MARA SOUTHEASTERN SECTION

Ninety-Seventh Annual Meeting

Clemson University

Clemson, SC

Thursday—Saturday, March 22-24, 2018

http://sections.maa.org/southeastern/?2018_Conference

Abstracts for all Talks

WS.3	Friday	The MAA Instructional Practices Guide: A catalyst for community-	
	9:00 a.m.	wide transformation toward meaningful learning	
Martha Abell		Georgia Southern University	
A team of over 50	faculty members	from varied institutions across the nation developed the MAA	
Instructional Practices Guide as a companion to the MAA Curriculum Guide to share effective,			
evidence-based practices instructors can use to facilitate meaningful learning for mathematics			
students. The hope is that the IP Guide will serve as a catalyst for community-wide transformation			
toward improved learning experiences and equitable access to mathematics for all students. The			
presentation will be an overview of the IP Guide, describing the topics covered, how it can be used to			
promote student learning and access, and how members of the mathematics community can get			
involved in the development of future versions of the IP Guide.			

DS.1	Friday	Analytic Explorations
	9:00 a.m.	
Kristen Abernathy		Winthrop University
effects of the modi modifications have distance as a platfo no prior knowledge help us answer fun	fications on coni surprising conse orm into analytic e of these terms, damental questi	ons by modifying the distance formula in \mathbb{R}^2 and observing the c sections, namely circles and parabolas. In particular, these equences for the numeric value of π . We'll use this discussion of ideas such as norms, completeness, and compactness. We assume as we hope to motivate why we need these ideas and how they ons from calculus. We'll conclude with a glimpse into functional ne ideas from this talk in their work.

CP1.2	Friday	Proposed Theoretical Model of Understanding Piecewise	
	2:20 p.m.	Functions	
Margaret Adams		South Georgia State College	
Patterns of misconceptions among pre-calculus students are revealed for piecewise functions with			
jump and point discontinuities. Initial research on what students know about limits prompted this			
more in-depth investigation, to explain the unique altered perceptions of limits of piecewise functions			
exhibited by students in Calculus I and III courses. Student evidence is categorized into themes and			
presented in the context of a theoretical model of understanding functions.			

SS6.3	Friday	Iteratively Regularized Gauss Newton Method for Electrical	
	2:40 p.m.	Impedance Tomography Using Complete Electrode Model	
Sanwar U Ahmad		Clemson University	
Electrical Impedan	ce Tomography (EIT) is a well-known technique for determining the conductivity	
parameter of a body from the boundary measurements. The inverse problem of EIT is severely ill-			
posed. In this presentation, we discuss the implementation of the Iteratively Regularized Gauss-			
Newton (IRGN) method for the complete electrode model in EIT. We present the results of our			
algorithm using simulations and perform computational analysis of the convergence and accuracy of			
the obtained conductivity distributions. We also compare our results using IRGN to statistical			
inversion algorithm using Markov Chain Monte Carlo technique.			

UP1.1	Saturday	Modeling Displacement Due to Natural Disasters Using		
	10:45 a.m.	Differential Equations		
Muhammad Ammar		University of North Carolina at Wilmington		
We plan to explore	the population of	displacements due to natural disasters, specifically hurricanes. The		
focus is on Hurrica	ne Katrina due to	the large amount of data available and the affected population in		
New Orleans. Base	New Orleans. Based on an existing disaster model, we will generalize, analyze, and simulate a model			
for hurricane displa	for hurricane displacements. Creating a model using systems of non-linear ordinary differential			
equations, changes	equations, changes in population dynamics will be studied. While performing mathematical analysis			
on the behavior and pattern of the solutions, we also plan to obtain numerical simulations of the				
model under various scenarios. These conclusions, along with numerical simulations, lead to				
predictions about pattern of population displacement, impacts to the population in the surrounding				
areas, and the effect of government initiatives and community supports to the future population				
growth of the natural disaster area.				

CP8.2	Saturday 10:20 a.m.	Abstract Withdrawn
Abstract withdrawn		

SS4.1	Friday	2-BIGs and Chasing the Elusive White Rabbit	
	2:00 p.m.		
John Asplund		Dalton State College	
Often when we g	o to presentations	, we see only the end product of one's multi-year project(s). What	
goes into an investigation and what holes-of-thought do we get stuck on as we progress through our			
project? In this talk, I'll focus on the Hamiltonicity of 2-block intersection graphs (2-BIG) of a triple			
system. Simply put, a triple system is a tool for building a certain class of graphs and we are interested			
in showing which 2-BIGs contain a cycle that spans the entire graph.			
This talk will cover this two-plus year project that involves ups-and-downs. Additionally, I will detail			
some tips and tricks for dealing with research in combinatorics that are useful in other concentrations			
as well. Were we successful? Did we accomplish what we set out to do? Come and find out!			

SS4.2	Friday	Odd edge-colorability of subcubic graphs
	2:20 p.m.	
Risto Atanasov V		Western Carolina University
An edge-coloring of a graph <i>G</i> is said to be odd if for each vertex <i>v</i> of <i>G</i> and each color <i>c</i> , the vertex <i>v</i> either uses the color <i>c</i> an odd number of times or does not use it at all. The minimum number of colors needed for an odd edge-coloring of <i>G</i> is the odd chromatic index $\chi'_o(G)$. In this presentation, we consider loopless subcubic graphs, and give a complete characterization in terms of the value of their odd chromatic index. This is joint work with M. Petrusevski and R. Skrekovski.		

UP1.2	Saturday	Student Exchange Program: Integration of Statistics and Non-
	10:45 a.m.	Mathematic Disciplines
Megan Balut		Lee University
The purpose of this	s presentation wi	ll be to discuss the implementation and results of a student-
focused program d	esigned to inters	ect and bridge the gap between statistics and other disciplines
		, Megan Balut, a sociology student, will be presenting with a
		ing on the design, purpose and implementation of the Student
		versity. We will be discussing the design of this program which
includes four stude	ents at Lee Unive	rsity who were chosen to participate in a Student Exchange
Program (SEP). Thi	s program partne	ered social science students with mathematics students in order to
connect these disciplines through shared goals, ta		hared goals, tasks, and combined participation. We will discuss the
activities and projects undertaken by these student includ		by these student including working together completing activities,
participating in biweekly meetings, math-stats student pairing for MATH 161 tutoring, developing		
		n interventions provided to MATH 161 students. We will discuss
		students in the program, as they were assessed through a pre and
		ere collected at the end of the semester. We will discuss the
results of participating in the SEP, wh		hich led to the four students increasing their confidence in
explaining statistics to other student		ts in a new, relatable approach, as well as decreasing the level of
anxiety associated with completing statistics assessments. We will fully discuss the purpose of thi		
program and discuss its impact on the students who participated in the program.		he students who participated in the program.

SS3.3	Friday	Using and Modifying the Towers of Hanoi Problem to Teach Proof
	2:40 p.m.	by Induction
Julie Barnes		Western Carolina University
an interesting prok for patterns. In ad the recursive form formula that descr formula is equivale puzzle to a dynami We will also look a backgrounds and a	blem for student dition, by physic for counting the ibes the number ent to the recurs ic class activity the t various ways o abilities. The ext	r of moves needed to solve a standard Towers of Hanoi problem is s because they can physically generate their own data and search cally moving the pieces, students are able to connect the puzzle to e number of moves. Once they have a conjecture for a closed form of moves, students use induction to prove that the closed form ive form. In this talk we will look at how we can turn the standard hat helps students develop their abilities to use proof by induction. f extending the problem to reach students with different ensions provide students with more opportunities to analyze nd understand recursion.

SS10.2	Saturday 10:20 a.m.	The Taxman Cometh
Robert A. Beeler	10.20 0.00	East Tennessee State University
Robert A. BeelerEast Tennessee State UniversityThe Taxman is a game developed by Diane Resek around 1970. The player has a list of numbers 1,,nThe player can take a number from the list, provided that it has at least one proper divisor remainingin the list. These proper divisors are then given to the taxman. When no more legal moves arepossible, the taxman receives all of the remaining numbers on the list. If the sum of the player'snumbers is higher than the taxman's, then the player wins. Because the game is easy to explain, quickto play, and has unexpected depth, it is ideal fro use in math club or outreach activities. In this talk,we show several strategies for the taxman and give open problems related to the game.		

CP7.2	Saturday 10:20 a.m.	Improper Improper Integrals: An Introduction to the Cauchy Principle Value
Robert W. Benim		University of Georgia
This expository talk examines a natural extension of certain improper integrals, the Cauchy Principle Value. This talk will be accessible to students who have or are currently taking Calculus 2.		

SS13.4	Saturday	A Comparison of Different Methodologies in the Modeling of
	11:00 a.m.	Early Stage Tumor Growth
Caitlin Bernabe		Western Carolina University
This talk will briefly review the history of our research in mathematical models of early-stage tumor		
growth, while highlighting the Agent Based Model in which the team is focused on. The Agent Based		
Model approach is particularly worthwhile because of its discrete nature, its ability to reflect accurate		
dynamics with small numbers of agents, and its clarity for researchers working on early-stage tumor		
growth. This talk will elaborate on the agents and rules in the Agent Based Model, which we are		

implementing in MatLab. This talk will close by reviewing our progress and discussing predicted future successes.

CP4.5	Friday	The Effect of (Un)Imposed Labor Market Flexibility on Gender	
	3:20 p.m.	Wage Gaps	
Peter Blair		Clemson University	
We document the	We document the unconditional wage gap between women and men in part-time work from 1975-		
2015. Over this period, the part-time gender wage gap is consistently smaller than the full-time gap			
by 10-20 percentage points. This fact, which is robust to a variety of empirical specifications, supports			
the Goldin (2014) hypothesis that labor market flexibility reduces observed labor market inequality. In			
fact, we show that attempting to impose labor market flexibility through federal and state-mandated			
family and medical leave laws, actually retarded gender wage convergence.			

UT4.4	Friday	Half-space similarity: properties and computation
	3:00 p.m.	
Joey Bonitati		Clemson University
useful in machine Euclidean distance under affine transf points with respec set, and it is robus	learning, genom is often used a ormations. We t to data sets. T t in the presenc	the two geometric objects are. Similarity of points in data sets is the sequencing, and statistical analysis. In current applications, is a measure of similarity. However, this metric is not preserved propose half-space similarity for describing similarities between this quantity is preserved under affine transformations of the data e of outliers. We use point-line duality to show that for a set of n 2- space similarity of any two points can be computed in $O(n \log n)$

UT3.4	Friday	Impossible LCM's for Carmichael numbers
	3:00 p.m.	
JQ Briggs		Wofford College
A Carmichael number is a number n that satisfies Fermat's criterion for primality (a^n=a (mod n)) but		
is not actually a prime. For a Carmichael number n=p_1p_2p_r, a particularly important quantity		
(denoted L) is the LCM of the p_i-1's. In this talk, we show that certain types of L's cannot occur.		

UT2.5	Friday	Upper Bounds on Ropelength for Twist and (p,2) Torus Knots
	3:20 p.m.	
Eli Brooks		Birmingham-Southern University
Our work begins by modeling the figure-eight and cinquefoil knots parametrically, with the aim of		
reducing their ropelength. From there, we expand the lengths of these knots into general equations		
that estimate the minimum required ropelength needed to tie knots in their respective knot families.		
Our resulting equations improve upon previous estimates of the ropelength upper bounds for the		
twist and (p,2) torus knot families.		

SS13.2	Saturday	Examining Drug Resistant vs. Sensitive Tumor Cell Populations		
	10:20 a.m.	with Immunotherapy & Chemotherapy		
John Brotemarkle		Winthrop University		
Drug resistance, als	so known as muli	tidrug resistance (MDR), is the leading cause of chemotherapy		
failure in treating o	ancer. This drug	resistance in cancer cells can be transferred from resistant cancer		
cells to sensitive ca	cells to sensitive cancer cells. Sensitive cancer cells can become resistant through three main			
methods: direct ce	methods: direct cell to cell contact with resistant cancer cells, through a membrane, or through			
exposure to the tre	exposure to the treatment drug. In our project, we take into account the transfer of drug resistance			
from resistant to se	from resistant to sensitive cancer cells via direct cell to cell contact. We then introduce an immune			
response and chemotherapy, and establish conditions on treatment parameters in the resulting				
system to ensure a globally stable cure state. We conclude with evidence of a limit cycle and				
conjecture the existence of a Hopf bifurcation.				

UT2.5	Friday	Upper Bounds on Ropelength for Twist and (p,2) Torus Knots
	3:20 p.m.	
Andrew Brown		Birmingham-Southern University

"Our work begins by modeling the figure-eight and cinquefoil knots parametrically, with the aim of reducing their ropelength. From there, we expand the lengths of these knots into general equations that estimate the minimum required ropelength needed to tie knots in their respective knot families. Our resulting equations improve upon previous estimates of the ropelength upper bounds for the twist and (p,2) torus knot families."

CP2.6	Friday	Minimally Connected Hypergraphs
	3:40 p.m.	
Mark Budden		Western Carolina University
Unlike the case of graphs, minimally connected r-uniform hypergraphs are not necessarily trees. In		
this talk, we consider this broad classification of hypergraphs, focusing on their role in extremal		
problems in graph theory.		

CP12.3	Saturday	Discovering Metamorphic Artwork within non-periodic Penrose &	
	10:40 a.m.	Pinwheel Tilings	
Doug Burkholder		Lenoir-Rhyne University	
Both Penrose tiling	Both Penrose tilings and Radin-Conway's Pinwheel tilings partition the plane into five very distinctive		
parts. Imagine a long sidewalk tiled with very tiny tiles using one of these tilings where each of these			
tiny tiles is labeled A, B, C, D, or E. Our sidewalk starts out with all tiles painted white and			
progressively moves through all 32 possible combinations of each of these tile types painted either			
white or black, one combination for each step along the sidewalk, progressively morphing into all			
black. Since each step consists of thousands of tiny black and white tiles, we see patterns, not tiles.			

Come see the unexpectedly beautiful patterns that immerge from Penrose Tilings and from Radin-Conway's Pinwheel Tilings. This talk is very appropriate for undergraduate students.

UP1.3	Saturday	A Parallel Implementation of the Random Method of Feasible	
	10:45 a.m.	Directions	
Julie Butler		Erskine College	
A Probabilistic Met	hod of Feasible I	Directions is designed to solve nonlinear optimization problems	
with inequality cor	nstraints using a L	as Vegas algorithm in the Direction Finding Sub-problem. The	
algorithm uses mu	algorithm uses multiple search directions in a parallel implementation across multiple computers. The		
results from a pseu	results from a pseudo-parallel version of the algorithm, which used only one core, were presented in		
2012. This research	2012. This research presents a truly parallel version of the Method of Feasible Directions. This		
algorithm is impler	algorithm is implemented using OpenMPI to parallelize the code. The results presented will compare		
the accuracy and run time from the sequential and parallel implementations of the Method of			
Feasible Directions across varying numbers of directions and cores, and will report a speedup factor			
the parallel algorithm.			

UT3.3	Friday	Square Sum Problem With Variations
	2:40 p.m.	
Michael Byrd		University of North Carolina at Wilmington
Recently, the mathematics YouTube channel Numberphile published a video titled The Square-Sum		
Problem. This video investigates rearrangement of the sequence of integers from 1 to N in a manner such that each pair of consecutive integers sums to a perfect square. We will explore the original Square-Sum Problem and discuss variations of it from the viewpoint of additive number theory.		

CP10.5	Saturday	Inflation or Deflation? Cronbach's Alpha under Careless	
	11:20 a.m.	Responses	
Trevor Camper		Georgia Southern University	
Surveys commonly	Surveys commonly suffer from insufficient effort responses, which can bias statistical summaries. In		
particular, Cronbac	particular, Cronbach's alpha has been observed to either deflate or inflate due to such responses. In		
this paper, we aim to shed light on how Cronbach's alpha will respond to insufficient effort responses			
in a variety of situations. A general formula is derived, from which special cases corresponding to			
practical situations are extracted. Of particular interest is a characterization of the conditions under			
which Cronbach's will deflate or inflate.			

CP11.5	Saturday	Low-discrepancy Action Selection in Markov Decision Processes	
	11:20 a.m.		
Stephen Carden		Georgia Southern University	
In a Markov Decisi	on Process, an a	gent must learn to choose actions in order to optimally navigate a	
Markovian enviror	ment. When th	e system dynamics are unknown and the agent's behavior is	
learned from data,	the problem is l	known as Reinforcement Learning. In theory, for the learned	
behavior to conver	rge to the optima	al behavior, data must be collected from every state-action	
combination infini	tely often. There	efore in practice, the methodology the agent uses to explore the	
environment is crit	environment is critical to learning approximately optimal behavior from a reasonable amount of data.		
This paper discusse	This paper discusses the benefits of augmenting existing exploration strategies by choosing from		
actions in a low-dis	actions in a low-discrepancy manner. When the state and action spaces are discrete, actions are		
selected uniformly from those who have been tried the least number of times. When the state and			
action spaces are continuous, quasi-random sequences are used to select actions. The superiority of			
this strategy over purely random action selection is demonstrated by proof for a simple discrete N		ction selection is demonstrated by proof for a simple discrete MDP,	
and empirically for more complex processes.			

