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A MAGNUS EMBEDDING THEOREM FOR SECOND
HOMOTOPY MODULES

JACQUELINE A. JENSEN

Abstract. Let G be any group, and P a presentation for the group. Every
group presentation gives rise to a connected two-dimensional CW-complex,

XP , with fundamental group, π1XP ∼= G, in a standard way. These two-
dimensional CW-complexes are called [G,2]-complexes. We will restrict our

attention to these since all two-dimensional CW-complexes with π1X ∼= G are
homotopy equivalent to [G, 2]-complexes. An open problem in low-dimensional

topology is the classification of the homotopy type of [G, 2]-complexes. Some
progress has been made on this problem in different contexts. In this paper,

we examine the Magnus Embedding Theorem, its application to this problem,
and extend it to an embedding of the second homotopy module.

1. Introduction

This paper addresses the following question: given two connected two-dimensional
CW-complexes, X and Y , with π1X ∼= π1Y ∼= G and χ(X) = χ(Y ) is X � Y ?
We begin by recalling some definitions and then provide some examples of known
results. We focus on results of Dunwoody, et. al., who were the first to demon-
strate an example of homotopy inequivalent two-complexes with non-minimal Euler
characteristic. To this end, we recall the Magnus embedding theorem, a method
of embedding the relation module for a presentation of a group G into a free right
ZG−module. Dunwoody uses this as his major tool to prove homotopy inequiva-
lence.

We recognize the limitations of Dunwoody’s method, namely that he relies upon
an embedding of the relation module instead of the second homotopy module, and
therefore recall the notion of crossed modules, which provide us with a presentation
of the second homotopy module.

Finally, we state a new application of the Magnus Embedding Theorem, which
provides an embedding of the second homotopy module directly. We then provide
a simple example of the method, and mention some areas of future exploration.

2. Preliminaries

As mentioned above, we begin with two connected two-dimensional CW-complexes,
X and Y , with π1X ∼= π1Y ∼= G and χ(X) = χ(Y ), and ask: is X � Y ? At-
tempting to classify connected two-dimensional CW-complexes, hereafter called
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Figure 1. Definition of Homotopy Tree

• [Y = X ∨ S2]

•

��

[X]

two-complexes, by homotopy type is a daunting prospect, so we note the following
well-known theorem:

Theorem 2.1. Every two-complex is homotopy equivalent to the standard two-
complex of a presentation of a group.

To this end, let G be any group. This will be the fundamental group of our
two-complex. Recall that a group presentation for the group G is P = 〈x | r〉
where r ∈ r is a word in the {x, x−1} and G ∼= F (x)/〈〈r〉〉F . We call x the set of
generators and r the set of relators. The standard two-complex, XP , of a group
presentation, P, is built from a single 0−cell, a 1−cell for each generator x ∈ x, and
a 2−cell for each relator r ∈ r attached to the 1−skeleton via its boundary word.

We can begin our classification of two-complexes by first examining the Euler
characteristic, which is easy to calculate from the presentation of the fundamental
group. For a group G with presentation P = 〈x | r〉, the deficiency of the presen-
tation is def P =| r | − | x |. The Euler characteristic is then χ(XP) = def P + 1.
The deficiency of a group G is given by

def G = min { def P | P is a presentation of G}.
It is well known that every group has a minimal presentation, which has minimum

deficiency, and hence minimal Euler characteristic. It is easy to see that every
group has an infinite number of presentations, each of which can be obtained from
a known presentation by inserting the trivial relator into the presentation. In
other words, if P = 〈x | r〉 is a presentation for G, then P ′ = 〈x | r, 1〉 is also a
presentation for G. Moreover, if XP is the standard two-complex of the presentation
P, then XP′ � XP ∨ S2 . Furthermore, if m = def G then for every n ≥ m there
exists a presentation Pn of G with def Pn = n. It is also well-known that if P
and Q are both presentations of G, then there exists integers r and s so that
XP ∨

∨
r

S2 � XQ ∨
∨
s

S2.

The homotopy tree of finite [G, 2]−complexes, denoted HT [G, 2], is a directed
tree with vertices in one-to-one correspondence with the homotopy types of finite
[G, 2]−complexes, and with a directed edge from the vertex labeled by [X] to the
vertex labeled by [Y ] whenever X ∨ S2 � Y . See Figure 1. It can be shown that
the homotopy tree is a connected graph with no cycles, hence is truly a tree.

