provide an opportunity to discuss culture, geography,
history, and mathematics. They have been used successfully with elementary
school children and their teachers as part of an ongoing program sponsored
by the K-12 International Education Outreach at the International Cultural
Center of Texas Tech University. In addition they have been used with both
social studies and mathematics high school teachers.

1. INTRODUCTION

The work described in this paper has grown out of a project for elementary school
students created by the Department of Mathematics and Statistics at Texas Tech
University and the K-12 International Education Outreach at the International
Cultural Center of Texas Tech University. Every semester the project gives a two
and half hour workshop for up to 60 fourth through sixth grade students and their
teachers. The workshop is staffed by professors, personnel from the International
Cultural Center, and both undergraduate and graduate mathematics students from
the student chapters of the Mathematical Association of America and the Society
for Industrial and Applied Mathematics. The purpose is to expose the elementary
school students to some interesting examples of calculation that permit the intro-
duction of elements of cultural diversity, geography, history, and mathematics. The
activities include not only calculation but also coloring of maps, identifying capitals
of countries, and discussions of various historical dates. For an online presentation
describing this workshop see [24].

In this paper we describe some of the calculation activities that we have used
in the workshop. We do not attempt to give a detailed or authoritative account
of the mathematical, historical, or cultural basis of these methods of calculation.
We do, however, attempt to provide the beginnings of a set of references, much of
them online, for those who would like to delve into the subject in more depth or to
duplicate this outreach program. The need for such outreach by mathematicians is
often taken for granted; however, once one has seen an elementary school teacher
coloring in Cuba because she thought it was Alaska and thus part of the United
States, it becomes obvious that our job as educators is even more challenging than
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FIGURE 1. The calculations on the left are those normally followed
by students performing the subtraction 383 — 184 in the United
States. Those on the right are the calculations normally followed
by students in Europe.

just addressing mathematics. We also believe that there is much important work
that still needs to be in the area of documenting calculation techniques and de-
scribing the history of these techniques. Because our intended audience here is not
mathematical historians, we give a vastly simplified discussion of the historical top-
ics. For a scholarly review of a recent book criticized for adopting an oversimplified
view see [7]. For an online discussion list of mathematical history issues see the
math-history-list sponsored by the Math Forum of Drexel University [32].

2. PAPER AND PENCIL

Most of us are taught the basics of numerical calculation before the age of 10.
Thus calculation is very fundamental to us and in fact most of us when asked to
perform a calculation will immediately revert to our native language when perform-
ing the task. In this activity we discuss various ways to calculate using paper and
pencil including algorithms for subtracting, dividing, and multiplying. Specifically,
we include a discussion of a simple way to keep track of borrowing when subtracting
that is taught in Europe. We also discuss how this method of subtraction can be
generalized and lead to a method taught to European (and South American) ele-
mentary school students for handling long division. Finally we describe three ways
to multiply: the lattice method that is sometimes taught in elementary schools in
the United States, an ancient Egyptian algorithm, and the similar Russian peasant’s
algorithm.

2.1. Subtraction. In the United States most elementary aged students learn how
to borrow when subtracting as follows: if a digit in the subtrahend is greater
than the corresponding digit in the minuend, then 10 is added to the smaller digit
before doing the subtraction and 1 is borrowed (or subtracted) from the digit of
the minuend immediately to the left. See Figure 1 on the left.

European elementary school students are instead taught that rather than sub-
tract 1 from the digit of the minuend, they should add 1 to the corresponding digit
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FIGURE 2. The calculations on the left are those normally followed
by students performing the long division 98306 by 38 in the United
States. Those on the right show what many students in Europe
and South America would write to perform the same division.

of the subtrahend. See Figure 1 on the right for a detailed example. In this ex-
ample since 4 is greater than 3 a small 1 is written just to the left of the 3 in the
minuend while another small 1 is written just to the left of the 8 in the subtrahend.
Computing 13-4=9 we write a 9 in the answer in the units place. Adding the small
one and the 8 together to get 9 we see that 9 is greater than 8 and a small 1 is
written just to the left of the 8 in the minuend and another 1 just to the left of
the 1 in the subtrahend. Computing 18-9=9 we write a 9 for the answer in the
10’s place. Adding the small 1 to the 1 in the subtrahend to get 2 and we compute
3-2=1, which we write in the 100’s place in the answer. As students become more
comfortable with this method they typically write down only one of the 1’s for each
borrow. For an interesting description of this algorithm and why it is less confusing
for students to use see [12]. In the following subsection we see how this method
can be generalized to enable a much more compact way of doing long division than
that which is typically taught in the United States.