CP5.6	Friday	The Adoption of Open Educational Resources by the Mathematics
	3:40 p.m.	Department at Fort Valley State University.
Samuel Cartwrigh	t	Fort Valley State University
The high cost of textbooks is a concern to both the students and the professors teaching the courses. In order to minimize the cost of textbooks for these courses and to make sure the students had these resources at the beginning of the semester, open stax resources were created in order to help students with online resources such as e-text, videos and quizzes. Open Stax resources were created for students who were in Calculus I, Calculus II, Calculus for Business and Economics, and Differential Equations. These courses were also created to make math resources more affordable and available to all students taking these classes, increase minority achievement and technology usage and share skills with other instructors for adapting open resources in other future high level math courses.		

SS11.1	Saturday	Counting kings and a connection with Catalan numbers
	10:00 a.m.	
Shih-Wei Chao		University of North Georgia
Let $f_{m,n}$ be the number of placements of non-attacking kings on a $m \times n$ chessboard. We will analyze		
the generating function $f_{m,n}(x)$ using formal power series to (1) find the connection between Catalan		
numbers and Fibonacci numbers and (2) give the formula for $[x^k]f_{m,n}(x)$ for certain k, m, and n. We		
will finish the talk by introducing some open questions including but not limited to matrices and 3-D		
chessboard.		

SS6.1	Friday	On conservation laws of Navier–Stokes Galerkin discretizations	
	2:00 p.m.		
Sergey Charnyi		Clemson University	
We study conserva	tion properties o	f Galerkin methods for the incompressible Navier–Stokes	
equations, without	the divergence of	constraint strongly enforced. In typical discretizations such as the	
mixed finite eleme	nt method, the c	onservation of mass is enforced only weakly, and this leads to	
discrete solutions v	discrete solutions which may not conserve energy, momentum, angular momentum, helicity, or		
vorticity, even thou	vorticity, even though the physics of the Navier-Stokes equations dictate that they should. We aim to		
construct discrete	construct discrete formulations that conserve as many physical laws as possible without utilizing a		
strong enforcemen	strong enforcement of the divergence constraint, and doing so leads us to a new formulation that		
conserves each of energy, momentum, angular momentum, enstrophy in 2D, helicity and vorticity (for			
reference, the usual convective formulation does not conserve most of these quantities). Several			
numerical experiments are performed, which verify the theory and test the new formulation.			

CP9.1	Saturday	Hitting the streets with math
	10:00 a.m.	
Tim Chartier		Davidson College
year, Axel Brandt, ⁻ undergraduates to	Tanya Chartier ar create their owr < in a K-12 classro	he streets of Great Britain under the direction of Sara Santos. This nd Tim Chartier have worked with Davidson College a version of math street performing. When complete, the program from or interactively on the streets. Come and learn some tricks of anya Chartier.

CP10.4	Saturday	Preliminary Studies on a Large Face Database MORPH-II	
	11:00 a.m.		
Cuixian Chen		University of North Carolina at Wilmington	
In this paper, we c	onsider a prelimi	nary study on a large face database MORPH-II. First, we present a	
detailed summary	of the inconsiste	ncies in the non-commercial release of the MORPH-II dataset and	
introduce the step	introduce the steps and strategy taken to clean it. In addition, examples of prior research that made		
use of the unclean	use of the uncleaned data are briefly introduced and the potential implications		
on their results are	on their results are discussed. Next, we propose a new subsetting scheme for the longitudinal face		
aging database Mo	aging database MORPH-II. Our subsetting scheme is intended to overcome the unbalanced racial and		
gender distributio	gender distributions of MORPH-II, while ensuring independence between training and testing sets.		
Our subsetting sch	Our subsetting scheme can be used for various face analysis tasks, including gender		
classification, age prediction, and race classification.			

CP1.6	Friday	Engaging with Primary Sources in a Mathematics for the Liberal	
	3:40 p.m.	Arts Course	
Marcela Chiorescu		Georgia College and State University	
During the past two	o decades the us	e of primary historical sources in the teaching and learning of	
mathematics attrac	mathematics attracted an increased amount of interest. There is evidence that integrating original		
sources in the mat	sources in the mathematics classroom has significant pedagogical value, however, more empirical		
studies of impleme	studies of implementing history of mathematics in teaching are needed. In spring 2017, in two of my		
sections of a mathematics for liberal arts course I replaced the textbook with projects based on			
primary historical sources for two topics: the Babylonian numeration and the triangular numbers. My			
presentation will in	presentation will include the school context in which I developed my projects, the implementation of		
my projects into the classrooms and some preliminary results.			

SS7.1	Friday	Creating a coloring book inspired by the golden ratio
	2:00 p.m.	
Marcela Chiorescu		Georgia College
A non-disposable assignment enables students to be producers of knowledge, rather than only as consumers. Students creates work for a variety of audiences, beyond just the teacher. When students know that their work will be used by their peers and possible future students, they will invest their		
time in this work at a different level. In one of my Quantitative Skills and Reason classes, my students created a coloring book inspired by the golden ratio. I will present the design and the implementation of this non-disposable assignment.		

SS10.3	Saturday	Number Theory in an Integrated STEM Curriculum	
	10:40 a.m.		
Jeneva Clark		University of Tennessee at Knoxville	
High-quality STEM	education involv	es an integrated approach (Johnson, 2013; NRC, 2002). Weaving	
together science, t	echnology, engir	eering, and mathematics improves student achievement (Becker	
& Park, 2011), refle	ects the integrate	ed nature of STEM professions (Wang et al., 2011), and enables	
deeper understand	deeper understanding (NRC, 2012). However, in curricular redesign efforts toward integrated STEM,		
number theory sho	number theory should maintain its footing as an accessible springboard for student inquiry. This talk		
discusses how number theory plays a part in an integrated STEM curriculum in a general education			
course like Mather	course like Mathematical Reasoning. This talk will show how students (a) use structural engineering to		
study triangular, tetrahedral, and Padovan numbers, (b) use technology to see the Goldbach			
Conjecture in cellular automation, and (c) learn science-related examples of Fibonacci numbers and			
kissing numbers. A	kissing numbers. Also, this discussion will invite the audience to contribute ideas for further STEM-		
related number theory examples.			

SS8.4	Saturday	An Effective, Cloud-Based Infrastructure for a Coordinated Course	
	11:00 a.m.		
April Conner		University of Tennessee at Knoxville	
In this presentation	n I will outline a c	omprehensive infrastructure for consistent implementation of a	
coordinated course	e with common n	naterials which is taught by a large number of instructors with	
varying teaching ex	perience. The in	frastructure is adaptable for any course design and scalable to	
accommodate any	course size. It is	currently being used to deliver two gateway mathematics courses	
in conjunction with	n a graduate teac	hing assistant/associate mentorship program. It is also being used	
to introduce course	es to new faculty	and to help faculty who want to improve their teaching skills.	
One of the courses	is completely flip	oped while the other course has two versions: one version that is	
100% flipped and t	100% flipped and the other around 75% flipped. The cloud based framework is built around Google		
Drive using folders	and sheets that	allow real-time editing by the coordinator. Instant updates are	
available to all inst	available to all instructors of the course via the cloud. The Google Drive share capabilities allow the		
coordinator and in	coordinator and instructors to communicate directly through comments and suggestions in the		
documents. The interactive master spreadsheet and course calendar are the epicenters of the			
infrastructure, allowing instructors easy access to all course materials from any internet capable			
device. I will explain how all of these components work together to successfully organize a course th			
is independent of a learning management system.			

CP3.6	Friday	Using Sage Interacts to Explore Sturm's Method	
	3:40 p.m.		
William J. Cook		Applachian State University	
The rise of technol	The rise of technology has caused many beautiful mathematical results to be forgotten. In this talk,		
we will discuss Des	we will discuss Descartes' rule of signs, the Budan-Fourier theorem, and Sturm's method. While		
graphing tools give approximate information about the number of real roots of a polynomial, these			
results give exact information and can be implemented by hand. The speaker has implemented each			
technique in Sage with Sage interacts. These interactive demos do not require any specialized			
software and allow anyone with internet access to explore for themselves.			

UT1.2	Friday	Effects of interaction-mediated dispersal on the persistence of a	
	2:20 p.m.	population	
Emily Cosgrove		Auburn University Montgomery	
Dispersal of an org	anism plays an ir	nportant role in its individual fitness, population dynamics, and	
species distribution	n. In the literatu	re, dispersal is loosely applied to movement over different spatial	
scales, e.g. movem	ent between hat	pitat patches separated in space from other areas. Recently,	
ecologists have fou	ecologists have found that interacting organisms can affect one another's dispersal, a phenomenon		
known as interaction-mediated dispersal. Little is known regarding the patch-level consequences of			
habitat fragmentation of interacting species in the presence of interaction-mediated dispersal. In this			
talk, we will explore effects of habitat fragmentation and interaction-mediated dispersal on patch-			
level population dy	level population dynamics through development and study of a model built on the reaction diffusion		
framework. The focal point of our results will be concerned with a one-dimensional patch and relies			
upon adaptation of	upon adaptation of methods from nonlinear analysis such as time map analysis (quadrature method).		
In particular, we will elaborate on the biological importance of these results.			

UP1.4	Saturday	Planning a Vacation with the Traveling Salesman Problem
	10:45 a.m.	
Alison Crisp		Christian Brothers University
route for a "salesm Several algorithms accuracies and intr problem to find the	an" to travel to a have been devel icacies. I apply th e shortest route	a classic graph theory problem that attempts to find the shortest a set of "cities" without visiting any given "city" more than once. oped to solve the traveling salesman problem with varying he nearest neighbor algorithm for solving the traveling salesman to visit the national parks. The measurements are based on contiguous national parks are considered.

CP3.4	Friday	Recent developments in monotonicity and convexity in discrete
	3:00 p.m.	fractional calculus
Rajendra Dahal		Coastal Carolina University
Discrete Fractional Calculus has been getting a lot of attention these days as the theory has been		
developed in the last 11 years. In this talk we collect and present recent developments in the area of		
monotonicity and convexity of discrete fractional operator.		

UP1.5	Saturday	De Branges Extreme Point Method in Analysis
	10:45 a.m.	
Biraj Dahal		Clemson University
geometry that even some interesting a well known Stone-	ry compact conve pplications to so Weierstrass theo	finite dimensional analogue of the well known fact from convex ex set is the convex hull of its extreme points. This theorem has me seemingly unconnected problems in analysis. For example, the rem can be proved using this result. This poster will present that s some newer applications.

WS.1	Friday	A New Extension of the Riemann Integral: From a Simpler	
	9:00 a.m.	Calculus to Analysis-Level Neat Stuff!	
Bryan Dawson		Union University	
This hands-on worl	kshop will include	e ample opportunity to perform calculus- and analysis-level	
calculations with th	calculations with the "omega integral," as well as some discovery learning and proof writing. The		
omega integral, wh	omega integral, which is introduced in a forthcoming article in the American Mathematical Monthly		
by the presenter ar	by the presenter and utilizes the hyperreal numbers, is based on "omega sums," which are much		
simpler for calculus students to work with than the traditional Riemann sums. The omega integral also			
extends the Riemann integral in a somewhat different manner than either the Lebesgue integral or			
other nonstandard	other nonstandard integrals. These facts and more, including a fun pathological example, will be		
explored in the workshop. This workshop is appropriate for both students and faculty.			

SS6.5	Friday	Methods for Locating and Manipulating the Vertical Asymptotes	
	3:20 p.m.	of Solutions to First Order ODEs.	
Davis Deaton		Belmont University	
Numerical method	s are often the t	ool of choice for solving complicated differential equations in	
physical applicatio	ns but can fail dı	e to unexpected asymptotes, producing nonsensical and physically	
unrealistic approxi	mations of the se	olutions. If the locations of asymptotes are known, approximations	
can be applied wit	h much more coi	nfidence. Finding the asymptotes of differential equations whose	
solutions are know	n is relatively tri	vial; however, finding the asymptote of a differential equation	
whose solution is u	whose solution is unknown or does not exist in closed form is significantly more complicated. By using		
the end behavior of implicit solutions, we are able to find the asymptotes of first order differential			
equations in many cases, including a closed form of the asymptotes for polynomial defined			
differential equations in terms of their roots. Further, we can use comparison methods to find classes			
of equations which do and do not produce asymptotes and to find safe zones where a solution will			
not have an asymptote.			
(Undergraduate procentors Davis Deaton and Jordan Sawdy from Polmont University)			

(Undergraduate presenters Davis Deaton and Jordan Sawdy from Belmont University)

UT7.2	Saturday	Factorization of Polynomials over the Integers
	10:20 a.m.	
Elijah DeJonge		Western Carolina University
In this presentation we will consider polynomials of type $p(x) \pm 1$, where $p(x)$ is a product of binomials with integer coefficients. Our goal is to determine which of these polynomials are possible		
to write as a product of two polynomials with integer coefficients.		

CP11.2	Saturday 10:20 a.m.	Cohomogeneity one manifolds whose rational cohomology ring is generated by one element
Jason DeVito	I	University of Tennessee at Martin
compact Lie group simply connected of $\mathbb{Q}[x]/x^n$. In partic space, Grassmanni	G, whose orbit cohomogeneity cular, we show t an of 2-planes in	ed a cohomogeneity one manifold if it admits a smooth action by a space M/G is 1-dimensional. We classify all even dimensional one manifolds whose rational cohomology ring takes the form hat all such examples are diffeomorphic to a sphere, projective \mathbb{R}^{2k+1} , or the homogeneous space $G_2/SO(4)$. The proof uses er bundle methods, directly building on work of Frank, Uchida, and

SS1.3	Friday	An Active Learning Model in College Algebra
	2:40 p.m.	
Gary Dicks	Gary Dicks Abraham Baldwin Agricultural College	
have redesigned ou more engaged in th	ur college algebra neir learning and	e in student engagement and performance in our classrooms. We a course to address these deficiencies. In this model, students are show improvement in performance. The model is based on the that the students at this level need more guidance for the

independent work/study they do prior to coming to class. We will share the motivation for the model, how it is implemented in the classroom, and student performance. The model has been implemented in the college algebra course for five consecutive semesters.

CP5.3	Friday	Two Approaches to Precalculus	
	2:40 p.m.		
Andrew M. Diener		Christian Brothers University	
Christian Brothers	University split o	ur precalculus population by ACT scores. Those with higher Math	
ACT scores take the	e traditional Prec	alculus, those with lower scores take a combination of a	
Functions course a	nd a Trig course.	The courses are coordinated and run concurrently which is	
different from mos	t schools that div	vide the subject into an algebra and a trig course. Topics are	
aligned so that circ	les in the Functio	ons course lead to the unit circle trig definitions. Solving quadratic	
equations leads to	quadratic form e	equations involving trig functions. Inverse functions in the	
Functions course le	ad to the inver	se trig functions. This immediate reinforcement helps	
students see how	mathematics bu	uilds on itself and promotes student success. CBU is a small	
school where the n	school where the majority of students taking precalculus are engineering majors. While half of those		
that declare engine	that declare engineering as their major begin in precalculus the engineering paradigms begin with		
Calculus I. The increased need for immediate success in precalculus driven by our structured			
engineering curriculum led us to explore new options. We will share our experiences			
in the combination of courses as well as the impact on students in the traditional Precalculus			
course. This is a fol	course. This is a follow up to an earlier analysis from data gathered through 2016.		

G\$1.1	Friday	How Mathematics is Making Hollywood Movies Better		
	4:15 p.m.			
Michael Dorff		Brigham Young University		
What's your favori	te movie? Star W	'ars? Avatar? The Avengers? Frozen? What do these and all the		
highest earning Ho	highest earning Hollywood movies since 2000 have in common? Mathematics! You probably didn't			
think about it while watching these movies, but math was used to help make them. In this				
presentation, we will discuss how math is being used to create better and more realistic movies.				
Along the way we will discuss some specific movies and the mathematics behind them. We will				
include examples from Disney's 2013 movie Frozen (how to use math to create realistic looking snow)				
to Pixar's 2004 movie The Incredibles (how to use math to make an animated character move faster).				
Come and join us and get a better appreciation of mathematics and movies.				

SS9.1	Saturday	The best jobs in the 21st century? – mathematician/STEM	
	10:00 a.m.	careers!	
Michael Dorff		Brigham Young University	
-	A 2014 ranking from CareerCast.com, a job search website, recently named mathematician the best		
job of 2014. Many students and professors think that teaching is the main (or only) career option for			
	someone who studies mathematics. But there are hundreds of jobs for math students. However, just		
graduating with a math degree is not enough to guarantee getting one of these jobs. In this talk, we			
will talk about some of the exciting things mathematicians in business, industry, and government are			
doing in their caree	doing in their careers. Also, we will reveal the three things that recruiters say every math student		
should do to get a job.			