Since we noted earlier that there exists a minimal Euler characteristic, we can
denote the levels of the tree by how far above χmin(G) we are. So we set level 0
at χmin(G). There is no maximal level on the homotopy tree, since to get to each
new level, we can continue to attach an S2 to a complexes already appearing in the
tree, which continues to create new vertices in the tree. We will call a vertex in the
tree HT [G, 2] which has no predecessor a root.
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Figure 2. The Homotopy Tree for a Finite or Free Group
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def G + 1

•

��

def G

Restating in these new terms, we recall that our motivating question is: If P
and Q present the group G, and XP and XQ have the same Euler characteristic,
is XP � XQ? There are some known results, although the question is still open in
many cases. The following results are included to improve exposition, and represent
a sampling of previously solved cases.

Theorem 2.2. [2] For any two non-minimal presentations, P and Q, of a finite
or free group G, if the presentations have the same deficiency then XP � XQ. The
homotopy tree for a finite or free group is shown in Figure 2.

Theorem 2.3. [12] The group G ∼= Z5 × Z5 × Z5 has two homotopy types at the
minimal level which arise from the presentations

〈x, y, z | [x, y], [x, z], [y, z], x5, y5, z5〉 and 〈x, y, z | [x2, y], [x, z], [y, z], x5, y5, z5〉.
Theorem 2.4. [12], [15] If G is a finite abelian group, then there may be a number
of roots at the minimal level, but this number is finite and is characterized by the
order of the bias group. Therefore, HT [G, 2] in this case appears is in Figure 3.

In a series of papers in the 1970’s, the first example of homotopy inequivalent
two-complexes with non-minimal Euler characteristic was provided.

Theorem 2.5. [1], [5], [6], [7] For the fundamental group of the trefoil knot com-
plement, there are two homotopy inequivalent two-complexes at level one above min-
imal Euler characteristic. Therefore, we have HT [T, 2] as seen in figure 4.

We focus on the results of Dunwoody et. al., which rely heavily on the Magnus
Embedding Theorem. They were able to find a second presentation of the fun-
damental group of the trefoil knot complement (hereafter called the trefoil knot
group), T , at level one above the minimal Euler characteristic to compare to the
standard presentation at that level, namely the presentation 〈x, y | x2y−3, 1〉. Since
this standard presentation has standard two-complex with second homotopy module
requiring only one generator, it remains to show that the standard two-complex of
their new presentation requires two or more generators in order to prove that these
complexes are homotopy inequivalent. The proof of two generation relies upon the
fact that the second homotopy module is isomorphic to the relation module of an-
other presentation of the trefoil knot group, and that this relation module requires
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Figure 3. The Homotopy Tree of a Finite Group
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def G

Figure 4. The Homotopy Tree of the Trefoil Knot Group

...

•

[XD] •

���������� •

��

[XT ∨ S2]

•

��

[XT ]

two generators. This last portion of the proof relies on the Magnus Embedding
Theorem to embed the relation module into a free right ZT−module.

In the next section, we will recall the Magnus Embedding Theorem as it was used
by Dunwoody. We notice that the application of this Magnus Embedding Theorem
to homotopy classification is limited because it requires finding a presentation of
the group in which the second homotopy module of the standard two-complex is
isomorphic to the relation module of some presentation of the group. The Magnus
Embedding Theorem in its original form can then be used to examine the required
number of generators of this module. We will extend this embedding theorem to be
an embedding of a presentation of the second homotopy module directly, without
this intermediate step being required.
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3. Magnus Embedding Theorem

The following discussion of the Magnus Embedding Theorem is taken from Mag-
nus’ 1939 paper, [10]. To be consistent with Magnus and Dunwoody, we use right
actions.

Theorem 3.1. [10] Let F be a free group on a set of generators {xi}i∈I . Let R
be a non-trivial normal subgroup of F , R′ = [R, R], and G = F/R. Then if M is
a free right ZG-module generated by {ti}i∈I , there is an embedding of F/R′ into a
group of 2 × 2-matrices given by:

xi �→
(

Rxi 0
ti 1

)
i.e. there exists a map

(xi)ϕ �→
(

Rxi 0
ti 1

)
which has kernel R′ = [R, R].