2.2. Long Division. In the United States many students are taught to manage
long division as shown in Figure 2 on the left. Notice that in the example each
multiplication and each difference occupies a different horizontal line and thus there
is much writing and indeed the division is long. Figure 2 on the right shows what
many students in Europe and South America would write down to perform the same
division. When shown this difference most people that were taught the first method
are amazed that elementary students can be taught to perform a multiplication and
subtraction simultaneously and obtain the required results. The techniques used
to manage subtraction described in the preceding paragraph can be used here.
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FIGURE 3. These are the calculations normally followed by stu-
dents performing the division 98306 by 38 in Europe or South
America along with annotations to aid in the calculations.

Figure 3 shows the same calculations as in Figure 2 on the right along with some
helpful annotations that we will explain. First we determine that 38 will go into
98 a little over 2 times. A 2 is written down on the answer line and 2 x 8 = 16 is
computed mentally. Since 16 can not be subtracted from 8 we write down a small
1 just to the left of the 8. (Essentially we are borrowing a 1.) Now 18 — 16 = 2
so we write down a 2 under the 8. Now 2 x 3+ 1 =7 so we write down 2 because
9—7 = 2. (The 3 came from the three in 38 and the 1 was what we had borrowed).
Bringing down the 3 (from 98306) we are now dividing 223 by 38. Since 38 will go
into 223 a little over 5 times, we write down a 5 to the right of the 2 on the answer
line. Then 5 x 8 = 40 is computed mentally. Since 40 can not be subtracted from
3 we write down a small 4 to the left of the 3. (Here we borrow 4.) Computing
43 — 40 = 3 we write down 3 under the 3. Computing 5 x 3 + 4 = 19, which is
subtracted from 22, we write down a 3 under the 22. After bringing down the 0 we
are dividing 38 into 330, which results in an 8. We write down the 8 on the answer
line. But 8 x 8 = 64 is too big to subtract from 0 so we write down a little 7 to
the left of the 0. Computing 70 — 64 = 6 we write down a 6 under the 0. Now we
compute 8 x 3 + 7 = 31, which is subtracted from 33 to obtain 2. Bringing down
the 6 from above we are now dividing 266 by 38, which is exactly 7. Although
this method is tedious to explain in a written document, it can usually be shown
to a 6th grader who is walked through several examples in about fifteen to twenty
minutes.

During this activity we talk about where Europe and South America are. We
mention that in South America the predominant language is Spanish with the
exception of Brazil where Portuguese is spoken. In Europe, Spanish is spoken in
Spain. We point out where France is within Europe. The students will also discuss
France during the activity on calculating rods.
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FIGURE 4. The lattice method being used to compute 179 x 283 = 050, 657

2.3. Lattice Multiplication. Lattice multiplication (also known as the gelosia
or jalousie method) was probably invented by Hindu mathematicians sometime in
the first millennium. The Persian mathematician al-Karaji (also al-Karkhi) (953-
1029) who was most likely from either the present day Iraqi city, Baghdad, or from
the Iranian city, Karaj, described the method in his book, Kafi fil Hisab, written
in 1010 [23]. Lattice multiplication was first introduced in Europe by Leonardo
Pisano Fibonacci (1170-1250) [25]. Fibonacci is also known for the sequence

1,1,2,3,5,8,13, ..., Fpyo = Fpy1 + F, ...