SS9.3	Saturday	A Mathematician's Perspective on Unmanned Air Vehicles
	10:40 a.m.	
Aaron Dutle		NASA Langley Research Center
The Radio Technical Commission for Aeronautics (RTCA) recently published a document (DO-365) that		
details requirements for Unmanned Air Vehicles that wish to operate in the National Airspace System.		
NASA has developed a suite of algorithms called DAIDALUS, which serves as a reference		
implementation for meeting these requirements. This talk will describe the author's experience as a		
mathematician working at NASA on the development and verification of DAIDALUS.		

SS5.6	Friday	Weighted Sums of Binomial Coefficients with Binomial
	3:40 p.m.	Coefficients as Weights
Steven Edwards		Kennesaw State University
count certain types column of Pascal's numbers, and all th	s of lattice paths, triangle. We rec nese generalizati	a natural origin in Pascal's triangle. The Delannoy numbers, which can be considered to be the dot product of a row with a part of a cently found an infinite class of generalizations of Delannoy ons can be considered as dot products of rows with columns in ection of identities that result. Some of the identities are

generalizations of the most elementary identities that come from Pascal's triangle, namely that the sum of the entries in row n is 2ⁿ, and that the alternating row sum is zero.

CP1.1	Friday	Historical homework: integrating history into precalculus	
	2:00 p.m.	homework assignments	
Rachel Epstein		Georgia College and State University	
Integrating history into mathematics courses can have a variety of benefits: it can motivate students,			
encourage them to think of mathematics as a creative human endeavor, expose them to diverse			
cultures, and teach them how society shaped the mathematics that we now learn. In this talk, I			
discuss my efforts to integrate history into a precalculus course through a series of historically			
inspired homework assignments. The intention of the assignments is to provide historical context to			

the material we learn in class while also strengthening the students' understanding of the mathematics through challenging problems. I will discuss my motivations for creating the assignments, how I chose the problems, and the student reception of the assignments. I will also discuss the challenges I encountered and how I hope to proceed in the future.

SS7.3	Friday	OctaveGT Toolbox: Student Growth Through an Open Software
	2:40 p.m.	Project
Jon Ernstberger		Lagrange College
In a collaborative directed study, an engaged student undertook the task of programming a simple graph theory toolbox in the open source programming language Octave. That software was then made openly available for educational use. Insights in to preparation, licensing, distribution, and improvements will be shared along with some learned best practices.		

UT5.6	Saturday	Singular Caputo Fractional Difference Equations	
	11:40 a.m.		
James T. Eskew		University of Tennessee at Martin	
This talk will discus	s a positive solut	ion to the Caputo fractional difference equation $(^{c}D^{q}u)(t) =$	
$f(t, u(t)) + g(t, u(t)), t \in J$, satisfying the initial condition $u(0) = 0$,			
where $0 < q < 1$, J	where $0 < q < 1$, <i>J</i> is the interval [0, 7] for some maximal value <i>T</i> of <i>t</i> , $f(t, u)$, $g(t, u) \in C[J \times \mathbb{R}, \mathbb{R}]$		
and $f(t,u)$ is increasing and $g(t,u)$ is decreasing in u on J , with both f and g having singularities at $u=0$.			
We look at an upper and lower solution method for regular problems and how to apply this method			
to our singular problem. We also discuss the possibility of using perturbation methods to approximate			
regular problems.			

UP1.6	Saturday	A Predator-Prey Model for Silverleaf Whitefly(B. tabaci) and Lady		
	10:45 a.m.	Bettle(H convergens)		
Robby Espano		Abraham Baldwin Agricultural College		
Bemisia tabaci is a	a crytic species co	mplex of more than 35 identifiable aphids. Some type of these		
pests can spread i	n an environmen	t so quickly that they are considered to be one of the world's top		
100 invasive speci	es. Each year, the	ese pests damage plant and crops by feeding on the plants and by		
transmitting plant	transmitting plant viruses costing millions of dollors to farmers and greenhouse growers. Over 600			
plant species, including major corps such as peanuts and cutton, are known to be parasitized by these				
pests. To encounter these pests, several pesticides and synthetic predators are used but they have				
adverse effects on natural and beneficial organisms. Also, some of the predators are not very				
effective due to their ability to encounter only adult whiteflies. In this paper, we develop a discrete				
time predator prey model with lady beetle <i>Hippodamia convergens</i> as the predator. These predator				
has been shown to have extreme predatory effects on various <i>B. tabaci</i> biotypes. We will present the				
stability analysis of our model. Parameters are estimated using experimental data and some				
numerical results will presented.				

UT6.4	Saturday	MatrixToe: 1s and 0s battle for domination
	11:00 a.m.	
Joanna Fass		High Point University
1's and 0's. One pla matrix not invertib	ayer tries to mak le. We proved op	o Tic-Tac-Toe, but instead of using X's and O's, the two players use e some m-by-m matrix invertible and the other tries to make the otimal strategies, and who the resulting winner will be, for are matrices up to size 4x4.

WS.2	Friday	Graduate Student Career Development Workshop,
	8:30 a.m.	
Sarah Ann Fleming		Belmont University
Are you unsure how	w to proceed after	er graduation? Do you have questions about teaching? Would you
like to expand your network of contacts? This workshop is designed for graduate students at both the		
Masters and PhD level. Topics include the job search, different types of jobs available, job application		
materials, interviewing, and negotiating. The workshop will also include a discussion on teaching and		
offer networking opportunities with those recently and not-so-recently out of graduate school. A		
limited number of travel grants are available. Visit www.graduatecareerworkshop.com for more		
information. There is no cost to attend the workshop.		

CP4.6	Friday	Optimal Supplies Delivery under Military Specific Constraints
	3:40 p.m.	
Talena Fletche	er	Georgia Southern University
We address th	e problem of optim	al supplies delivery under specific military constraints. Throughout
the military hi	story, the need to sa	afely and effectively allocating resources to the various military
operations an	d their associated ac	ctivities was a task of extreme importance. Satisfying the needs of
multiple consu	umers by optimally p	pairing with appropriate suppliers falls into the category of vehicle
routing proble	ems (VRP), which has	s been intensively studied over the years. In general, finding the
optimal solution to VRP is known to be NP-hard. The proposed solutions rely on mathematical		
programming and the size of the problems that can be optimally solved is typically limited. In militar		
settings, balancing the needs of multiple consumers with the current operational environment has		
always been a challenge. This balancing is equally crucial to the survivability of the transporters and		
consumers. The main goal is finding an optimal way of ensuring required delivery while minimizing		
soldiers risks. We show that under certain assumptions we can formulate this problem as a linear		
programming problem with specific constraints. We present a solution and experimental results for		
real life scenarios, which support the applicability of our solution.		

SS5.5	Friday	The Geometry of some Fibonacci identities in the Hosoya triangle		
	3:20 p.m.			
Rigoberto Florez		The Citadel		
The Hosoya triangl	e is a triangular a	rray (similar to Pascal) where the entries are products of two		
Fibonacci numbers	. In this talk, we	give a geometric interpretationusing the Hosoya triangle of		
several Fibonacci io	several Fibonacci identities. Some of them are well known algebraically. For example, we discuss			
geometrical proofs	geometrical proofs of Cassini, Catalan, and Johnson identities. We also extend some properties from			
Pascal triangle to tl	Pascal triangle to the Hosoya triangle. For instance, we generalized the hockey stick and the T-stick			
identities given for	identities given for binomial coefficients to identities for Fibonacci numbers. The symmetry present in			
the Hosoya triangle helps to explore several patterns and find new identities. Teacher and student				
that are interested in undergraduate research may find this triangle helpful.				

UT3.1	Friday	Analysis of Modified Fibonacci Sequences, Generalized Golden
	2:00 p.m.	Ratios and Their Convergence
Dominique Forbes		Coastal Carolina University
We determine a family of recursively defined sequences and their growth rates. We prove that these		
growth rates converge to generalized 'golden ratios', and from there we prove that these resulting		
sequences of generalized 'golden ratios' converge as well. We also present how these recursive		
sequences can arise by modifying certain assumptions that generated the famous Fibonacci		
sequence.		

UT4.5	Friday	Gaussian binomial coefficients with negative arguments	
	3:20 p.m.		
Sam Formichella		University of South Alabama	
Loeb showed that a	a natural extensi	on of the usual binomial coefficient to negative (integer) entries	
continues to satisfy	y many of the fur	ndamental properties. In particular, he gave a uniform binomial	
theorem as well as a combinatorial interpretation in terms of choosing subsets of sets with a negative			
number of elements. We show that all of this can be extended to the case of Gaussian binomial			
coefficients. Moreover, we demonstrate that several of the well-known arithmetic properties of			
binomial coefficients also hold in the case of negative entries. In particular, we show that Lucas'			
Theorem on binom	Theorem on binomial coefficients modulo p not only extends naturally to the case of negative entries,		
but even to the Gaussian case.			

SS2.4	Friday	Watts the Deal With Electric Load Forecasting?
	3:00 p.m.	
Emily Forney		SAS Institute
possible for it. If a rates. Customers g	oower company enerally expect t	yone uses it and everyone wants to pay the cheapest rates is able to plan better for future usage, it can assist with dropping o have uninterrupted access to electricity. If a company doesn't can come up short. To make up for the gap, a company would

have to buy energy in the on-the-spot market and when demand is high, the prices of energy can be very expensive and can result in the customer having to pay higher rates.

SAS Institute has a solution, SAS Energy Forecasting, which is intended to help utilities generate more accurate load forecasts. If the forecasts are more accurate, then planning is more accurate and could lead to the potential for the price of power to decrease.

This presentation looks at the implementation of SAS Energy Forecasting by an electric cooperative. This cooperative was looking to improve their load forecast with a goal of trying to aid in reducing the rates charged out to the members. The implementation included a design to assist overcoming data challenges and simulating numerous models to find optimal settings.

UT6.1	Saturday	A Linear Algebra Perspective on the Second Derivative Test for
	10:00 a.m.	Functions of Two Variables
Alex Foster		Coastal Carolina University
The second derivative test for maxima and minima of functions of two variables often goes		
unexplained in Calculus III courses, but examining the family of normal curves on the surface of such a		
function provides insight into the workings of this test. Using linear algebra, we will show that the		

second derivative test for functions of two variables can be understood in terms of the second derivative test for functions of a single variable applied over the family of normal curves.

SS11.2	Saturday	Minimum Coprime Labelings of Graphs
	10:20 a.m.	
N. Bradley Fox		Austin Peay State University
that the labels of an over thirty years wi labeling), but many of graphs where we label the graph so t <i>m</i> , which we call a	ny adjacent verti th a vast array o graphs have als e expand the set hat we satisfy th minimum coprim	If <i>n</i> is a way to label the vertices with the integers $\{1, 2,, n\}$ such ices are relatively prime. These labelings have been studied for if graphs having been shown to be prime (i.e. they have a prime o been found to not be prime. This talk will focus on the latter set of labels to be from a set $\{1, 2,, m\}$ for some $m > n$ and attempt to ne relatively prime adjacency condition while minimizing the value <i>ne labeling</i> . Graphs that we will consider include the complete oplying the union, square, or join operations to paths and cycles.

UT2.2	Friday	Free Flowing
	2:20 p.m.	
Jamie Fravel		Furman University
Flow Free is a popular mobile puzzle game that extends the idea of Hamiltonicity to multiple colored paths on a square grid graph. In this talk, we explore the question, 'What makes such a puzzle possible?		

UP1.7	Saturday	Risk it for the biscuit: How to play the final question to "win"	
	10:45 a.m.	Jeopardy in one of two games	
Ally Fuchs		Belmont University	
In this poster, we p	In this poster, we present formulas on a variation of the game show Jeopardy!. In previous papers,		
formulas for wagers on the final question of the game show are presented and taught to young			
students. This post	students. This poster extends wagering strategies to a tournament setting, where players compete		
across multiple gai	across multiple games and one player can advance to the next round of a tournament with the		
highest non-winning score. Ally Fuchs, an undergraduate, is the presenting author of the poster, with			
CC Logan, an undergraduate, as co-presenter; the undergraduate work is done under the supervision			
of Ryan Fox, a faculty member.			

CP8.3	Saturday	Quantum Field Theories and Factorization Algebras
	10:40 a.m.	
Jennifer Garbett		Lenoir-Rhyne University
about quantum fie mathematical desc still no mathematic factorization algeb	ld theories as ea riptions of quant cally rigorous def ras, one mathem chematical object	es to explain the world around us. Though physicists were thinking rly as the 1920s, and mathematicians have proposed multiple sum field theories, with the first appearing in the 1950s, there is inition of a quantum field theory. In this talk, we will discuss natical "approximation" to physicists' quantum field theories and es called vertex algebras. The talk should be accessible to a general

UT1.3	Friday	Wagering strategies for variations of Final Jeopardy	
	2:40 p.m.		
Kailee Gerzem	а	Belmont University	
In this present	ation, we discuss for	rmulas associated with variations of the game show Jeopardy!. In	
previous pape	rs, formulas for a sir	gle game of the show are developed and then presented as an	
instructional activity to mathematically motivated middle school students. The proposed paper			
provides two changes to the original show: in both cases, players play in a tournament setting. In one			
change, multiple two-players games are played in a sequential order, with all winners and the highest			
non-winning score advancing to the next round of the tournament. In the second change, four-player			
gamesmuch like the Math Jeopardy played at MAA-SEare played in a sequential order, with all			
winners and the highest non-winning score advancing to the next round. Kailee Gerzema, an			
undergraduate, is the presenting author; her work is under the supervision of Ryan Fox.			

CP2.1	Friday	Graph Clustering and Vertex Similarity
	2:00 p.m.	
Raven Gilmore		Georgia Southern University
other are grouped correspond to vert analysis. Then for g	together. Graph ices on a graph. graph clustering	topic in data mining, where data points that are similar to each clustering deals with clustering analysis of data points that We first survey some most well known algorithms for clustering we note that one of the fundamental factor the distance measure ine various known venues for defining such measures and propose

CP9.2	Saturday	Alternative Grading Schemes in Linear Algebra
	10:20 a.m.	
Timothy Goldberg		Lenoir-Rhyne University
In this talk, the speaker will present several different non-standard course grading schemes he has used in his Linear Algebra course, including standards- based and specifications grading.		

CP2.3	Friday	Sorting Index and Mahonian-Stirling pairs for labeled forests
	2:40 p.m.	
Amy Grady		Clemson University
distribution as the natural statistics or cyclic bottom-to-to	number of invers n labeled forests. op maxima, sortir and (maj, Cbtma	index for labeled plane forests and showed that it has the same sions. We will define and study the distributions of a few other Specifically, we introduce the notions of bottom-to-top maxima, ng index and cycle minima. Then we show that the pairs (inv, x) are equidistributed. Our results extend the result of Bjorner and rmutations.

CP11.1	Saturday	An Empirical Resolution of Arrow's Impossibility Theorem
	10:00 a.m.	
Adam Graham-Squ	ires	High Point University
Arrow's Impossibility Theorem demonstrates, from a theoretical perspective, that there is no such thing as a fair election method. More specifically, every election method will fail some criterion for fairness given the correct voting conditions. We analyzed freely available empirical data from ranked- choice voting in municipalities across the U.S. and found the fairness anomalies are very rare, or not present at all, in actual elections. In fact, the data suggest one simple voting method that empirically		
demonstrates no failures in fairness criteria.		

GS2.1	Saturday	Popular Culture and Mathematics: Gender, Race, and more
	8:45 a.m.	
Sarah Greenwald	·	Applachian State University
the math gene? W even shape how so variety of shows ar	Sarah GreenwaldApplachian State UniversityHave you ever known anyone who asserted they cannot do mathematics because they do not have the math gene? Where do those messages come from? Popular culture can reveal, reflect, and even shape how society views mathematics and mathematicians. We'll analyze examples from a variety of shows and films and consider the intersections of gender, race, class, and ability. We'll also discuss ways to counter stereotypes.	

UT4.2	Friday 2:20 p.m.	p-Groups Covered by Powerful p-Subgroups	
Adam Gregory		Western Carolina University	
cover for a group is	A finite p-group G is called powerful if either p is odd and $[G,G] \subseteq G^{(p)}$ or p = 2 and $[G,G] \subseteq G^{(4)}$. A cover for a group is a collection of subgroups whose union is equal to the entire group. In this presentation we will discuss covering p-groups with powerful p-subgroups.		

SS11.3	Saturday	Double, Double, Recursion and Trouble	
	10:40 a.m.		
William Griffiths		Kennesaw State University	
We establish a fa	mily of doubly red	ursive sequences related to the Delannoy and Fibonacci numbers.	
This family admit	This family admits many common properties, most of which can be proved using elementary		
enumerative met	enumerative methods. Using the Online Encyclopedia of Integer Sequences, we find this family, in		
turn, enumerates a wide variety of different objects. The objects range from difference in orbitals in			
quantum particles to orchard crossing numbers of complete graphs to 132-avoiding two-stack			
sortable permutations that avoid the pattern 4321. We study these previously unconnected concepts			
and their relationships through properties established on the entire family.			