Discussion of the properties of the Magnus Embedding can be found in [4] and
[10], but we will include those that are important for our calculations later. For our
discussion, let F be a free group on n generators, R a non-trivial normal subgroup,
R′ = [R, R], and G ∼= F/R′. Let ϕ be the map of F into the matrix group as
described above.

Notice that if x is a generator of F , then (x−1)ϕ =
(

Rx−1 0
−txx−1 1

)
. Also notice if

xi and xj are elements of x, then (xixj)ϕ =
(

Rxixj 0
tj+tixj 1

)
. Furthermore,

(x−1yx)ϕ =
(

Rx−1yx 0

−txx−1yx+tyx+tx 1

)
.

Moreover, if w is a relation (i.e. w ∈ R) then (w)ϕ = ( R1 0
L 1 ) , where L is a linear

function in the ti given by the right Fox derivative of w.
This last fact is especially important, since Dunwoody is trying to identify the

image of elements of the relation module R/R′ under the embedding. These el-
ements are first recognized by the 1 in the upper left corner. He then uses the
corresponding elements in the free right ZG−module, the entries in the lower left
corner of the matrix, to examine the required number of generators of the relation
module for his case.

We note that the matrix notation is another way of denoting the semidirect
product, G � M . Let M be a free right ZG−module. Then elements of G � M
are elements (g, m) ∈ G × M with the operation (g, m)(g′, m′) = (gg′, mg′ + m′).
Notice in the above case we have that G = F/R where F is a free group and R is a
nontrivial normal subgroup. The Magnus embedding, ϕ, is then a map from G into
F/R′, where R′ = [R, R] is the commutator subgroup. This map takes the element
R′xi to the element (Rxi, ti) in the direct product of G and M . The semi-direct
product multiplication is the same as the matrix multiplication discussed above.
We will continue to use the matrix notation, but could use the semi-direct product
notation for the remainder of the paper.

To extend the Magnus Embedding Theorem to the second homotopy module
instead of the relation module, we need to recall the relationship between crossed
modules and the second homotopy module. We will then use crossed modules to
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apply the Magnus embedding theorem to a presentation of the second homotopy
module.

4. Crossed Modules

Again notice that, to later be able to apply the Magnus Embedding Theorem,
we use right actions.

Definition 4.1. A crossed module is a triple (G, δ, C) where C and G are groups,
with a right action of G on C, c · g, and a group homomorphism δ : C → G so that
the following two conditions are satisfied:

(CM1) (c · g)δ = g−1(c)δg for all g ∈ G and all c ∈ C
(CM2) c−1dc = d · (c)δ for all c, d ∈ C

A crossed module is free if it has a basis satisfying the canonical property. Ex-
amples of free crossed modules include free modules over a group, free groups, and
knot groups. We will focus on the free crossed module

(
π2(XQ, X

(1)
Q ), δ, π1X

(1)
Q

)
which is isomorphic to the crossed module constructed from a presentation Q as
follows.

Define E(Q) = F (F (x) × r) to be the free group on the set of ordered pairs,
(w, r) with w ∈ F (x) and r ∈ r. Let the F (x)−homomorphism δ : E(Q) → F (x) be
defined on generators by (w, r) �→ w−1rw. Then I(Q) = ker δ is called the group
of identities. Let F act on E(Q) by (w, r) · v = (wv, r). Let C(Q) = E(Q)/P (Q)
where P (Q) = 〈〈(V ·(U)δ)−1U−1V U〉〉E(Q) for U, V ∈ E(Q). The elements of P (Q)
are called the Peiffer identities. Whitehead, [16], showed that (C(Q), δ, F ) is a free
crossed module.

In order to recognize elements of C(Q) we need the Identity Property of Reide-
meister, [14].

Lemma 4.2. [14], [13] A word w =
∏

i(wi, ri)εi ∈ E(Q) represents a Peiffer
identity if and only if w represents an identity W ∈ I(Q) and there is a pairing
(i, j) of the indices such that:

(1) ri = rj

(2) εi = −εj , and
(3) wi〈〈r〉〉 = wj〈〈r〉〉 in F (x)/〈〈r〉〉F

Crossed modules are related to our motivating question by the following well-known
theorems.