that he used to describe how a population of rabbits grow [22]. To see how lattice
multiplication can be used to compute 179 x 283 = 50,657 see Figure 4. The
numbers to be multiplied are found along the top and right side of the big box.
The product of the single digits is shown in each of the smaller boxes of the lattice.
The answer is read around the left and bottom sides of the big box. These digits
of the answer are the sum of the digits in the lattice down along the diagonals
indicated by the arrows. Notice the two small 2’s that denote the carries. Later
the Scottish mathematician, John Napier, was inspired by this method to create
the calculating rods that became known as Napier’s bones. Lattice multiplication
is still taught in some elementary schools and therefore familiar to some of the
students in the workshop.
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1 39% 45-32=13 39
2 78 13-8=5 156
4 156* 5-4=1 312
8 312% +1248
16 624 45%39 = 1755
32 1248

FicUre 5. Multiplying 45 x 39 using an ancient Egyptian algo-
rithm based on doubling.

The activity on lattice multiplication permits the introduction of India, Iraq,
and Iran. Iraq, and its capital, Baghdad, are of special interest to the students
because of its almost constant mention in current news. The students will get
another chance in the activity on Vedic mathematics to discuss India. Ancient
Babylonia (Iraq) is also mentioned in the activity on the abacus. During the time
periods mentioned in the activity Europe was in the middle of the Medieval period
of history.

2.4. Egyptian Multiplication and the Russian Peasant’s Algorithm. The
Rhind papyrus is an ancient Egyptian document dating from 1650BCE written by
Ahmes, a scribe, who in the document claims he is copying a document from around
2000BCE [21]. The papyrus was “found” by Alexander H. Rhind, an egyptologist,
who purchased it in 1858. It is one of the oldest mathematical writings. It describes
a way to multiply based on doubling. Consider the product 45 x 39, see Figure 5.
On the left of the figure we show two columns of numbers starting at the top with
1 and 39. Each subsequent row is the double of the row above it. We continue this
until the double of the left most number is greater than 45. Note that the left most
column is just the powers of 2. In the middle of the figure we show subtracting
the largest power of two that is possible from 45 and then from 45-32=13 and so
on. We mark each row with an asterisk if we subtracted the corresponding power
of 2. On the right side of the figure we add the doublings of 39 which we marked.
The sum is 1755, which is the product of 45 x 39. Students that have played with
binary representations will immediately see the relationship to this algorithm.

Another algorithm based on doubling is the Russian peasant’s algorithm. Here
again two columns of numbers are formed under each of the two multiplicands.
Each row is formed by dividing the first number by 2 and discarding the remainder
and doubling the second number. See Figure 6. Now each row that has an odd
number in the first column is marked with an asterisk. The numbers in the second
column that are in a marked row are added to form the product.

This activity allows us to talk about ancient Egypt. The ancient Egyptian
pyramids were built during the old and middle kingdoms. The three most famous
of these date from the beginning of the old kingdom in Giza near Cairo circa
2500BCE. The Rhind papyrus dates from over a 1000 years later at the end of the
middle kingdom [4]. The Russian peasant algorithm provides an opportunity to
talk about Russia, the largest (in terms of land mass) country in the world. Russia
is also mentioned in the activity on the abacus.
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3. CALCULATING RODS

This activity describes various approaches to using rods to calculate. Calculating
with rods is sometimes called rabdologia, which comes from the Greek words for rod
and word. We describe how to multiply with two kinds of rods, one called Napier’s
bones and the other called Genaille-Lucas rods. Although we only give examples of
how to multiply in this paper; it is possible to do more complicated operations, for
example, division and extracting square and cube roots [29, 2]. To obtain a copy
of several of the rods in .pdf format that are suitable for reproducing on cardboard
see [3].

3.1. Napier’s Bones. John Napier (1550-1617) was a Scottish nobleman who
made contributions to both mathematics and theology. John Napier is best known
now as the inventor of logarithms (1614) and natural logarithms are still sometimes
referred to as Napierian logarithms. At the time of Napier’s life, it was thought by
some neighbors that because of his amazing intelligence he was in league with the
devil. In 1617 just before he died John Napier invented a way of doing calculation
with rods, which became to be known as Napier’s bones because they were origi-
nally made of bone. These rods were based on the lattice method of multiplication.
The multiplication rods consist of a rod for each digit 0 through 9 along with an
index rod. Figure 7 shows how they can be used to calculate 7 x 286. Notice that
we must do the addition and keep track of the carriers when using Napier’s bones.