CP3.2	Friday	A descent/intercept model with a twist
	2:20 p.m.	
Charles Groetsch		The Citadel
rather than release dependent interce	ed from rest. A su pt angle is establ	lassical descent/intercept problem in which the object is ejected ifficient condition for existence and uniqueness of the velocity- ished and a lower bound on the rate of change of the intercept alytical solutions of the intercept problem are discussed.

SS13.6	Saturday	A Nonlinear Biological Inverse Problem
	11:40 a.m.	
Charles Groetsch		The Citadel
Charles GroetschThe CitadelIn an experimental procedure developed by S. Kleene, an olfactory celium is detached at its base and drawn into a recording pipette. The open celium base is then immersed in a bath of ion channel activating agent (cAMP) which diffuses into the celium interior, opening ion channels as it goes, and initiating a trans-membrane current. The total current is recorded as a function of time and serves as data for a nonlinear integral equation of the first kind modeling the spatial distribution of ion channels along the length of the celium. We discuss this model as a tool for assessing the spatial distribution of ion channels. Numerical results using simulated and laboratory data are presented.		

UT4.3	Friday	Powerful p-Groups and Their Subgroups
	2:40 p.m.	
Luke Guatelli		Western Carolina University
A finite p-group G is called powerful if either p is odd and $[G, G] \subseteq Gp$ or $p = 2$		
and [G, G] \subseteq G4. In this presentation we will discuss certain properties of powerful p-groups, their		
subgroups, and determine all powerful p-groups of order at most 32.		

CP8.6	Saturday	Free Lie Algebras and Free Leibniz Algebras
	11:40 a.m.	
John R. Hall III		Applachian State University
algebras are still in	development. Ir ng algebra. We co	n of Lie algebras. While Lie algebras are well-known, Leibniz h this talk, we survey free Lie algebras and their connection to the onclude by examining certain analogous results that have been

CP12.1	Saturday	On the Gallai-Ramsey number of Brooms.	
	10:00 a.m.		
Benjamin Hamlin		Georgia Southern University	
Given a graph G, w	Given a graph G, we consider the problem of finding the minimum number n such that any k edge		
colored complete	colored complete graph on <i>n</i> vertices contains either a rainbow colored triangle or a monochromatic		
copy of the graph G, denoted $gr_k(K_3:G)$. More precisely we consider $G = B_{m,n}$ where $B_{m,n}$ is a			
broom graph with <i>m</i> representing the number of vertices on the handle and <i>n</i> representing the			
number of bristle vertices. We develop a technique to reduce the difficulty of finding $gr_k(K_3:B_{m,n})$,			
and use the technique to prove a few cases with a fixed handle length, but arbitrarily many bristles.			

CP2.4	Friday	Undergraduate Research in Random Graph Theory	
	3:00 p.m.		
Arran Hamm		Winthrop University	
In this talk I will dis	cuss a line of res	earch I have undertaken with undergraduate students at my	
institution. Specific	institution. Specifically, my students have studied graph parameters of random subgraphs of Kneser		
graphs. Examining	graphs. Examining these types of random graphs has yielded results and has served as a culminating		
experience for my	experience for my students by tying together several notions from different courses within our		
curriculum. During the talk, I will discuss results within this research program, the connections to			
other subjects, spe	other subjects, special features of Kneser graphs which make this analysis possible, and will list		
several related open problems. Joint work with Kristen Melton and Justin Groves.			

SS1.4	Friday	Productive Failure in Teaching IBL	
	3:00 p.m.		
Jessie Hamm		Winthrop University	
Productive failure	Productive failure is a huge part of learning, especially in an IBL classroom. We stress the importance		
of this to our stude	of this to our students but we can learn from our productive failures while teaching as well. In this talk		
I will discuss my own productive failures in teaching an IBL Intro to Proofs course. I taught this course			
for the first time fall of 2016 and then again this past fall. I will share changes and improvements			
made in course design based on initial failures, as well as give general advice to anyone planning to			
teach an IBL course.			

CP8.1	Saturday	A proof of the Pythagorean Theorem Using Complex Numbers
	10:00 a.m.	
David K. Henderson	า	Mercer University
without incorporating the modulus that both of these are simply applic Pythagorean Theorem using comple complex number or the distance for complex numbers through two diffe proof. This result can be used to sp		e Pythagorean Theorem can be proven with complex numbers, (or the distance formula), which, of course, is a logical fallacy in actions of the Pythagorean Theorem. Many claims to a proof of the ex numbers have erroneously utilized either the modulus of a rmula. Here, a new proof is given which relies only on viewing erent lenses. In addition, Euler's Identity will play a key role in this park classroom discussions about the connection between at the process of mathematical proof.

DS.2	Friday	The Calculus of Polynomials, without Calculus.
	10:00 a.m.	
Mo Hendon		University of Georgia
in calculus. Howeve simple algebra. We obvious at all. For e	er, there's a simp er, there's a simp example, if I give	It line to a polynomial at a given point, using the tools we learned ble way of spotting tangency without using calculus at all - just questions about tangency - some very simple, and some not so you a line and three points on the line, can you find a polynomial gent to the line at those three points?

CP6.2	Friday	A Corollary of Zeckendorf's Theorem
	2:20 p.m.	
Curtis Herink		Mercer University
nonconsecutive Fil We prove that if n then the Zeckendo	ponacci numbers can be expresse rf representation Given k, what is	ery natural number can be uniquely represented as the sum of b. This sum is called the Zeckendorf representation of the number. d as the sum of any k Fibonacci numbers, not necessarily distinct, n of n has at most k terms. We then use this result to address other the smallest natural number that cannot be expressed as a sum of

CP7.3	Saturday	Introducing Elliptic Functions via Simulations of Nonlinear	
	10:40 a.m.	Differential Equations	
Russell Herman		University of North Carolina at Wilmington	
We discuss differe	We discuss differential equations, such as the nonlinear pendulum equation, which lead to solutions		
involving elliptic f	involving elliptic functions and elliptic integrals. These classic forms, accessible to undergraduates, are		
not often encountered in differential equation courses but are often left for advanced courses in			
complex analysis. We discuss the connection of elliptic functions to differential equations and show			
how graphical editors for designing simulations of systems, such as Simulink, can be used to model			
solutions of nonli	solutions of nonlinear oscillators.		

SS4.3	Friday	Modeling cancer data with random walks	
	2:40 p.m.		
Josh Hiller		Adelphi University	
Sixty-five years a	Sixty-five years ago Nordling published a landmark paper, containing a crazy idea which would go on		
to start a revolution in applied mathematics: cancer is caused by the accumulation of <i>n</i> specific mutations. In this talk we will give combinatorial way to view Nordling's model: as a stopping time in a random walk on a directed graph. We will then show that this incredibly simple model does an excellent job of fitting epidemiological data.			

SS10.1	Saturday	Unlocking Ideas: Using escape room puzzles in a cryptography
	10:00 a.m.	classroom
Anne K. Ho		University of Tennessee at Knoxville
Anne K. HoUniversity of Tennessee at KnoxvilleEscape rooms have become an increasingly popular game and team building exercise in which participants are locked in a room and asked to use puzzles to get out within a set time limit. Accordir to a article entitled "The Rise of Educational Escape Rooms" (The Atlantic, 2016), educators are starting to use the ideas of escape rooms in classrooms. A natural setting for such puzzles is an undergraduate cryptography course. In this talk, I will discuss the experience of running an interactiv class session where my students were asked to use their knowledge of classical ciphers to decrypt ciphertext, unlock padlocks, and determine passwords. Some topics covered included the shift, affine		nd asked to use puzzles to get out within a set time limit. According ucational Escape Rooms" (The Atlantic, 2016), educators are rooms in classrooms. A natural setting for such puzzles is an e. In this talk, I will discuss the experience of running an interactive ere asked to use their knowledge of classical ciphers to decrypt

Vigenere, substitution, Playfair, and Hill ciphers. In addition, I will address the logistics of implementing these puzzles with the use of the open-source math software system, SageMath. Lastly, I will briefly mention how I have utilized these ideas in other classes such as Calculus.

CP7.5	Saturday	Revisiting the Intersection Problem for Maximum Packings of
		K _{6n+4} with Triples
	11:20 a.m.	
Amber Holmes		Auburn University
In 1989, Gaetano C	Quattrocchi gave	a complete solution of the intersection problem for maximum
packings of K_{6n+4}	with triples whe	n the leave (a tripole) is the same in each maximum packing.
Quattrocchi showed that $I(4) = \{1\}$ and for all $n \equiv 4 \mod 6 \ge 10$, $I(n) = \left\{0, 1, 2,, \frac{\binom{n}{2} - \frac{n+2}{2}}{3} = x\right\}$		
$\{x-1, x-2, x-3, x-5\}$. We extend this result by removing the exceptions $\{x-1, x-2, x-5\}$.		
$3, x - 5$ }when the leaves are not necessarily the same. In particular, we show that $I(n) =$		
$\left\{0, 1, 2, \dots, \frac{\binom{n}{2} - \frac{n+2}{2}}{3}\right\}$	$= x \left\{ \left\{ x - 1, x + 1 \right\} \right\}$	$(-2, x - 3, x - 5)$ for all $n \equiv 4 \mod(6)$.

UP1.8	Saturday	Using Data Assimilation to Accurately Predict Contaminant
	10:45 a.m.	Transport
Jacob Honeycutt		Clemson University
contaminant transp prediction is very in rely only on low ac incorporates meas	Jacob HoneycuttClemson UniversityWe study methods to assimilate data measurements into differential equations that predict contaminant transport in fluids, to improve long time accuracy in simulations. Contaminant transport prediction is very important in applications such as chemical or oil spill cleanup, but current methods rely only on low accuracy initial data to make their predictions. We propose a new method that incorporates measurement data from after the initial time, rigorously prove it provides better long time accuracy, and give results of numerical tests that illustrate its effectiveness.	

UT3.5	Friday	Properties of Fibonacci and Lucas Matrices
	3:20 p.m.	
Ching Hsin-Yun		The Citadel
In this presentation	n, I will show the	solution of a problem that I solved from
Fibonacci Quarterl	y. The problem w	vas to find the solution of a system of linear equations with
Fibonacci coefficients. I solved this problem using the result of another problem that I solved last year		
from the same journal. I also used linear algebraic techniques like matrix block multiplication to solve		
the problem. I have submitted this solution to Fibonacci Quarterly for consideration to be published.		
In addition, I found two interesting results by replacing Fibonacci numbers with Lucas numbers in the		
problems mentioned above. I will present these novel results in my presentation as well.		present these novel results in my presentation as well.
-		

UP1.9	Saturday	Introductory Data Analysis of Pickleball
	10:45 a.m.	
Lance Hudson		University of North Carolina at Wilmington
Data acquisition and analysis has become an integral part of sports in the past decade and continue to change the way fans and front offices operate. Unfortunately, the revolution of data acquisition has not reached many competitive activities. In this article we examine some properties of player performance relative the outcome in the sport of pickleball. Specifically, we focus on player errors a they relate to team performance. Parametric and nonparametric methods were used, depending or the characteristics of the sample distributions, for hypothesis testing. The results show that there is		fices operate. Unfortunately, the revolution of data acquisition activities. In this article we examine some properties of player in the sport of pickleball. Specifically, we focus on player errors as arametric and nonparametric methods were used, depending on

SS10.4	Saturday	Hilbert class polynomials and applications		
	11:00 a.m.			
Duc Huynh		Georgia Southern University, Armstrong Campus		
In this talk, we will	discuss how the	study of Hilbert class polynomials, combined with Sage, is a		
suitable topic for u	ndergraduate st	udents. Applications of Hilbert class polynomials include		
constructing ellipti	constructing elliptic curves of prescribed order over finite fields, constructing irreducible polynomials			
over finite fields, and solving the Inverse Galois Problem in the case when the group is a dihedral				
group. The student	group. The students learn a variety of topics including basic class field theory, <i>p</i> -adic numbers, and			
introductory algebraic geometry. As all constructions are explicit, the study provides undergraduate				
students a hand-on experience of research. We will also discuss how some of the topics should be				
introduced to high school curriculum to encourage the students to pursue higher education. We will				
conclude with a short discussion of our efforts in creating a lower end of vertical integration of				
research and education: faculty - undergraduate students - high school students.				

CP12.4	Saturday	Ximera and Interactive Web Documents
	11:00 a.m.	
Andrew Incognito		Coastal Carolina University
In this talk, we will explore the LaTex package Ximera. Ximera creates html output that makes LaTex look native to the web. Furthermore, it allows for interactivity that one would expect from a typical webpage. I will present my Ximera textbook for Calculus I and demonstrate the interactive features.		

UT6.2	Saturday	The Hungarian Method: Solving the Assignment Problem
	10:20 a.m.	
Maggie Ivester		Lagrange College
involves finding the the assignment pro	e assignment of a oblem using the H	al problem in linear algebra and operations research, which gents to tasks that optimizes a constraint. In this talk, we solve Hungarian method, a process that uses standard matrix operations. MATLAB and make applications to real world scenarios.

SS8.5	Saturday	A Novel Method for Creating Assessment and Diagnostic Tools in
	11:20 a.m.	the Classroom
Russell Jeter		Georgia State University
		an assessment properly analyze students' mastery of the concepts, s a student is having with those concepts. To this end, creating g specific issues can be quite challenging and particularly draining. hod for assessment generation that can be used to effectively

SS8.6	Saturday	A Flipped Approach to Teaching College Geometry
	11:40 a.m.	
Ashley Johnson		University of North Alabama
reading guides. Th education majors,	e course is taugh it generally has a	t College Geometry with a flipped classroom approach using t using an axiomatic approach, and while it is required for math mix of math majors and math education majors. During this talk, eaks made over the years, and overall student reaction.

UT1.6	Friday	Gene Networks in Cancer Cells: A Mathematical Model
	3:40 p.m.	
Allyson Jones		Georgia Southern University
Genes in can	cer cells are an impo	rtant area of study, as being familiar with their specific behavior and
how they wo	rk is pivotal for unde	erstanding cancer and for finding prevention and treatment. It is not
beneficial to study the behavior of just one gene at a time, but rather the behavior of many genes at		
once and how they interact with each other over time. In order to perform such a systematic study,		
mathematical modeling of complex gene networks is needed.		
In this study, we propose a mathematical model for 11 genes in a cancer cell and use the concepts of		
network flow, directed graphs, random walks, and stationary distributions to observe how these 11		
genes work together as a network over time. Through this model, we predict the behavior of key		
genes at specific time periods, which is crucial to understanding the evolution of not only this netw		
but also gene networks in other cancer cells.		

SS9.2	Saturday	Experiences from Implementing an Industrial Partnership,
	10:20 a.m.	Project-Based Course at East Tennessee State University
Michele Joyner		East Tennessee State University
We have implemented an industrial project-based course at East Tennessee University as part of the		
NSF funded Preparation for Industrial Careers in Mathematical Sciences program jointly sponsored by		
MAA and SIAM. In this talk, we will discuss how we developed industrial partnerships, found projects,		
recruited students and developed a writing-, oral-, and computationally-intensive course as part of		
our curriculum. We will discuss the difficulties of such a course and how we overcame or are trying to		

overcome some of those difficulties. We will also talk about the benefits for the students from both a faculty and student perspective as well as the industrial liaison perspective. Furthermore, we will discuss an implemented syllabus which focuses on not only the industrial project but also many different activities implemented to aid in bridging the gap between finishing college and starting in the workforce.

PUB.1	Friday	New Calculus Courseware and Statistics Text to Engage Students
	11:00 a.m.	
Emily Judy		Hawkes Learning
		culus and statistics with new course materials: the full release of ranscendentals courseware and the Discovering Statistics and

SS11.4 Saturday		Radio Graceful Hamming Graphs
	11:00 a.m.	
Jennifer Kaneer		University of Tennessee at Martin
distinct vertices <i>u</i> a range of a labeling graph <i>G</i> is called th graph equals its nu were able to find in	and $v: f(u) - f$ is called the spa radio number mber of vertices of initely many ne	map $f: V(G) \to \mathbb{Z}^+$ that satisfies the following inequality for all $(v) \ge diam(G) + 1 - d(u, v)$. The maximal element of the n of the labeling, and the minimal span over all radio labelings of a of G. We are interested in knowing when the radio number of a a. This is a special type of graph called a radio graceful graph. We are radio graceful examples by looking at a type of graph called a all Hamming graphs of diameter 3. We will discuss these results.

UT4.6	Friday 3:40 p.m.	An Introduction to the Formal System P
Zachery Raymond Keisler		Lander University

Abstract: The main objective for this lecture is to give formal proofs of seven basic theorems found within mathematical logic, specifically in the subfield of prepositional logic. The secondary objective for this lecture is to give a working vocabulary of the five major axioms found within propositional logic and a look at one of the fundamental problems that arises within the study of propositional logic.