Theorem 4.3. π2(XQ) ∼= I(Q)/P (Q) and π2(XQ, X
(1)
Q ) ∼= C(Q)

Theorem 4.4. [8] Any free crossed module over a free group has a topological
realization as the homotopy crossed module for some two-complex.

In other words, there is an equivalence between the classification of free crossed
modules and the homotopy classification of two-complexes. We can, therefore at-
tempt to illuminate the homotopy classification of two-complexes by studying the
generating sets of their second homotopy modules. This can be done by examining
their corresponding crossed modules. The Magnus Embedding Theorem provides
such an opportunity.
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5. The Magnus Embedding Theorem for Second Homotopy Modules

Let G be any finitely presented group. Let Q = 〈x | r〉 be a presentation for the
group G, and let F = F (x) be the free group on x. Let E(Q) = F (F × r) with
non-trivial normal subgroup P (Q) as defined above, and let C(Q) = E(Q)/P (Q).

Theorem 5.1. Let M be the free right Z(C(Q))−module with generators t(w,r) in
one-to-one correspondence with the generators of E(Q). Then there exists a map
ϕ so that :

((w, r))ϕ =
(

P (Q)(w, r) 0
t(w,r) 1

)
and ker ϕ = (P (Q))′ = [P (Q), P (Q)]. Moreover, an element

∏
i

(wi, ri)εi ∈ P (Q)

has image (
P (Q)1 0

L 1

)
where L is a linear combination of t(w,r)’s.

The theorem is a particular application of the Magnus Embedding Theorem.
For our intentions, we will examine π2XQ ∼= I(Q)/P (Q). Therefore, we examine
the images of these elements to determine generators of π2X as a right Z (C(Q))-
module. Using the Magnus Embedding Theorem in this situation, we can embed
I(Q)/P (Q)′ into the matrix group. We know that

π2XQ ∼= I(Q)/P (Q) ∼= I(Q)/P (Q)′

P (Q)/P (Q)′

If we examine the image of I(Q) under ϕ and take the quotient with the image of
P (Q) under ϕ, we can get a representation of π2XQ. The question then becomes
one of recognizing the image of P (Q) under ϕ.

Theorem 5.2. Let W ∈ E and M =
⊕
(w,r)

t(w,r)ZC. Then

W (ϕ) =
(

P (Q)1 0
L 1

)

where L =
∑

i

t(wi,ri)nigi ∈ M is the image of an element of P if and only if the

map
δ1 : M → ZC defined by (t(w,r))δ1 = (w, r) − 1

carries L to 0. Moreover, any L ∈ M (not necessarily given with its associated
matrix) is the image of an element of P (Q) if and only if there exists a pairing
(i, j) of indices such that:

(P1) ri = rj

(P2) 〈〈r〉〉F wi = 〈〈r〉〉F wj

(P3) ni = −nj

(P4) The map δ1 carrying t(wi,ri) �→ (wi, ri) − (1) carries L to 0.

Proof. First we notice that we have a presentation for C(Q) = E(Q)/P (Q), namely

W = 〈(w, r) | (vw−1rw, s)−1(w, r)−1(v, s)(w, r)〉



8 JACQUELINE A. JENSEN

for w, v ∈ F (x), r, s ∈ r. Therefore, if we look at the augmented chain complex for
the universal cover of XW we have

C2(X̃W ) δ2−−−−→ C1(X̃W ) δ1−−−−→ C0(X̃W ) ε−−−−→ Z −−−−→ 0

where δ2 is the right Fox derivative and
(
t(w,r)

)
δ1 =

(
(w, r)− (1)

) ∈ C(Q) for
(w, r) ∈ E(Q). For ease of notation, let us denote (vw−1rw, s)−1(w, r)−1(v, s)(w, r)
by 〈(w, r), (v, s)〉. Therefore, we have:

⊕
e〈(w,r),(v,s)〉

ZC δ2 ��

��������������

⊕
e(w,r)

ZC δ1 ��
ZC

ε ��
Z

�� 0

H1(P (Q)) = ker δ1

��������������

We are classifying the elements of H1(P (Q)) which are clearly the ones which
are sent to 0 under the δ1 map. �

6. An Example: A Magnus Embedding Theorem for Zn

Consider the simple case where Q = 〈x | xn〉 presents Zn. It is not hard to see
that the following hold.