When we work on this activity we point out that Scotland is north of England
and is a part of Great Britain, which is an island in western Europe on the other side
of the Atlantic ocean from the United States. Although most elementary students
with which we interact do not have any idea where (or what) Scotland is, many
can locate on a world map the United States, the Atlantic ocean, and Europe.

To help students relate the dates mentioned to something they might know we
recall that Columbus landed in America in 1492, that Shakespeare (1564-1616) was
a contemporary of John Napier, and that the Mayflower sailed from England for
the United States in 1620.

3.2. Genaille-Lucas Rods. Eduard Lucas (1842-1891) was a French mathemati-
cian who worked in number theory and finding large primes. He maybe is best
known to non-mathematicians for inventing the Tower of Hanoi puzzle where disks
stacked in a conical pile on one peg are moved among this and two other pegs so
that a larger disk is never placed over a smaller until all the disks have been moved

45 39*
22 78
11 156*
5 312%
2 624
1 _1248%*

1755

FiGURE 6. Multiplying 45 x 39 using Russian peasant algorithm.
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to a new peg. In addition the sequence,
2,1,3,4,7,11,18, ..., Lyyyo = Ly + Lpy1, ooy

is called the Lucas sequence. This sequence, which is similar to the Fibonacci
sequence, is also sometimes known to elementary school students.

Because of the difficulty with handling carries when using Napier’s bones Eduard
Lucas posed the problem of inventing a set of rods that did not require performing
additions. The French civil engineer, Henri Genaille, solved the problem and by
1888 [28] he and Lucas were writing about the solution. See Figure 8 to see how to
multiply 7 x 286 using Genaille-Lucas rods. In this example one needs to know that
7 times 6 ends in a 2 and then it is just necessary to follow from the right starting
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FIGUrE 8. Multiplying 7 x 286 = 2002 using Genaille-Lucas rods.
Only a part of the rods is shown.
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FIGURE 9. A circular and rectilinear slide rule.

with the 2 going to the left reading off the digits that are pointed to by the darkened
triangles. Thus the triangle with 2 on its right edge points to 0, which is on the
right edge of a triangle that points to 0, which is on the right edge of a triangle
that points to 2 and the number is read off from the least to most significant digit.
Genaille and Lucas also invented rods to do division. See [3] for reproductions of
Genaille-Lucas rods for both multiplication and division.

For the social studies part of this activity students are shown France on the map
along with its capital, Paris. To help the students relate the date 1888 to what they
already know, the Statue of Liberty can be discussed. This great statue on Liberty
Island in New York was designed and completed in 1886 by the French sculptor,
Frederic Bartholdi (1834-1904), and was gift from France to the United States [16].

4. SLIDE RULES

The invention of logarithms by John Napier in 1614 made possible the invention
of the slide rule. It should be noted that the Swiss mathematician, Jobst Biirgi
(1552-1632), is often cited as a simultaneous but independent inventor of logarithms.
By 1620 Edmond Gunter (1581-1626) had invented the logarithmic scale; that is, a
scale where the numbers 1 through 10 are arranged along a line with their distances
from the left edge being determined by their logarithms. By measuring distances
along this scale with a set of dividers (or compass) the user could add logarithms
and therefore multiply. Soon after this, certainly by 1627, William Oughtred (1574~
1660), an English mathematician, and Edmund Wingate (1593-1656) had put a
logarithmic scale on each of two rulers and so invented the rectilinear slide rule.
The circular slide rule [6] was also invented in this period. See Figure 9 for a picture
of both a circular and a rectilinear slide rule.

Because slide rules were so important to engineering before the invention of the
hand held calculator in 1972 and the important role of the United States in engi-
neering over the last two centuries, we talk about the United States, and its capital,
Washington, during this activity. An engineer that is mentioned here is John A.
Roebling (1806-1869), the builder of the Brooklyn bridge [14]. We also discuss
Benjamin Banneker (1731-1806), a mathematician and astronomer, who worked
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.