Outline of Lecture:

· Main Symbols: ¬,V

· Defined symbol: \Rightarrow

· Five Axioms of Propositional Logic: Propositional axiom, Associative Rule, Expansion Rule, Cut Rule, Contraction Rule

• Theorems: Commutative Rule, New Expansion Rule, New Associative Rule, Modus Ponens, Modus Tollens, Hypothetical Syllogism, Disjunctive Syllogism

UT3.2	Friday	Friendly Numbers, Solitary Numbers, and the Abundancy Index
	2:20 p.m.	
Logan Key		Cumberland University
divisors of <i>n</i> and presentation, I w solitary (have no the basic proper number 10 in pa	<i>n</i> itself. Friendly n vill give an overview friends), and that ties of the abundar rticular. Ten is the	number <i>n</i> is defined to be the ratio of the sum of the positive umbers are numbers that have the same abundancy index. For my v of numbers that are known to have friends, that are known to be are as of yet unknown either way. I will be going through some of ncy index in general and then relate those properties to the smallest positive integer that is not known to be friendly or
exist.	esent several resul	ts that give restrictions required for a potential friend of ten to

SS6.6	Friday	Some solutions to functional differential equations arising in a	
	3:40 p.m.	novel queuing model with line jumping	
Nicholas Kirby		Austin Peay State University	
We present some	We present some results from an investigation of a queuing model in which new customers join lines		
at uniformly distri	at uniformly distributed positions, and those customers who have been skipped over by a new arrival		
leave the line independently with the same probability. Customers are served and arrive at given			
rates. The model is an extension of the M/M/1 queue. The task of finding the stationary distribution			
of line lengths can be framed as solving a functional differential equation and will be the primary			
subject of the talk. Closed-form stationary results will be presented for some special cases.			

SS1.1	Friday	Mathematics Education Through College Algebra and Calculus	
	2:00 p.m.		
Bailey Kirk		Georgia Southern University	
During the 2014-2015 and 2015-2016 school year, Georgia Southern University and its faculty			
conducted assess	conducted assessments in College Algebra and a study on prerequisite skills in Calculus classes. The		
results show the	results show the number of students that answered the problems correctly or incorrectly in different		
classes. My research focuses on taking this data and further analyzing it to try to discover where			
students struggle the most in College Algebra and the prerequisite skills required for Calculus and			
whether there are any common trends. From these concepts in College Algebra and prerequisite skills			
required for Calculus, teaching suggestions have been devised to help improve the teaching and			
learning of these concepts and skills.			

SS7.2	Friday	Helping students help each other prepare for exams	
	2:20 p.m.		
Vicky Klima		Applachian State University	
This talk presents a	This talk presents a method for exam review designed to encourage cooperation and reflection.		
Students work in g	roups to create r	eview material for their classmates. For each exam, three groups	
create topic summ	aries with detaile	ed examples, three groups create practice exams with solutions,	
and three groups c	and three groups create comprehensive flashcards. Throughout the course of the semester, every		
student participate	student participates in each type of exam prep activity. Exposing the students to varied methods of		
exam prep allows for interesting class discussions concerning our individual preferences for study			
while working in groups for this required assignment helps students find study partners. In this talk I			
review the assignments in detail, share student reactions, and discuss some of the trade-offs			
necessary to create class time for group work and discussion.			

CP6.4	Friday	Some Theorems Involving Partitions with Gap Conditions
	3:00 p.m.	
Louis Kolitsch		University of Tennessee at Martin
In this talk some theorems involving partitions with gap conditions will be presented and explained combinatorially.		

СР7.4	Saturday	Closed Form Solutions of Second Order Differential Equations		
	11:00 a.m.			
Vijay Kunwar		Albany State University		
Closed form solut	Closed form solutions of second order differential equations are exact solutions expressed in terms o			
special functions;	special functions; Airy, Bessel, Kummer, Whittaker, Hypergeometric, Liouvillian etc. with operations;			
field operations, a	field operations, algebraic extentions, composition, differentiation, and integration. Such solutions			
are very common	are very common in Physics, Combinatorics, and Engineering. For example, second order Fuchsian			
equations, and dif	equations, and differential equations arising from convergent generating functions with (near) integer			
coefficients are found to have closed form solutions in terms of 2F1 hypergeometric functions.				
In this presentation, we will discuss about classical equations solvable in terms of closed form and				
explain our algorithms to find closed form solutions in terms of 2F1 hypergeometric functions.				

UT5.5	Saturday	The effects of minimum wage increases	
	11:20 a.m.		
Adam Kurbansho		Methodist University	
This paper studies	This paper studies the effects of the recent minimum wage increases above the federal rate of \$7.25		
in West Virginia. It	in West Virginia. It focuses on its fast-food industry, and then compares it to the fast food industry in		
Kentucky to derive	Kentucky to derive pure effects of the price floor due to the resemblance of the economic structure		
and demographics of these two state. This investigation has demonstrated that the current minimum			
wage in West Virgi	nia has not lead t	o significant dis-employment in the short-term since employers	

decided to compensate for minimum wage costs by increasing prices. Nevertheless, human labor is inelastic only in the short-term, which implies an increased potential for structural unemployment in West Virginia. Some cities across the United States are already under the threat of complete automation of the limited-service industry. Hence, the follow-up interviews with the 17 sampled restaurants in West Virginia and Kentucky will be arranged to measure the long-run effects of the minimum wage increases in West Virginia.

Proving Nesbitt Type Inequalities Using Power Series		
University of South Carolina, Salkehatchie		
In 2012 February, Mortici introduced a new proof of Nesbitt's inequality using convergent power		
series. This method was then adopted by Jeong in June, and was used to prove more inequalities with		
cyclic variables. In this talk, I will introduce this technique, go through some of the inequalities proved		
by Mortici and Jeong, and present some inequalities I developed using the same technique.		
۱ ۱		

SS4.4	Friday	The Evolution of the Crossing Number	
	3:00 p.m.		
Joshua Lambert		Georgia Southern University	
While the roots of	While the roots of the crossing number stem from Paul Turan's problems at a brick factory during		
World War II, the evolution of these ideas has spread into applications in chemistry and electrical			
engineering in today's society. Alongside these changes in applications of this concept, the study of			
the crossing number has evolved from drawings in the plane. In particular, we shall explore the			
extensions into k-planar crossing numbers and explain the difficulty in making associated calculations			
for given families of graphs.			

UP1.10	Saturday	Distribution of Zeros in Various Polynomials	
	10:45 a.m.		
Hope LaRosa		University of North Carolina at Wilmington	
	Littlewood polynomial is a polynomial where each coefficient, is equal to 0 or 1. We are able to		
• • •	graphically represent the zeros of the polynomial in a visually stimulating anomaly. The objective of		
this study is to defi	this study is to define a generalized Littlewood Polynomial, and graphically represent its zero set and		
analyze the graph of	analyze the graph of the set. We extend the Littlewood polynomials to polynomials with coefficients -		
1,0,1 and use Python to produce the roots of the extended Littlewood polynomials, Matlab to			
produce graphs and also take an axiomatic approach in order to evaluate their components in the			
complex plane.			

SS6.4	Friday	Sweeping gestures: A control theory model for curling
	3:00 p.m.	
Jeffrey Lawson		Western Carolina University
Jeffrey LawsonWestern Carolina UniversityIn the sport of curling, a polished stone is thrown along the ice toward a target (the house). In a typeof throw called a draw, the thrower releases the stone with just enough velocity to allow friction toslow the stone to a halt at the desired position in the house. However, the usual curling strategy is tounderthrow the stone and then call for teammates to sweep the ice with brooms to reduce frictionuntil the stone arrives at its target. In this talk, we model the throw with a simple ODE, firstuncontrolled (no sweeping) and then with a control. This is an atypical control problem for amechanical system because, unlike braking or damping controls, the sweeping actually decreasesfriction. We demonstrate a suboptimal geometrical solution to the boundary value problem anddiscuss implications for optimal control.		

UT5.1	Saturday	The Phony Express
	10:00 a.m.	
Carol Lewis		Furman University
cooperate to get th problem from Aver After developing h an algorithm to ad	neir letters to the bach and Chein's elpful visuals, sch dress the general	elem in dynamic programming: how can a group of people post office with minimal effort? This work was inspired by a classic text Problem Solving though Recreational Mathematics. mema, and terminology, we will examine a few cases and develop case. Lastly, we will compare the computation times of brute and test our intuition against a Python program written to perform

CP6.5	Friday	Domination Number and Hamiltonicity of Graphs
	3:20 p.m.	
Rao Li		University of South Carolina Aiken
A sufficient condition based on the domination number for the Hamiltonicity of a graph presented in this talk.		domination number for the Hamiltonicity of a graph will be

UT7.1	Saturday	1-Wasserstein distance between self-similar measures
	10:00 a.m.	
Emily Lichtenegger		University of Tennessee at Martin
associated to an ite	erated function s	cance between certain approximations of self-similar measures ystem of two non-overlapping linear contractions of the unit e distance between those self-similar measures.

UT3.6	Friday	Budapest Semesters in Mathematics (BSM)
	3:40 p.m.	
Nicole Lidzbarski		Converse College
program, college st mathematicians in	udents and grad Budapest, Hunga	ence in the program Budapest Semesters in Mathematics. In this luates can spend a semester or two studying under eminent ary. The program was established specifically for North American e majors who wish to rigorously study mathematics without the

SS2.2	Friday	Guiding Students to Solve a Business Problem in an Independent
	2:20 p.m.	Study Course
Robin Lovgren Lov	gren	Belmont University
Sometimes a problem can turn into an opportunity. When three students needed credit for a cour not currently being taught, the solution was not the traditional independent study, but rather, a depth versus breadth approach to the course. An example will be given of how an independent stu Mathematical Modeling and Simulation course lead to three students working together in solving a industry problem. The faculty perspective will be presented including how the problem was identified, the process for the students, and the final results including a sample of the conclusions that were obtained through a multiple regression analysis of human resources data from an architectural and engineering firm.		ation was not the traditional independent study, but rather, a the course. An example will be given of how an independent study ation course lead to three students working together in solving an bective will be presented including how the problem was ents, and the final results including a sample of the conclusions iple regression analysis of human resources data from an

SS2.3	Friday	Facilitating mathematics majors on conducting projects in
	2:40 p.m.	Business, Industry and Government
Yongjin Lu		Virginia State University
demand of making this talk, we will sh Undergraduate ma one supported by t program. We would	sense of the da are the experie thematics majo he Preparation d discuss the di	in business, industry and government (BIG) continues to grow, the ata gives rise to projects that mathematicians could participate. In nces of research projects from BIG done in the past few years. or students were involved in some of these projects, including the for Industrial Careers in Mathematical Sciences (PIC Math) fferences of solving a BIG problem from a traditional mathematical from teaching a BIG project-oriented course.

CP8.4	Saturday	The Delian Problem, Platonic Solids, and Finite Fields
	11:00 a.m.	
Matt Lunsford	Matt Lunsford Union University	
problem of duplica of the 19th century	ting a cube rema /. Using Wantzel	ightedge and compass only, the classical Greek construction ined a significant open problem in mathematics until the first half 's algebraic characterization of this problem, we consider the solids over prime finite fields.

SS3.1	Friday	Reed-Solomon codes and the information lottery	
	2:00 p.m.		
Gretchen Matthew	/S	Clemson University	
Error-correcting co	Error-correcting codes allow for the reconstruction of information from partial information. Reed-		
Solomon codes have	Solomon codes have the amazing property that any codeword can be reconstructed using any k		
coordinates. This allows for multiple users to obtain the same information by accessing different			
coordinates, a property that is important when considering delays caused by server overload. In this			
talk, we discuss a student activity that demonstrates this and the role of polynomial interpolation in			
the process.			

SS8.3	Saturday	Active Learning with Mathematica		
	10:40 a.m.			
Kristen Mazur		Elon University		
Mathematica is a p	owerful comput	ational tool and has the potential to also be a powerful teaching		
tool. However, effe	ective integration	of technology in the classroom is challenging, and bringing		
Mathematica into a	Mathematica into a calculus lesson can be daunting. In this talk I will discuss Mathematica-based			
lesson templates that allow students to explore concepts, perform calculations and take notes in an				
easy-to-use and ea	easy-to-use and easy-to-create format. These templates not only reduce technology anxiety for both			
students and instructors, they also become cohesive notes that students can revisit after class.				
Moreover, the templates support discovery-based and active learning. I will demonstrate the				
templates themselves and how to create one from a blank Mathematica file. I will also discuss some				
advantages and disadvantages for both students and instructors.				

SS13.3	Saturday	Immunotherapy as a Treatment for Cervical Cancer		
	10:40 a.m.			
Sydney McCall		Winthrop University		
Human Papilloma Virus (HPV) is the known root cause for the vast majority of cervical cancers.				
Cervical cancer is the fourth most common cancer in women worldwide, and it has become the				
number one cancer in some developing countries. Immunotherapy is a treatment used to stimulate or				
restore the ability of the immune system to fight infection and disease. Implementing				
immunotherapy to slow/eliminate the growth of cervical cancer cells is less harmful to the patient				

than other treatments such as radiation and chemotherapy. Our model seeks to better understand the dynamics among HPV, cervical cancer, and immunotherapy. Furthermore, through global stability techniques, we provide sufficient conditions on immunotherapy treatment to ensure the eradication of HPV and cervical cancer cells while allowing a positive population of healthy and immune cells to remain.

UT7.5	Saturday 11:20 a.m.	Comparative Analysis of Students' Performance Between Online and on Campus in an Introductory Statistics Course
Kendal McDonald		Georgia College and State University

In this research, we compare students' performance in an online and on campus introductory statistics and probability course. MyStatLab is the learning management system used in both an online and on campus courses for homework and quizzes. The online data is produced by five summer courses between Summer 2014 to Summer 2017 and the on-campus data is produced from nine on campus courses from Spring 2014, Spring 2016, and Spring 2017. For homework, the research compares the scores made, and how early a student completed the homework in the online and on campus courses. For quizzes, we tested if the scores are same, if there is a difference in how early a student completed the guiz, and the number of attempts taken out of the five attempts granted in the online and on campus courses. We also analyzed the difference between the first attempt score and highest score to see if there is significant improvement in scores by taking the assignments again. In addition, we also modeled the final quiz average as a function of number of attempts and the number of days a student attempted the quiz before the due date which we found are correlated with the final quiz average. Also by using the Wilcoxon Rank Sum Test, we showed that there is no significant difference between online and on campus for both first attempt quiz scores and final quiz scores. However, for homework scores there was a significant difference between online and on campus.

UT2.1	Friday	Quantifying Gerrymandering in North Carolina		
	2:00 p.m.			
Sergei Miles		Applachian State University		
In the United Sates, state legislatures generally shoulder the responsibility for determining				
congressional district maps. As the district maps are drawn they can often be gerrymandered to favor				
one political party over another. In recent news, North Carolina had been called into question for				
gerrymandering as a federal three-judge panel deemed the current congressional map				
unconstitutional. Traditional mathematical approaches to studying the practice of gerrymandering				
involve quantifying compactness of districts in order to determine the likelihood that a map was				
drawn to favor one party over another. A new approach instead calculates an efficiency gap using				
voting results from the districts. Compactness considerations rely heavily on geometric analysis that				
can be cumbersome for the layperson to understand. The efficiency gap provides a less technical				
approach. In this talk, we compare and contrast compactness and efficiency gap results for North				
Carolina congressional districts and explore the robustness of efficiency gap measures in North				
Carolina using random map techniques drawn from the study of compactness.				
SS4.5	Friday	Circulant Hadamard matrices and Barker sequences		
--	---	--		
	3:20 p.m.			
Michael Mossingh	off	Davidson College		
and with the proper row immediately a rows. Are there ex- circulant Hadaman combinatorics and a number of special known constraint graduate student a which cannot be e computations on t	erty that each row above it? Yes! Sta amples with <i>n>4</i> of matrix, and the algebra. If there al properties. We in this problem, i at Rutgers). We fi liminated as the his problem by a will also describe	ose entries are all ± 1 , whose columns are mutually orthogonal, w after the first is a cyclic shift, by one position to the right, of the rt with the row (+, +, +, -) and shift it to make the subsequent ? No one knows! A matrix with these special properties is called a e problem of their existence has attracted a lot of study in is one of size $n > 4$, then it is known that the integer n must satisfy e describe a search for integers n that are consistent with every n joint work with an undergraduate student, Brooke Logan (now a ind there are fewer than 4500 integers with $4 < n < 4 \cdot 10^{30}$ order of a circulant Hadamard matrix. This work extends factor of 10000, while reducing memory requirements by a factor e a related problem concerning <i>Barker sequences</i> that would		

SS11.5	Saturday	Ghostbusters: Ghost, Goo, and Graph Theory!
	11:20 a.m.	
Andrew Mosteller		Lenoir Rhyne University
Imagine you are hired by the owner of a haunted hotel with k rooms, each containing an infinite number of ghosts. The kicker? All the surviving ghosts move about the hotel each night. Is it possible to kill all ghosts from all rooms in a finite number of days? To help the owner, we hope to rid the hotel of its unwanted guests. In this presentation, we will divulge the findings of our investigations		ne surviving ghosts move about the hotel each night. Is it possible finite number of days? To help the owner, we hope to rid the

UT6.3	Saturday	Hadamard Majorization and its linear preservers
	10:40 a.m.	
Sara Motlaghian		Georgia State University
Let M be the set of all n-by-n real matrices. A matrix D ϵ M with non negative entries is called a doubly		
stochastic matrix if in each row and column, the sum of the entries is 1. For X, YeM, we say that X is		
Hadamard-majorized by Y, if there exists an n-by-n doubly stochastic matrix Dsuch that $X = D \circ Y$,		
where o denotes Hadamard product. The (strong) linearpreservers of Hadamard majorization is		
studied. Also, for $n \ge 3$, it is shown that the strong linear preservers of Hadamard majorization are		
precisely the invertible linear maps on M which preserve the set of matrices of term rank 1.		