Lemma 6.1. For Q = 〈x | xn〉 presenting the group Zn:
(1) F (x) ∼= Z.
(2) E(Q) = F (F (x) × r) where r = xn. Therefore, elements of E(Q) are

(xi) = (xi, r), and so E(Q) ∼= F (Z).
(3) C(Q) = E(Q)/P (Q) ∼= ⊕

n Zxi
∼= Z

n.

Lemma 6.2. In this example I(Q) is the normal closure of the element (x)(1)−1

in E(Q).

Proof. The elements which are in I(Q) are the elements which are killed by the
map δ : E(Q) → F (x) given by (w, r)δ = w−1rw. Therefore, in our notation, these
elements are exactly (x)(1)−1:(

(x)(1)−1
)
δ =

(
(x, r)(1, r)−1

)
δ

= x−1xnx · (1−1xn1
)−1

= xnx−n

= 1

.

�

Lemma 6.3. In this example, P (Q) is the normal closure in E(Q) of elements of
the form

(x−irxixj)−1(xi)−1(xj)(xi) = (x−ixnxixj)−1(xi)−1(xj)(xi)
= (xn+j)−1(xi)−1(xj)(xi)

for i, j ∈ Z.

The most interesting part of this example is the following theorem.



A MAGNUS EMBEDDING THEOREM FOR SECOND HOMOTOPY MODULES 9

Theorem 6.4. Let Q = 〈x | xn〉. Then E(Q) = F (Z), and the normal closure
of the Peiffer elements in E(Q) is a non-trivial normal subgroup. Let t(xi) be a
generating set of a free right ZC-module in one-to-one correspondence with the
generators of E(Q). Then there exists a map, ϕ from E(Q) to a matrix group
defined on generators by:

(xi)ϕ =
(

P (xi) 0
t(xi) 1

)
with kernel P ′ = [P, P ].

�
The more important observation is that we can identify π2 elements in this

embedding.

Lemma 6.5. Let Q = 〈x | xn〉. Elements of I(Q) are in the normal closure of
(x)(1)−1, and

(
(x)(1)−1

)
ϕ =

(
P (x)(1)−1 0

−t(1)(1)−1 + t(x)(1)−1 1

)
.

Theorem 6.6. Let Q = 〈x | xn〉. The image of P (Q) under ϕ is isomorphic to
P/P ′ = H1P . The images of the Peiffer elements P under ϕ are(

P 1 0
L 1

)
where L ∈ ⊕

i t(xi)ZC is the right Fox derivative, L =
∑

i aitxki ci for ci ∈ C, ai ∈ Z.
Moreover, L is the image of a Peiffer element if and only if L has the following
generalized identity property:
(GI1) The free generators occurring in L satisfy a weak pairing condition: there

exists a pairing on the free generators occurring in L, namely t(xi) ↔ t(xj)

so that j ≡ i (mod n).
(GI2) ai = −aj

(GI3) ci ≡ (xs)cj (mod P ) for some s ∈ Z.

Proof. The necessity of the first two conditions follows from the Identity Property.
It remains to show that when the pairing condition holds, the coefficients are the
same up to a left multiple. This is true in this case because every element of the
form (xn+j) can be replaced, modulo elements of P , with (xi)(xj)(xi)−1.

Therefore, by making the appropriate substitutions, we can always write the
coefficients as products of elements of the form (xk)±1. The result then follows,
once again, from the Identity Property. �

It should be possible to get the information provided above to produce the known
calculations for π2XQ. However to date, the computations are complicated and the
task of computing over a large group ring is challenging and cumbersome. These
calculations are still underway.

We are currently examining examples of more complicated groups, including
groups with multiple relators. The calculations become complicated quickly, and
we are looking for results which will simplify the calculations required. We believe
that this method will allow us to reconstruct Dunwoody’s proof of the homotopy
inequivalence of the standard two-complexes constructed from presentations of the
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trefoil knot group, and discover other homotopy inequivalences at non-minimal
levels.
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