F1GURE 10. Computing 2 + 3 = 5 on adding slide rules.

F1GURE 11. Computing 2 x 1.5 = 3 on multiplying slide rules.

with Pierre L’Enfant to survey and plan Washington, DC. Benjamin Banneker is
sometimes referred to as the first African-American mathematician [5].

To introduce students to slide rules they are first shown how to add with adding
slide rules, which simply consist of two identical rulers each with a linear scale.
Figure 10 shows the addition of 2 and 3 on adding slide rules. Then the students
are shown multiplying slide rules, which consist of two identical rulers each with a
logarithmic scale. See Figure 11 to see how the product of two numbers is found
using a slide rule. Through the generosity of several of our faculty the students
can then work with several actual slide rules. When time permits, division is also
explained.

5. ABACUSES

It is believed that the abacus was derived from counting boards that were used
by several ancient civilizations. Counting boards are a method of arranging and
moving markers, e.g., beads or pebbles, on a series of grooves on a tablet or even on
lines drawn in the sand. It is believed that these devices were used for calculation
in ancient Babylonia as early as 4500 years ago [20] and in China as early as 3000
years ago. Because of the ephemeral nature of the materials from which counting
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FIGURE 12. The Chinese 2,5 abacus (top left), the Russian abacus
(top right), the Asian 1,5 abacus (bottom left), and a student made
Japanese 1,4 abacus (bottom right).

boards are made, the earliest known example is the Salamis tablet that dates from
a much later time, around 300BCE [8].

In general an abacus is a frame of a set of parallel rods on which digits of a number
are represented by sliding beads. We show the students four kinds of abacuses:
(1) the Chinese (suan pan - 2,5 abacus); (2) the Russian (schoty); (3) the 1,5 abacus;
and (4) the modern Japanese abacus (soroban - 1,4 abacus). See Figure 12. After
showing the students the suan pan, which is easier to use, but slower for an expert,
we show the students how to use the modern soroban and give them the materials
that they can use to make their own abacus at home. It should probably be noted
that for addition an expert user of anyone of these abacuses is faster than someone
using a modern calculator because the sum develops as the user enters the numbers
on the abacus.

Historical references to uses of the suan pan in China occur as early as 1200 CE.
This abacus is held so that the rods run vertically. The beads on the rods are divided
into two ranks. The top rank contains two beads for every place each representing
5 units. The bottom rank contains 5 beads for every place each representing 1
unit. Thus this abacus is often referred to as the 2,5 abacus. The configuration of
the beads in this abacus result in multiple ways of representing the numbers; for
example the number 10 can be represented in 3 different ways, see Figure 13. This
multiplicity of ways to represent a number makes handling carries when adding
easier. The 2,5 abacus was modified to the 1,5 abacus by the Japanese via Korea in
the 17th century. Later in the early 20th century (circa 1930) the Japanese again
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FIGURE 13. The above pictures show three different ways of rep-
resenting 10 on the suan pan, the Chinese abacus.

FiGURE 14. Adding 1874195 on a 1,4 modern soroban.

modified the abacus to the 1,4 modern soroban. This abacus has a unique way of
representing each number but requires more mental acuity to use.

The Russian abacus was probably developed in the 17 century and is used so that
the rods run horizontally. It contains 10 beads on each rod with one exception which
has four beads. To help manage counting the beads rapidly the middle two beads
are darker. It is sometime said that there is a bead for each finger with the darker
ones representing the thumbs. The schoty was principally used by merchants where
the beads on the rod with only four beads represented quarter rubles, the beads
above represented one’s, ten’s, etc. rubles, and those below represented kopeks.