UT7.3	Saturday	Determining Unique Local Minima in Complex Systems	
	10:40 a.m.		
Amy Murdaugh		Union University	
When fitting mode	Is of complex sys	stems, local minima of the cost function, which measures the fit of	
the model to the d	ata, pose proble	ms both for fitting algorithms and for model interpretation. The	
surface of the cost	function is usual	lly assumed to be rough, but this characteristic may be overstated.	
Local minima prod	Local minima produced by a fitting algorithm may actually lie in the same basin of attraction, due to		
differences in the algorithm's stopping criteria and numerical resolution. To examine this, we			
construct geodesic	construct geodesic paths between local minima produced by a fitting algorithm. We solve the		
geodesic equation numerically in Julia as a boundary value problem, using the Shooting Method and			
Multiple Shooting Method. Convergence is improved by interpolating between parameter space and			
the model manifold using a Levenberg-Marquardt parameter, λ . Evaluating the cost function along			
the geodesic paths allows us to differentiate between distinct minima and find unique basins of			
attraction. This work has implications for characterizing models based on the number of distinct loca			
minima present and technical results for algorithm development. It also may provide insight into the			
existence of low-dimensional effective theories in the complex system.			

CP8.5	Saturday	Dihedral Leibniz Algebras
	11:20 a.m.	
Carter Murray		Applachian State University
The notion of an object being cyclic is familiar in many areas of algebra, including Leibniz algebras.		
This research will briefly examine the current research on cyclic Leibniz Algebras and present findings		
on Leibniz algebras generated by two elements. We examine bracket structures that parallel dihedral		
groups and explore their implication on the basis of the algebra.		

UT4.1	Friday	Almost Positive Sectional Curvature Using Octonions and Group
	2:00 p.m.	Actions
Ezra Nance		University of Tennessee at Martin
This presentation will begin by discussing different types of sectional curvature. Then by using Lie		
Groups and octonions we construct a Riemannian metric of almost positive sectional curvature on the		
Grassmannian of 2-planes in \mathbb{R}^7 . We achieve this by deforming the standard metric using group		
actions. This result is the first known example of almost positive curvature on an irreducible compact		
symmetric space of rank 2 or higher.		

UP1.11	Saturday 10:45 a.m.	Neural Networks
Orlando Nawade		Cumberland University

In my senior project we will look into neural networks. Neural networks are a growing field and already have many real world applications and are still being extensively researched. We will begin by comparing neural networks and biological neurons. Next, we shall introduce the mathematics and how we use them in neural networks. I will illustrate some calculations and models to show the underlying mathematics in the developments of neural networks.

SS13.1	Saturday	What some anaesthetics may be doing to your brain
	10:00 a.m.	
Israel Ncube		Alabama A&M University
nervous system to combination of Ho simulations of coup agonist dexmedeto	produce altered dgkin-Huxley typ pled networks of pmidine could pc	w different anaesthetics act at various targets in the central states of arousal are currently poorly understood. Using a the mathematical modelling of individual neurons and numerical artificial neurons, we investigate how the α_2 -adrenoceptor tentially be interacting with particular neural circuits to generate in the electroencephalogram and experimentally in the local field

SS6.2	Friday	An arbitrary-order Taylor series method DE solver in MATLAB		
	2:20 p.m.			
Richard Neiding	er	Davidson College		
We introduce ar	n application of, ar	nd methods behind, a numerical solver that uses high-order series		
solutions that ar	e automatically co	omputed for any ordinary differential equations of the (vector) form		
Y' = f(t,Y). We for	Y' = f(t,Y). We focus on the model of a forced damped pendulum that exhibits chaos and we show			
how 20th order	how 20th order series on each step enables high accuracy with relatively few steps, compared to a			
built-in MATLAB solver with equivalently low tolerance. The method amounts to using the f(t,Y)				
evaluation directly as a recurrence relation, where each operation corresponds to arithmetically				
combining previous series values. Each transcendental function is automatically handled by treating it				
as a simple system of derivatives. The author's original code is available, and others have done similar				
implementations in the past, though not in commercial tools. Our goal is to make the ideas				
accessible, so that this method is more widely understood as a practical option.				

CP12.2	Saturday 10:20 a.m.	On combinatorics involving the Permutohedra and Associahedra.
Michael Nelson	L	Georgia Southern University
permutohedron to combinatorics of tr non-degenerate <i>P</i> - associate a specific associahedron. By non-degenerate <i>P</i> -	the associahedr rees. More speci trees, with each tree on <i>n</i> -leaves contracting the i trees on <i>n+2</i> leaves	ular quotient map of <i>n</i> -dimensional complexes from the on, and that this map can be understood through the ifically, we can associate a specific tree on <i>n</i> -leaves, which we call cell of the <i>n</i> -dimensional permutohedron. Similarly we can also s, which we call <i>A</i> -trees, with each cell of the <i>n</i> -dimensional nternal nodes with only one child, we obtain a map from the set of ves to the set of <i>A</i> -trees on <i>n</i> +2 leaves, which corresponds ap. In this talk, we study the number of <i>k</i> -cells of the <i>n</i> -

dimensional permutohedron which collapses to a 0-cell of the *n*-dimensional associahedron by counting the number of non-degenerate *P*-trees which collapses to the *A*-tree attached to that 0-cell. We also consider algebraic structures generated from these concepts, where individual *P*-trees and *A*-trees define compositions of binary and unary operations.

SS1.2	Friday	Reading Journals: Assignments that Promote Student
	2:20 p.m.	Engagement, Productive Struggle, and Ultimate Success in
		Undergraduate Mathematics Courses
Sarah A. Nelson		Lenoir Rhyne University
We spend a lot of	time searching	for the <i>best</i> textbook for students so that our students have a
reliable and useful resource to reference. While we do ask them to read over certain material before		
classes, we often fail to guide our students in how to read that textbook productively.		
Having students journal about reading their mathematics textbooks allows us to help students		
struggle and pers	evere when enco	ountering new problems, help students develop strategies for
reading mathematical text productively, and help capitalize on what the students already have to		
offer. In this talk, we will look at how <i>Reading Journals</i> motivate students in a variety of mathematics		
courses across the undergraduate curriculum. We will further share how to develop different types of		
prompts for journal entries and important lessons learned.		

SS11.6	Saturday 11:40 a.m.	Permutations: Reaching the Pinnacle Beyond the Peak
Sarah A. Nelson		Lenoir-Rhyne University
long been studied l will briefly review t notion of a pinnacl	by paying attenti these ideas and lo e set, which focu	dering of these <i>n</i> integers without repetition. Permutations have on to what happens at specific placeholders, called indices. We ook at particularly revealing examples. Then we will introduce the ses on the values that occur at the highest point(s) in a tive examples and discuss some new results.

UT2.3	Friday	Prime Graph Labelings on n-hairy 4-cycles
	2:40 p.m.	
Alexis Newton		High Point University
certain conditions. labeling of a vertex vertices are relative	A wide variety o set V={1,2,, V ly prime, and gr ill be exploring a	a way of labeling all vertices of the graph with integers, subject to f labelings have been studied in the field since the 1960s. A prime } is one for which every vertex can be labeled such that adjacent aphs admitting prime labelings are called prime graphs. In this family of graphs and proving through construction that a specific e graph labeling.

CP2.2	Friday	A useful generalization of the Petersen graph.	
	2:20 p.m.		
Amanda Niedzialor	nski	University of Tennessee at Martin	
study radio labeling graphs. We will ma	The Petersen graph is an interesting example in graph theory for several reasons. For those who study radio labeling of graphs, the Petersen graph falls into an important class called radio graceful graphs. We will make some observations about the structure of the Petersen graph that make it desirable in this context, then use these observations to generalize the Petersen graph to an infinite		

SS8.1	Saturday	Using Active Learning Strategies to increase Student Engagement	
	10:00 a.m.	and Understanding in Pre-Calculus	
Benedict K. Nmah		Morehouse College	
At the 2016 Joint N	At the 2016 Joint Mathematics Meetings in Seattle, Washington, I took a four-hour MAA minicourse		
(Minicourse #9) on 'Increasing Student Engagement and Understanding through Active Learning			
Strategies in Calculus'; it was ran by Dr. Debbie Gochenaur et al. Immediately after the conference,			
I decided to implement the strategies in one of my pre-calculus courses at Morehouse College. In this			
talk, I will discuss what is working and where improvements are needed. I will also share			
comparative success rates of my classes where I used active learning strategies verses my classes			
where I did not.			

CP7.1	Saturday 10:00 a.m.	Parameter space of certain compact sub-varieties off Flag manifolds	
Ben Ntatin		Austin Peay State University	
certain geometric of characterization of setting of group ac	Lie groups acting on flag manifolds normally give rise to induced actions on the parameter spaces of certain geometric objects related to the manifolds in question. In this talk, we give a definition and a characterization of the parameter spaces of certain compact subvarieties (cycles) in the natural setting of group action of real forms of semi-simple Lie groups acting on flag manifolds. We will only consider low-dimensional examples.		

UT5.3	Saturday	Fisher's Equation: Modeling Gene Flow through Populations	
	10:40 a.m.		
Sarah Oldfield		Sewanee: The University of the South	
Advantageous gene	Advantageous genes spread through populations in a wave-like manner. Fisher's equation, proposed		
by Ronald Fisher in 1937, is a partial differential equation used to model this gene flow. In this talk, I			
will give an approximation of the solution to Fisher's Equation using the method of finite differences,			
and I will show Matlab code of the traveling wave solution. I will also explore how Fisher's equation			
has been used in other disciplines such as conservation biology and medicine.			

CP4.1	Friday	Optimal Control Applied to Visceral Leishmaniasis Model
	2:00 p.m.	
Buddhi Pantha		Abraham Baldwin Agricultural College
Leishmaniasis is a vector borne dise an infected sandflies. In this talk, I w Visceral Leishmaniasis in humans an We performed sensitivity analysis to strategies based on the sensitivity re insecticide spraying and culling of th		ase caused by a protozoan parasite and transmitted by a bite of vill present a deterministic model for transmission dynamics of nd canine reservoirs. The basic reproduction number is calculated. o determine the most impacted parameter and apply intervention esult. Three time dependent controls: personal protection, ne infected reservoirs are implemented and we present optimal esults for the model will be presented.

SS9.4	Saturday	Undergraduate Internships in Business Analytics	
	11:00 a.m.		
Michael Piper		Lee University	
This presentation h	This presentation highlights potential field choices for mathematics majors citing examples within the		
field of Data Analy	field of Data Analytics, specifically my personal experience with Regal Cinemas this past summer. The		
material presented will include the different uses of data analytics in order to inform business			
decisions within the company. The mathematical skills required for an undergraduate internship with			
Regal Cinemas Data Analytics department will be discussed, as well as the necessary steps to take in			
order to pursue an internship.			

SS4.6	Friday	Properties of the promotion Markov chain on linear extensions of	
	3:40 p.m.	posets	
Svetlana Poznano	vic	Clemson University	
		d model of how an arrangement of <i>n</i> books on a shelf evolves over	
time. It assumes t	time. It assumes that a reader picks up a book <i>i</i> with probability <i>p_i</i> and then returns is at the end of		
the shelf. Its stationary distribution, convergence to stationarity, and eigenvalues have been explicitl			
found. In this talk we will present a variation of this model in which the state space is restricted to the			
set of linear exter	set of linear extensions of a fixed poset and the moves are based on the promotion operator. We will		
discuss what is known about the eigenvalues of this promotion Markov chain and state a related			
conjecture.			

SS8.2	Saturday	Flipping the Math Classroom
	10:20 a.m.	
J.C. Price		Georgia Gwinnett College
In this talk we will discuss our four years of experience with flipping classes. In particular, we will		
review how 21st century technologies were used to screencast and distribute traditional lectures,		
which are available at www.youtube.com/user/drprice765, and we will elaborate on our classroom		
and instructional design. The main outcome is an active learning environment that encourages		

students to openly discuss mathematics, compare and contrast ideas, and work together to solve problems.

UT1.4	Friday	Mathematical Modeling with Advanced Engineering Implications;
	3:00 p.m.	Heat Transfer along the Human Arm in Electric Arc Phenomenon
Adam Price		Clemson University

The main objective behind this creative inquiry course is to develop experience in mathematical modeling of advanced engineering problems. This paper reviews the study done in Heat Transfer Along the Human Arm in Electric Arc "Creative Inquiry 4990" at Clemson University in the Fall 2017 and Spring 2018 semesters. The Creative Inquiry classes of Fall 2017 and Spring 2018 have studied topics including but not limited to mechanical vibrations, thermodynamics, and physics of electric arc. Additionally, time has been taken to arrange research trips and workshops for class members. In the Fall 2017 semester, research was dedicated to generalized study. In the Spring 2018 semester, research has been compartmentalized, allowing groups of students to focus on particular topics. In this paper, we give overviews of our experience in this class as well as brief looks into the topics we individually focused on studying. Further, we delve into our plans for the future of the Creative Inquiry and research that we intend to conduct in the coming semesters. Within the next few semesters, we intended to have expanded our research topics to several topics within the fields touched on by this Creative Inquiry.

CP4.3 Fr	
2:4	
Jacon Quinley	
Jacon QuinleyUniversity of TuebingenGame Theory as seen classically in economic and mathematical modeling presents ag self-interested and with infinite introspection. We present here a contrast with novel heuristics for games like the repeated Prisoner's Dilemma, Stag Hunt, and Symmetric first begin with a review of sympathy- and spite-based utility functions. For instance, agent A in a game against B will evaluate his utility as $V_A(s) = (1 - s)U_A + sU_B$, whe sympathy parameter and U is the original utility function. As V_A is increasing accordin highly sympathetic agent may choose outcomes that favor the other player to his ow detriment. We then introduce our heuristics based on psychological data from relation dominance, reciprocity, and communality as mechanisms for solving the equilibrium problem. Last, we invite discussion on the following topics: the topology of the space affected by sympathetic payoffs; the basin of attraction for differential equations in f replicator dynamics for these games; stochastic methods for dynamic inference of an decision function.	

CP9.4	Saturday	Teaching Arrow's Theorem with Arrow's Theorem: Computational
		Social Choice in Undergraduate Game Theory
	11:00 a.m.	
Jason Quinley		University of Tuebingen
schoolers at a colle Arrow's Impossibili The essence of the are three or more of candidates for voti We discuss their co open the floor for o	ege-prep school. ity Theorem using theorem states to candidates. To ex ing systems, leadi construction of po discussions of alto dience, collaborato	ts from teaching a <i>Game Theory</i> seminar to advanced high- In particular, we discuss a white paper assignment exploring g \LaTeX, Google Polls, and spreadsheet software. that ranked preference systems for voting break down when there splore the paradox with the paradox, students were assigned three ing to the inevitable impossibility of a perfect choice. Illing data, policy papers, and the subsequent debate. We also ernative math electives for the advanced secondary and tion with social sciences and humanities departments, and aligning logy and business.

CP3.3	Friday	Fractional derivatives and the method of lower and upper
	2:40 p.m.	solutions for fractional differential equations
Diego Ramirez		Savannah State University
In this talk we first introduce two definitions of a fractional derivative given by Riemann-Liouville and		
Caputo as well as some results of fractional calculus. In the second part we will present the method of		
lower and upper solutions combined with a monotone iterative technique in order to prove the		
existence of coupled minimal and maximal solutions of fractional differential equations with initial		
condition.		