Although there are ways to subtract, to multiply, to divide, to take square and
cube roots, and other complicated calculations; we only show the students how to
add on the abacus. Let us consider how the sum 1874195 is found on a modern
soroban. First 187 is entered on the abacus, Figure 14. Then we attempt to add
the 5 on the one’s place but there are not enough beads so we add 1 bead to the
10’s place and subtract 5 from the one’s place to obtain 192, see Figure 14. Now we
try to add 9 beads to the 10’s place; however, again we do not have enough beads
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in the 10’s place so we add 1 bead in the 100’s place and subtract one from the 10’s
place to obtain 282, see Figure 14. Finally we add one to the 100’s place to obtain
382, see Figure 14.

In teaching the students how to use the soroban, we do not go into details of how
to hold one’s fingers when moving the beads, which would ultimately permit them
to increase their speed. As a child, one of the authors was taught by a Chinese
merchant in Brazil how to use an abacus to add. In spite of hours of practice the
author was never able to obtain more praise than “Too slow! You need to work
harder!” Then later while visiting Russia in the early 1970’s and 1980’s two of the
authors observed many shop keepers using the schoty with great efficiency. The
skill using these devices (like the skill using paper and pencil for calculating) is
becoming rarer and rarer as electronic calculators become universally available.

The students are asked to identify China, the most populous country in the world,
and its capital, Beijing . They also identify Japan, the number two economic power
of the world, along with its capital, Tokyo. Korea is also identified with its capital,
Seoul. Ancient Babylonia was in the southern part of modern day Iraq. The date
1200 can be related to Marco Polo’s trip from Venice to China circa 1270. Marco
Polo was one of the first of the Medieval Europeans to visit the Orient.

6. VEDIC MATHEMATICS

Much of what we know about vedic mathematics is based on a book by Swami
Bharati Krishna Tirthaji (1884-1960), which was published after his death. The
work describes applications to mainly arithmetic of 16 sutras (concisely stated rules)
and 13 sub-sutras taken from the Parisista an appendix of the Atharva Veda. The
Atharva Veda is one of the four major Vedas, which are among the earliest and most
sacred writings of Hinduism dating from between 1000BCE and 500BCE. Although
the claim of the existence Parisista has never been proved many of the techniques
published in Bharati Tirthaji’s book are of ancient origin, see [17]. Each of the
sutras has many different applications. For a nice set of tutorials for using several
of the sutras see [15]. In this activity the students look at two sutras in Sanskrit
FEkadhikena Purvena and Nikhilam.

The first sutra we consider, Ekadhikena Purvena, can be translated as By one
more than the previous one and is applied to two problems of calculation. The first
problem considered is that of computing a square of a number ending in a 5, for
example 45. The sutra in this application is viewed as a concise statement of the
rule take the digits before the 5 and add 1, then take the product of this number and
the original digits and append 25. Thus to square 45, we compute 4 x (44 1) to get
20 and then append 25 to get 2025. As a more complicated example, we compute
1052 by taking 10 x (10+ 1) = 110 and appending 25 we get 11025. This sutra can
also be applied to convert quickly a fraction of the form ?19 where z is any digit to
decimal [10].

The sutra, Nikhilam, can be translated as All from 9 and the last from 10. This
sutra can be used to multiply using a “base”. For example, if one wants to compute
96 x 88 first pick a base of 100 and then compute (100 — 96) x (100 — 88) to get
4 x 12 = 48. Then by putting the digits 88 — 4 = 84 on the left we get 8448, which
is 96 x 88. As another example consider 8 x 7. Here we take the base to be 10 and
compute (10 —8) x (10 —7) =2 x 3 =6. Placing 8 —3 =5 (or 7—2 = 5) on the
left we get 56 = 8 x 7. As a final example consider multiplying 998 x 692. We pick
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the base 1000 and compute (1000 — 998) x (1000 — 692) = 2 x 308 = 616 and then
place the digits 692 — 2 = 998 — 308 = 690 in the front to obtain 690,616 which
is 998 x 692. In general, if computing p X g we pick a base b, say the power of 10,
10™, that makes computing in the head easier. Then we compute the deficiencies
of the two numbers b —p = p’ and b — g = ¢’. To find the final n digits of the
answer we compute p’ X ¢’. To compute the initial n digits we compute d where
p—q¢ =q—p =b— (p'+¢) =d. Simple algebra reveals that

db+p'qd = (p+q—Db)b+ (b—p)(b—q) = bp +bg —b* +b* — bp — bq + pq = pq.