CP4.2	Friday	Multiclass Classification using Support Vector Machines	
	2:20 p.m.		
Duleep Rathgamage Don		Georgia Southern University	
The curse of dimer	nsionality refers t	o various phenomena that arise when analyzing and organizing	
data in high-dimen	sional spaces (of	ten with hundreds or thousands of dimensions) that do not occur	
in low-dimensiona	l settings such as	the three-dimensional physical space of everyday experience. The	
expression was coi	ned by Richard E	. Bellman when considering problems in dynamic optimization.	
There are multiple	phenomena refe	erred to by this name in domains such as numerical analysis,	
sampling, combina	torics, machine l	earning, data mining, and databases. The common theme of these	
problems is that w	hen the dimensio	onality increases, the volume of the space increases so fast that	
the available data	become sparse. 1	This sparsity is problematic for any method that requires statistical	
significance. In ord	er to obtain a sta	atistically sound and reliable result, the amount of data needed to	
support the result	often grows expo	onentially with the dimensionality. Also, organizing and searching	
data often relies or	n detecting areas	where objects form groups with similar properties; in high	
dimensional data,	dimensional data, however, all objects appear to be sparse and dissimilar in many ways, which		
prevents common	data organizatio	n strategies from being efficient. Since its introduction the Support	
		become a popular tool for classification which has attracted a lot	
of interest in the machine learning community. However, SVM is primarily a binary classification tool.			
		'M is still an ongoing research problem. In this thesis we discuss	
	different methods for multiclass classification using SVM and we introduce Divide and Conquer		
Support Vector Machine (DCSVM), a fast algorithm for multiclass classification using Support Vector			
Machines. Our method relies on dividing the whole training data set into partitions that are easily			
separable. Then, a prediction between two training set partitions would eliminate two or more			
classes at the time. Our algorithm performs consistently better than the existent methods on average.			
In the best case scenario, our algorithm makes a final decision between N classes in O(logN) decision			
steps between different partitions of the training data set. In the worst case scenario, DCSVM makes a			
final decision in at most N-1 steps, which is not worse than the existent techniques.			

SS2.1	Friday	Clemson's Sophomore Seminar for Mathematical Sciences Majors
	2:00 p.m.	
Leo Rebholz		Clemson University
We discuss the Clemson Sophomore Seminar for Mathematical Sciences majors. This course is a 1		
credit seminar intended to help students learn about different career options for Mathematical		
Scientists, and to help them choose an `emphasis area' for their major. Each week a speaker from a		
different area of Mathematical Sciences will tell the students `here is what I do'. Often the speakers		
are alums, and include those who are, e.g., Actuaries, Data Scientists, Investment Bankers, and many		
more. We will give an overview of the Fall 2017 course speakers.		

CP1.3	Friday	Service Learning and Statistics - A Real World Connection
	2:40 p.m.	
Gina Reed		University of North Georgia
courses. Service-le analysis and interp produce data that presentation will in	arning is a concr retation that is u need to be analy Iclude discussion	b incorporate a service learning research project into statistics ete application of statistical methods using real data with the seful to a community agency. Many organizations and agencies zed and interpreted in order to be of use to the group. This about locating potential agencies, initiating contact, examples of nd evaluation of the project from students and agencies.

CP12.5	Saturday	Reviewing for Mathematical Reviews
	11:20 a.m.	
Norm Richert		Mathematical Reviews/AMS
community, but the personally rewardin lead to new researc papers can be trace authors. This can be those whose first re	e work of reading ng. The serendig ch problems and ed back to the re be true no matte esponsibility is te	Reviews/MathSciNet is a great service to the mathematical g and composing a review of a published paper can also be bity of reading a paper slightly out of one's own research focus can new connections to other mathematicians. Many published viewing in Mathematical Reviews of another paper by one of the r what type of institution one is in, but it can be especially true for eaching. It is very easy to become a reviewer. The talk will give an at Mathematical Reviews/MathSciNet.

SS5.1	Friday	Generalizations of Some Inequalities with Symmetric Fractions
	2:00 p.m.	
John Risher		University of South Carolina
of several inequali exponents in these and mathematical are real numbers,	ties involving sun e inequalities rem induction, as sug we have to find a ualities, and then	Theorems, Techniques and Selected Problems", we found a pattern ns of symmetric fractions with three variables. While the nain integers, we can easily prove them using fundamental algebra gested in the book. However, regarding the case when exponents new method. In this talk, we will introduce the pattern we found we will use our own method to prove the generalizations when

CP5.5	Friday	An incentivized early remediation program in Calculus I
	3:20 p.m.	
Lake Ritter		Kennesaw State University
Strong prerequisite skills are essential to student success in the calculus sequence; however, many		
students arrive in Calculus I with weaknesses that are difficult for them to overcome. In this paper,		
we describe an approach to early incentivized remediation of prerequisite material in a Calculus I		
course. We present data that supports the idea that a lack of prerequisite knowledge is a significant		
hurdle for students, but also that participation in the remediation program is correlated with student		

success. In addition, the program allows for the very early identification of students at high risk of failing. The program is easy to implement, and it would be adaptable to a variety of other courses for which prerequisite knowledge is essential for success including science courses, engineering courses, and other mathematics courses.

UP1.12	Saturday	The Geometry of Boolean Functions on Five Variables
	10:45 a.m.	
Wesley Rogers		Western Carolina University

Modern Cryptography is dependent on boolean functions for security. In order to be a suitable candidate for cryptographic use, a function must be both resilient and nonlinear. We verified the existence of 8 classes of 2-resilient boolean functions on 5 variables. We established the diameter and minimal non-zero distance between the boolean functions of interest. Additionally, we defined the Hausdorff Distance between all 28 combinations of these functions. We also identified several other interesting characteristics of these boolean functions and their applications to Cryptography and other fields, and produced a Python library to assist in the finding of additional functions with similar characteristics.

UP1.13	Saturday	The Comparison of the Trapezoid and Gaussian Methods
	10:45 a.m.	
Margo Rothstein		Georgia College and State University
to approximate int	egrals. We prove	issian Quadrature and Trapezoid Rule methods that are both used the accuracy of the Gaussian method is 2n-1 using a method that olynomials. We also discuss some applications of the Gaussian

CP1.4	Friday	Taking the Grind out of Group Grading: A System to Improve	
	3:00 p.m.	Efficiency, Consistency & Pedagogy	
Jack Ryan		University of Tennessee Knoxville	
Within the past yea	ar, the use of an o	online grading system has transformed the way that lower division	
tests are graded in	the math depart	ment at the University of Tennessee, Knoxville. Students take their	
tests on paper as u	sual. Once the te	sts are administered, they are scanned into an online program	
from which the ins	tructors and TAs	can grade the tests. This allows the instructors to grade the tests	
remotely and elimi	remotely and eliminates the physical transfer of tests when multiple instructors have to grade the		
same set of exams. While this specific program is not available for use outside of the university, there			
are other for-profit companies claiming FERPA compliance that have created online grading systems.			
In this talk, we will discuss the general advantages of using an online grading program and suggest			
why instructors or departments might consider switching to an online grading system. Speaking from			
practical experience, we will share how the program eliminates post-test cheating, reduces grading			
time, and allows course administrators to ensure consistency as well as target commonly missed			
concepts so that teaching methodology can be adjusted in the future. We include a demonstration of		logy can be adjusted in the future. We include a demonstration of	
the grading system we use, and highlight key features currently enjoyed by instructors and students.			

This will enable prospective online graders to create a wishlist if they decide to create a similar system or explore commercial products.

CP10.2	Saturday	Using St. Augustine's On Free Choice of the Will and Plato's Meno	
	10:20 a.m.	(and other authors) to Talk About Mathematics	
Josie Ryan		Lander University	
Students have the	tendency to redu	ice mathematics to formulas and rules, to want all mathematics to	
follow known struc	follow known structures. Whether mathematics majors or not, they limit their discussions in these		
ways. As a result, we lose much of the intuition and creativity that makes mathematics possible. The			
thinking of those who are not generally seen to be mathematicians can enlighten majors to the point			
of proof- the reason for the endless "How do you know?" The reasoning of philosophers can teach			
non-mathematical	non-mathematical students to analyze mathematical writing with confidence- to think logically about		
unfamiliar prose. This talk is a look at how I have used Plato and St. Augustine and other authors in			
classes to initiate discussions leading to answering the question "Why do mathematicians do what we			
do the way we do?"			

PUB.3	Friday	Using WebAssign to Drive Unlimited Potential for Students in
	3:00 p.m.	Calculus, Precalculus and Statistics
Michael Saver		Cengage
and develop conce unlimited flexibility	ptual understan and a new appi	as and unique tools in WebAssign that help students visualize math ding in Calculus and Precalculus. We will also explore WebAssign's roach with Statistics Learning By Objective to teach what you want ow this could assist in remediation, standard courses or co-requisite

UP1.6	Saturday	A Predator-Prey Model for Silverleaf Whitefly(B. tabaci) and Lady		
	10:45 a.m.	Bettle(H convergens)		
William Schalch		Abraham Baldwin Agricultural College		
Bemisia tabaci is a	crytic species co	mplex of more than 35 identifiable aphids. Some type of these		
pests can spread in	n an environment	so quickly that they are considered to be one of the world's top		
100 invasive specie	100 invasive species. Each year, these pests damage plant and crops by feeding on the plants and by			
transmitting plant	transmitting plant viruses costing millions of dollors to farmers and greenhouse growers. Over 600			
plant species, inclu	plant species, including major corps such as peanuts and cutton, are known to be parasitized by these			
pests. To encounter these pests, several pesticides and synthetic predators are used but they have				
adverse effects on natural and beneficial organisms. Also, some of the predators are not very				
effective due to their ability to encounter only adult whiteflies. In this paper, we develop a discrete				
	time predator prey model with lady beetle <i>Hippodamia convergens</i> as the predator. These predator			
has been shown to have extreme predatory effects on various B. tabaci biotypes. We will present the				

stability analysis of our model. Parameters are estimated using experimental data and some numerical results will presented.

CP9.5	Saturday	Assisted Oral Exams and Student Perceptions of Deep Learning	
	44.00	and Confidence	
	11:20 a.m.		
Bradford Schleben		Belmont University	
Communicating ch	allenging concep	ts is an important aspect of engaging in deep learning. We are	
interested in not o	nly providing suc	h opportunities, but also in determining how to appropriately	
assess students participating in an interactive classroom that focuses on effectively communicating			
difficult material. We discuss how assisted oral exams – an approach to oral examinations that			
prioritizes effective communication and flexibility of conceptual application – aligns with active			
learning experiences. In particular, we look to assess conceptual understanding in high-level			
undergraduate math students, as well as provide support for improving students' ability to			
communicate diffi	communicate difficult concepts. We then examine student attitudes concerning the value of		
assessments with regards to deep learning and confidence.			

SS1.6	Friday	Using Mathematics to Enrich Cross-Cultural Experiences		
	3:40 p.m.			
Bradford Schleben		Belmont University		
This article will loo	k at mathematics	s courses designed to provide cross-cultural experiences,		
potentially to serve	e Study Abroad p	rograms. The main example we will look at, Math for Social		
Justice, is a course	Justice, is a course centered around discussion and active learning experiences where mathematical			
reasoning and tool	reasoning and tools are applied beyond the walls of classroom and country. We explore issues of			
social, political, and economic justice on local, national, and global levels, utilizing mathematics as an				
analytical tool in u	analytical tool in understanding these issues across would-be boundaries. Through the synthesis of			
mathematical content, engaging course design and assessment, and experience abroad, these courses				
aim to develop the ability and inclination to apply mathematics to the world beyond the comfort o				
one's own experiences and culture.				

UT5.4	Saturday	Deep Convolutional Neural Networks and Gender Classification	
	11:00 a.m.		
Devan Sestito		University of North Carolina at Wilmington	
Deep Neural Networks (DNN) are a relatively new machine learning system which have gained			
traction the past fe	traction the past few years. DNNs can be generalized as a type of artificial neural network – denoted		
as such due to their resemblance to neural networks in animal brains. Since the concept of DNNs was			
first conceived advancements in the performance – such as backpropogation to update network			
parameters - of such systems incited a great deal of interest in deep learning. DNNs have been used			
to solve a variety of problems - primarily artificial intelligence and object/symbol recognition. Human			

brains are highly capable of differentiating certain characteristics like gender with little more than optical information. With a well-trained DNN these complex features can be classified. Our preliminary studies show promising results, and we are working toward improving our accuracy on gender classification using a DNN on the MORPH-II dataset. In future research convolutional manipulation will be implemented to create a more powerful classification system.

UP1.18	Saturday	Legacy of Srinivasa Ramanujan	
	10:45 a.m.		
Dmitry Shipsey		Lander University	
India's greatest ma	India's greatest mathematician in the 19th and early 20th century, Srinivasa Ramanujan, lived an		
interesting and admirable life. While it was also a short and poor life, he managed to live it to the			
fullest, never asking too much of his friends and family as he pursued his prime interest: performing			
and sharing mathematics that, at many times, came to him in his dreams. In my presentation I shall			
delve into his personal life while sharing the multitude of contributions he made through			
mathematics that are still used in society today.			

UT5.2	Saturday	Disease spread on networks
	10:20 a.m.	
Isaac Shore		High Point University
network of individu observe the disper	uals and their linl sion of various d modate the restr	us disease models such as SIR and SIRS. Next we build a small ks between them, and on these networks we run the models to iseases. To simulate the disease spread the models must be ictiveness of network properties. From these small examples to real life networks.

CP10.3	Saturday	Newton's 501 Jeans
	10:40 a.m.	
Andrew Simoson		King University
In the Principia, Isaac Newton showed that if the polar radius of Earth is to its equatorial radius as		
100 is to 101 then gravity at the north pole is to gravity at the equator as 501 is to 500. We retrace		
Newton's steps using modern notation and ask, Is 501/500 the best possible gravity ratio over all		
fractions with denominator near 500? (The use of the anachronistic title for this talk is because 501		
jeans are somewhat iconic in America.)		

UT7.4	Saturday	College Football Recruiting Rankings and On-Field Success
	11:00 a.m.	
Sydney Singleton		Applachian State University
Every year there is significant national interest among college football fans in the recruiting rankings		
for their team. These rankings are interesting, but are they predictive of on-field success? For		
Division 1 college football teams in the largest six conference, and for the seasons from 2007 to 2017,		

we present a data set with information about team recruiting rankings, returning starters, coaching experience, and the team's recent on-field performances to help predict the team's end of season rating in the Sagarin rating system for teams. We use different statistical model selection approaches to create a set of candidate models for predicting team performance. These candidate models are evaluated using an approach related to cross-validation where an individual season is held out of the original data, and then each candidate model is used to predict the outcomes of that season as an assessment of the model's predictive accuracy. Our models show that recruiting rankings are predictive of team success, but also that other factors are important in these predictive models, and that roughly half of the variation of team performance is attributable to random variation even after accounting for recruiting and other differences between team profiles.

СР9.3	Saturday	Lesson Studies in Calculus I
	10:40 a.m.	
Brittany Stephenso	on	University of Tennessee
together to target evidence, participa continuous improv and students alike. difficult topics in C that incorporate ev plans, and then mo as a team of Calcul Calculus I teachers	an identified area ints collaborative rements and upda In this talk, I will alculus I at the U vidence-based str odifying the lesso us I TA's and mer	s" involve teacher-led research in which a group of teachers work a for development in their students' learning. Based on existing ely research, plan, teach, and observe a series of lessons making ates based on feedback and input from fellow teachers I discuss my work doing a version lesson studies on particularly niversity of Tennessee. This has involved developing lesson plans rategies, observing fellow Calculus I teachers using the lesson ons after observations and feedback. As a result of this process, we notors have created resources that will be useful to future UTK is will serve as a base on which future teachers can build and lessons each semester based on their own results and feedback.

SS13.5	Saturday	A Mathematical Model for Tumor Growth and Treatment using	
	11:20 a.m.	Virotherapy	
Jessica Stevens		Winthrop University	
We present a syste	We present a system of four nonlinear ordinary differential equations to model the use of virothera		
as a treatment for cancer. This model specifically describes the interactions among infected tumor			
cells, uninfected tu	cells, uninfected tumor cells, effector T-cells, and virons. Using local and global stability analysis		
techniques, we establish conditions on model parameters to ensure a stable cure state of the full			
model as well as various submodels. We illustrate these dynamics through numerical simulations of			
the model using es	the model using estimated parameter values from the literature, and we conclude with a discussion		
on the biological implications of our results.			

SS5.4	Friday	The Ubiquity of Identity Verification
	3:00 p.m.	
David Stone		Georgia Southern University
trigonometry. Iden algebraic manipula verification (even tl We give many exan plans of attack that	tities show up in tions and do not hough it seems s nples of the type students should	first makes it appearance in pre-calculus, particularly in many subsequent courses, but students often concentrate on have a clear understanding of the logic involved in their econd nature to mathematicians). Is of identities that appear and carefully spell out the differing understand and use as they develop more mathematical me ideas are appropriate for verifying inequalities and give

CP11.4	Saturday	Geometric Representations of Dedekind's Proof of Irrationality
	11:00 a.m.	
Kimberly Stubbs		College of Charleston
In Essays on the Theory of Numbers, Richard Dedekind gives a general algebraic proof that if D is a		
positive integer that is not the square of an integer, then \sqrt{D} is irrational. In the 1960's, Stanley		
Tennenbaum gives the geometric representation of Dedekind's proof for which $D = 2$. In this talk we'll		
look at the geometric representations of Dedekind's proof for which D = 3, 5, 6, 8, 12, 24 and 48 and		
their constructions which are similar to the construction for the <i>D</i> = 2 case.		