Thus the trick to using this sutra effectively then is to pick the base that simplifies
the work. Finally notice that the English meaning of the sutra is only loosely
connected to the algorithm and serves more as a mnemonic device for recalling how
the deficiencies are calculated.

Finally we show how the sutra Nikhilam is used for squaring numbers. This is
best shown by example. Consider 92. Again we pick a base that is a power of 10.
Since the deficiency of 9 is 10 — 9 = 1 we get the first digit of the square to be
(9 — 1) and the second digit to be 12 = 1. Thus 92 = 81. Let us consider another
example, 132. Again we pick 10 as a base and get a deficiency of —3 so the first
digits are 13— (—3) = 16 and the last digit is (—3)? = 9. Thus 132 = 169. One final
example illustrates this approach. Consider 932. Picking a base of 100 we see that
the deficiency of 93 is 7 and the first two digits are 93 — 7 = 86 and since 7% = 49
we have that 932 = 8649. In general if we want to compute p? we pick a base b and
find the deficiency of p to be b — p = p’. Then p? is computed as (p — p')b+ (p')%.
From simple algebra we see that

(p—p)b+ @) =p@-b+pb+ (b—p)*=2bp—b*+b> —2bp + p*> = p°.

As before the trick to applying the sutra effectively is to pick a base that permits
all the calculations to be performed in the head.

In this section students are exposed to Sanskrit, an ancient language that has
a common root with all Indo-European languages including English and Spanish.
Students are shown how to write their names in Sanskrit. Students are asked to
color in India, the second most populous country in the world, on the world map
and to identify the capital, New Delhi. The dates of 500BCE and 1000BCE are
related to the birth of Christ.

7. REVIEW THE SOCIAL STUDIES INVOLVED

A final activity reviews and expands on the geographical and historical facts that
have been mentioned in the other activities. A history line with events important to
the methods of calculation along with dates the students are probably familiar with
is shown. Capitals of the several countries mentioned are reviewed. The relative
sizes of the populations and land masses of assorted large countries are discussed.
The students use electronic globes that allow them to obtain distances to various
capitals from their hometown. Finally they are each given a small paper globe that
they can assemble and take home.

Teachers are given the link to the website developed at the School of Mathematics
and Statistics at University of St. Andrews in Scotland [19]. This website contains
much historical information along with much biographical information about math-
ematicians along with maps showing the location of their birth places. Teachers
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are also given the link to a website that contains a wonderful timeline that also
contains many mathematicians and scientists [18].

8. CONCLUSION

We have described six activities involving arithmetic calculation that can be used
with students to increase both their mathematical and cultural awareness. The
activities involve enough hands-on work to appeal to most students. The methods
of calculation shown raise many questions. Consider, for instance, that the price
of a TI-89 calculator today is a little cheaper than the price of a top model K&E
slide rule in the 1960’s once the price is adjusted for inflation. It is clear that as the
price of electronics continues to drop, calculators will eventually completely replace
most of the methods calculation described here. It is easy to lament this fact. Skills
developed operating slide rules and abacuses will be lost forever. Graduates from
high school (and college) will be less and less able to do arithmetic in their heads.
This seems to be a hidden cost of technology.

There is a story told about Richard Feynman, the famous physicist, competing
with an abacus user. When doing additions it was clear that the abacus was
faster. When doing multiplications the abacus was still faster but not by as great
a margin. When doing a cube root, however, Feynman was faster because of his
deeper knowledge of numbers than the abacus user had. The abacus user was
stuck using a demanding algorithm that ignored deeper understanding. The point
is that various methods of calculation and technology both demand and allow us
to vary the type of thinking in which we engage. The ideal would clearly be to
teach our students a large variety of methods of calculation so that they can always
use the appropriate method to permit them to think about the most important
and illuminating aspect of a problem. In reality it is probably sufficient just to
teach them to think about something while they are pushing the buttons on their
calculators.
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