CP7.6	Saturday	Mitigating IoT Insecurity with Inoculation Epidemics	
	11:40 a.m.		
Jillian Stupiansky		University of North Alabama	
-		h as DVRs, refrigerators, and other consumer goods, have become	
a significant source	e of internet inse	curity. Attackers have quickly assembled large-scale botnets that	
use IoT devices to o	use IoT devices to disable internet infrastructure. This IoT malware is often transmitted from host to		
host in a manner si	host in a manner similar to the spread of biological viruses through a population. Like a vaccine, we		
propose a techniqu	propose a technique to create an inoculation epidemic for IoT devices. We model the spread of the		
malware using a sy	malware using a system of differential equations that is a variation of the SIS epidemic model. Our		
unique model incorporates an extra feature to account for devices infected with the benevolent			
malware. We will discuss theoretical results as well as simulations, and how this relates to improved			
internet security.			

UT1.5	Friday	Modeling Epidemic Measles and the Advantages of Stochastic		
	3:20 p.m.	and Population Models		
Abigail Sweet		Converse College		
Measles is a highly	contagious virus	often associated with childhood. It was thought to be eradicated		
from the United St	ates in the 1990'	s due to high vaccination rates of the MMR vaccine. In recent		
years, however, th	e anti-vaccinatio	n movement has caused the vaccination rates to drop below the		
93 % necessary for	93 % necessary for herd immunity to be effective causing new outbreaks to occur. While no			
epidemics have ha	epidemics have happened so far, the threat is real. Without prior exposure to the disease, there is a			
10-30% mortality rate depending on the strength of the individual's immune system. These				
simulations modify a basic SIR model and Stochastic model making use of NetLogo to model an				
outbreak of measles with varying levels of vaccinations. The NetLogo model supports the differential				
equations derived from the SIR model as well as the equations necessary for the stochastic model.				
The NetLogo simulation gives a visual for the spread of measles through a population with some				
fundamental assumptions. This paper then compares the effectiveness of the models using several				
runs of data and draws conclusions based on different situations.				

CP6.3	Friday	Toy trains and polyplets
	2:40 p.m.	
Douglas A. Torrance		Piedmont College
Suppose we have a toy train set with a given number of pieces of track. In how many ways can we form a track from these pieces? We show that if the pieces are all in the shape of a quarter circle, then we may enumerate the possible track shapes using vertex colorings of polyplets. A polyplet is a		
combinatorial object formed by gluing together squares at their edges or corners.		

SS9.5	Saturday	Complete 2DPCA Paired with Feature Extraction for Gender
		Classification
	11:20 a.m.	
Rachel Towner		University of North Carolina at Wilmington
Multiple feature extraction techniques are explored on the MORPH-II image dataset. Complete two- dimensional principal component analysis is applied to these feature extraction techniques in order to optimize performance of gender recognition using support vector machines.		

SS3.2	Friday 2:20 p.m.	Some Variations on Liar's Bingo
Sarah Trebat-Leder		Emory University

In working with middle schoolers, I've found that a great way to introduce the concept of errordetecting and correcting codes is through magic tricks that involve detecting or correcting lies. I'll start by describing "Liar's Bingo", a well-known activity in the math circle world, and then discuss some variations that introduce coding schemes such as Hamming codes.

PUB.3	Friday	Using WebAssign to Drive Unlimited Potential for Students in
	3:00 p.m.	Calculus, Precalculus and Statistics
Melissa Turbeville		Cengage

CP3.1	Friday	A new ADI method for the Poisson-Boltzmann equation with a	
	2:00 p.m.	two component regularization	
Sheik Ahmad Ullah		University of Alabama	
The Poisson Boltzm	nann equation (P	BE) is a well-established implicit solvent continuum model for the	
electrostatic analys	sis of solvated bio	pmolecules. Its numerical solution is still a challenge due to its	
strong singularity b	y the source terr	ns, dielectrically distinct regions, and exponential nonlinear terms.	
In this paper, a nev	v alternating dire	ction implicit(ADI) method is proposed for solving the nonlinear	
PBE using a two-co	mponent regular	ization. This scheme inherits all the advantages of the two-	
component regular	component regularization and the time-dependent PBE with the ADI method while possessing a novel		
approach to combi	approach to combine them. A modified version of 1D ghost fluid method(GFM) has been introduced		
to incorporate the	to incorporate the nonzero jump condition into a new ADI method. The proposed scheme produced		
better accuracy co	mpared to the pr	evious ADI methods for a benchmark problem and simpler to	
implement by circu	implement by circumventing the work necessary to apply the MIB method with the regularization for		
a 3D problem. Though this scheme can use larger time increments than the previous ADI methods, it			
still blows up for large time increments. Later to address this issue with the stability, Locally One			
Dimensional (LOD) method has been used to replace the ADI method as the operator splitting part.			
The LOD method remains stable even for very large time increments. This is numerically verified by			
calculating the electrostatic potential and solvation energy on the benchmark problem whose			
analytical solutions	analytical solutions are available and on a series of proteins with various sizes.		

UP1.14	Saturday	Asymptotic Quantification of Regular and Semi-Regular Round
	10:45 a.m.	Robin Tournaments
Aaron Vankempen		Piedmont College
round robin tourna away games should should play the sar into weeks, represent teams is represent	ament of n teams d equal the absol ne number of ho ented by edge co ed asymptotically	e examine the number of different ways to schedule a home/away i. If n is even, the number of home games minus the number of ute value of 1 for each team (semi-regular). If n is odd, each team me games and away games (regular). The schedule can be split up lorings. The number of edge colorings for a tournament of n y by $S_k \sim k^{\frac{3}{8}k^2}$, where k=n if n is odd, and k=n-1 if n is even. The rnaments is represented by $\binom{n}{2} \times coefficient \left(\frac{x_1x_2x_n}{x_{n-1}^2+1}\right)$ for n

even. If n is odd, the number of regular tournaments is represented in the same fashion, only replace n with n-1. We arrive at the asymptotic result by multiplying the edge coloring approximation by the number of regular/semi-regular labeled tournaments of n teams.

CP6.1	Friday	Integer Solutions for Triangles
	2:00 p.m.	
Barrett Walls		Perimeter College at Georgia State Universtiy
We solve a problem for integer sided triangles with prescribed angle conditions. We discuss ways this		
problem can be presented as a project for precalculus classes.		

CP10.1	Saturday	Crown Jewel of Mathematics: A Historical Look at the	
	10:00 a.m.	Pythagorean Theorem	
Jing Wang		Christian Brothers University	
Known to humai	Known to humankind since 4000 years ago, the Pythagorean Theorem has never ceased to fascinate		
the mathematics lovers. We will first trace its history back to the Egyptians of 2000 BC, the			
Babylonians of 1500 BC and the Chinese of 1100 BC, all of whom showed knowledge of the			
relationship between right triangles and side lengths. We then visit historically interesting proofs			
including the ones constructed by Pythagoras, Euclid, Leonardo da Vinci, Einstein and a special one by			
President Garfield. There even exists a calculus proof. Lastly, we seek to shed some light on exploring			
opportunities for both in-class and after-class activities for students who are interested in this topic.			

UP1.15	Saturday	Coprime Labelings of Graphs	
	10:45 a.m.		
Alan Way		Winthrop University	
Graph labeling pro	blems date back	to the beginning of Graph Theory itself (see the Four Color	
Theorem). Roughly	y 40 years ago th	e notion of a prime labeling of a graph was introduced; a graph on	
n vertices has a pri	me labeling if its	vertices can be labeled by the numbers 1, 2, , n so that each	
edge spans a copri	me pair (i.e. each	edge's labels have greatest common divisor one). In the 1980's	
Entriger conjecture	ed that a certain f	family of graphs all have prime labelings; our work furthered the	
progress on this conjecture by giving a prime labeling for several members of this family.			
Additionally, we studied graph parameters related to the coprime graph. The coprime graph on n			
vertices is the grap	vertices is the graph whose vertices are numbered 1, 2,, n with i~j if and only if i and j are coprime		
Using the graph parameters we calculated, we were able to conclude that several classes of graphs		culated, we were able to conclude that several classes of graphs	
are not prime. We concluded our work by examining this notion generalized to hypergraphs (wl		vork by examining this notion generalized to hypergraphs (which	
allow "edges" to have size larger than two) and give a class of hypergraphs which are not prime		an two) and give a class of hypergraphs which are not prime. Joint	
work with Arran Hamm and Justin McCullough.		AcCullough.	

UP1.16	Saturday	Using Different Distance Metrics to Create Conic Sections
	10:45 a.m.	
Jessica Wellington		Valdosta State University
The conic sections are classically defined by a locus of points. The most common distance metric to generate conic sections is the Euclidean metric but in the literature; one finds the taxicab and maximum modulus metrics can be used to also produce an ellipse. We wanted to take this a step further. An ellipse involves two measurements, what if two different metrics are used for each of the two measurements? This method of using multiple metrics can be applied to other conic sections, as well as special quadric surfaces. This idea led to some surprising discoveries, such as proving a		dean metric but in the literature; one finds the taxicab and used to also produce an ellipse. We wanted to take this a step asurements, what if two different metrics are used for each of the f using multiple metrics can be applied to other conic sections, as

UT1.1	Friday	Facial Recognition Optimization on the MORPH-II Database
	2:00 p.m.	
Caroline Werther		University of North Carolina at Wilmington
Face recognition is	the process of	identifying a facial image as a known or unknown individual in a
given database. By	utilizing the M	ORPH-II database, this project works to optimize the facial
recognition system	by analyzing h	ow the choice of subspace projection algorithm (dimension
reduction method)	and various dis	stance metrics impact accuracy. Eigenfaces (using Principal
Component Analys	is) and Fisherfa	ces (using Linear Discriminant Analysis) are analyzed against
different classifying techniques, Support Vector Machine and Nearest Neighbor. Due to the variabilit		
of human faces and	d image quality	, as well as the size of MORPH-II, the complete database struggles
with poor face reco	gnition accura	cy and faces problems related to computational time. However, we
propose using a face categorization method in order to perform gender classification as a preliminary		
step to face recognition. By running several experiments, we are able to identify the potential for		
reducing computational times for these various methods as well as improve accuracy rates when i		
comes to correctly identifying an individual in the database.		

CP5.1	Friday	The Concept Definition of Numeral
	2:00 p.m.	
Ben Westcoatt		Valdosta State University
David Tall's Three	e Worlds of Mathe	matics provides a framework through which to study the
development of r	nathematical thou	ght, the three worlds being the Embodied, the Symbolic, and the
Formal. In this talk, I will share my initial investigations and findings into how the concept of numeral		
is situated in the symbolic world. As a first step, I am developing a concept definition for numeral. I		
analyzed the definitions of numeral provided in numerous mathematics textbooks for pre-service		
teachers. Additionally, I conducted a survey of college students. The participants in the survey were		
given several images and prompted to respond whether or not they believed the image represented a		
numeral. Results of the textbook analysis and the survey will be discussed.		

CP1.5	Friday	Strategies for Reducing the Resistance in a Liberal Arts Math	
	3:20 p.m.	Course	
Cathy Whitlock		University of North Carolina Asheville	
Anyone who has e	ver taught a Libe	ral Arts Math Course or Quantitative Literacy Course understands	
that no matter how	w practical, releva	ant, or even necessary our subject matter is, some of our students	
still manage to fee	still manage to feel oppressed by the reality of being required to take a math course of any		
description. Can s	description. Can some of these feelings being lessened by giving students a few choices that matter		
to them without a	to them without altering the course learning objectives or lowering standards? Two instructors at		
UNC Asheville are engaged in an experiment that involves letting students make a few decisions. The			
preliminary results	preliminary results are in. We have been surprised both by the choices our students made and how		
pleased they were to be given options in the first place.			

UT2.4	Friday	Enumeration in Peisert Graphs	
	3:00 p.m.		
Anthony Wilkie	Anthony Wilkie Western Carolina University		
makes them useful graphs (Paley grap	In his investigation into strongly-regular graphs, Peisert uncovered a class of graphs whose structure makes them useful in the study of designs. Unlike the other well-known class of strongly-regular graphs (Paley graphs), Peisert graphs have not yet had their properties scrutinized. In this talk, we develop the properties of Peisert, focusing on enumeration.		

PUB.2	Friday	Increasing Student Math Performance and Confidence with Data	
	2:00 p.m.	Driven Adaptive Learning Technologies	
Dennie Williams	Dennie Williams McGraw-Hill/ALEKS Math		
Today's student desires adaptive technology not only in their personal world, but in their education			
experience. How can we meet this need in the classroom and utilize the data to improve our teaching			
experience? Using ALEKS Math's Artificial Intelligence Engine and Adaptive platform, you will see how			
we can create a modern education experience in any classroom setting.			

SS1.5	Friday	Transitioning from lecture to IBL	
	3:20 p.m.		
Jessica Williams		Converse College	
		the effectiveness of inquiry-based learning in undergraduate	
	-	e Number Theory and Modern Geometry courses at a small	
-		sht in IBL fashion. The courses were previously taught in a	
	primarily lecture format and based upon a selected textbook. This talk will describe a general method		
for transitioning p	for transitioning proof-based courses from lecture style to IBL style while still using a central text.		
Structure of the ov	Structure of the overall courses, strategies for designing problem sets, breakdowns of typical class		
periods, and modifications made will be discussed. Course-specific materials and templates will be			
shared. A practical approach to efficiently re-designing a course to be taught in inquiry-based learni			
style for the first time will be the focus.			

UT6.5	Saturday	Color-Recursive Visual Cryptography	
	11:20 a.m.		
Lindsey Wise		Applachian State University	
Marvin Jones, grad	Marvin Jones, graduate student at Clemson University, and Lindsey Wise, undergraduate student at		
Appalachian State University, have used Naor and Shamir's visual cryptography scheme to create a			
more secure crypto	more secure cryptography scheme via extensions involving color visual cryptography and recursive		
visual cryptography. Lindsey Wise will be presenting on the construction of this scheme. This involves			
a combination of two algorithms in order to produce a recursive image with colors. Techniques use			
are from linear algebra, Boolean logic, and cryptology.			

CP3.5	Friday	Closed-Form Solution for vibration of Timoshenko beams with	
	3:20 p.m.	single discontinuity	
Leina Wu	Leina Wu Queens University of Charlotte		
Vibration functions of a Timoshenko beam with arbitrary discontinuities are derived. Heaviside's			
function is employed here to account for the discontinuity points in the beam so that the modal			
displacement and rotation can be described by a single function. Consequently the solution of			
vibration is significantly simplified. The application of present model to smart structure lead-			
zirconate-titanate (PZT) actuator and damage detection are presented.			

SS5.3	Friday	On Random Entire Functions	
	2:40 p.m.		
Zhuan Ye		University of North Carolina at Wilmington	
Let $G_n = \sum_{\alpha \in \Lambda} \alpha$	$a_{\alpha}f_1^{\alpha_1}f_2^{\alpha_2}\dots f_l^{\alpha_l}$ be	a polynomial in terms of analytic functions	
${f_1, f_2,, f_l}$ fron	$\{f_1, f_2, \dots, f_l\}$ from a region $\Omega \subset \mathbb{C}^m$ to \mathbb{C} , where		
Λ is an index set	Λ is an index set and a_{α} are independent complex-valued random variables defined on a probability		
space with standard Gaussian distribution. We find the limit of the sequence of the expectation of			
the normalized zero current $\frac{i}{n\pi}\partial\overline{\partial}\log G_n(x) $ in the sense of currents. In this talk, we will start with			
simple and nice random polynomials and demonstrate the limit of its zeros is a unit disc.			

CP5.2	Friday	An Inside Look at AMC Development	
	2:20 p.m.		
Carl Yerger		Davidson College	
In this talk, I plan to	o talk about my e	experience as co-chair of the AMC (American Mathematics	
Competition) 10/12	Competition) 10/12 committee with developing and finalizing the AMC 10 and AMC 12 exams over		
the past few years.	the past few years. I hope to give an inside view into the process a problem goes from being proposed		
to ultimately included in one of the tests. In addition, I plan to give some insights into how the			
committee works, what I thinks makes a good competition problem and how you can get involved			
with AMC contests. We are always looking for interesting problems.			

UP1.17	Saturday	Enumerating Traingle and Diamond Subgraphs.	
	10:45 a.m.		
Stephen Young	Stephen Young Piedmont College		
In the study of com	In the study of complete graphs and complete subgraphs, certain properties can be ascertained from		
the number of triangle and diamond shaped subgraphs. In graphs of higher order where straight			
counting methods prove difficult, a combinatoric algorithm can be used. Subgraphs of either type can			
be enumerated directly or simplified by separation.			