

Ninety-fifth Annual Meeting

University of Alabama, Birmingham

Birmingham, AL

Thursday—Saturday, 24-26 March 2016

http://sections.maa.org/southeastern/?2016_Conference

Abstracts for all Talks

GS3.1	Saturday	Modeling the Cancer Stem Cell Hypothesis	
	8:45		
Kristen Abernathy		Winthrop University	
Despite improvem	ents in cancer the	erapy and treatments, tumor recurrence is a common event in	
cancer patients. Or	cancer patients. One explanation of recurrence is that cancer therapy focuses on treatment of tumor		
cells and does not	cells and does not eradicate cancer stem cells (CSCs). CSCs are postulated to behave similar to normal		
stem cells in that t	heir role is to ma	intain homeostasis. That is, when the population of tumor cells is	
reduced or deplete	reduced or depleted by treatment, CSCs will repopulate the tumor, causing recurrence. In this talk,		
we'll explore how incorporating the dynamics of CSCs in cancer modeling leads to a better			
understanding of solid tumors. We'll also study specific treatment options and provide an analysis of			
possible cancerous	states and their	dependence on treatment levels.	

UT4.2	Friday	Bidding Connect Four	
	2:20		
Amanda Amerson		Birmingham-Southern College	
Connect Four is a t	raditional 2-playe	er board game on a vertical, rectai	ngular board consisting of 7
vertical columns of	⁶ 6 squares each i	n which the two players alternate	taking turns strategically placing
his/her game chip	in a square with t	the intention of connecting four a	djacent squares in a row,
column, or diagona	ally. By introducir	ng discrete bidding into the tradition	onal Connect Four game, each
player will have bio	dding chips. The t	otal number of bidding chips remain	ains constant throughout the
game. We must an	alyze the optima	I move of each position in a game	in order to de- termine the
necessary chips a p	layer will need to	o have a winning strategy. In a tra	ditional game of Connect Four, it
is known that an optimal strategy exists. However, by introducing bidding, this is no longer true		ding, this is no longer true. With	
bidding it is now possible for a playe		er to make moves in consecutive t	urns. I analyze discrete bidding
of Connect Four on a 4 × 4 board.			

SS5.4*	Friday 3:00	DI-pathological graphs and the link to inverse domination	
John Asplund		Dalton State College	Joe Chaffee, Kaiser Permanente James Hammer, Cedar Crest College Ossama Saleh, University of Tennessee at Chattanooga Lucas Van der Merwe, University of Tennessee at Chattanooga Terry Walters, University of
maximum indep interlinked in pri asked in relation which each maxi called DI-patholo inverse dominat graphs as well as	Minimum dominating sets (smallest set of vertices adjacent to each other vertex in the graph) and maximum independent sets (largest set of vertices that are not adjacent to each other vertex) are interlinked in principle and within the literature. There are many natural questions that have been asked in relation to both of these concepts. One such concept are DI-pathological graphs. A graph in which each maximal (Yes, maximal!) independent set intersects each minimum dominating set is called DI-pathological. Investigating these graphs may lead to solving Hedetniemi's conjecture on inverse domination. In this talk we will discuss the link between this conjecture and DI-pathological graphs as well as some recent results on the smallest such graph. If there is enough time, we will also examine recent results on Hedetniemi's conjecture for inverse domination.		

SS4.1*	Friday	Using Math Club Activities to Create a Dynamic Departmental	
	2:00	Learning Community	
Julie Barnes		Western Carolina University	Bethany Molokach
			Western Carolina University
computational tech of years. What stuc mathematics is a vi share ideas on how will discuss are: get	nniques, proofs, dents often do no brant subject wi to bring mather tting students an s, and creating a	v experience standard course topic applications, and other topics that ot see in class is that mathematicia th fascinating topics and interestin matics to life through math club ac d faculty involved, providing even ctivities to increase faculty studen mmunity.	t have been studied for hundreds ans are real people and ng questions. In this talk, we ctivities. Some specific topics we its that expose students to topics

UT3.2	Friday 2:20	Modeling habitat fragmentation at the landscape level via reaction diffusion equations	
Alyssa Barnett		Auburn University Montgomery	Dexter Harrell, Auburn University Montgomery (co- presenter) Jerome Goddard II, Auburn University Montgomery

Habitat fragmentation affects a population in two key aspects, namely, the size of fragmented patches of habitat and inferior habitat surrounding the patches, called the matrix. Ecologists have confirmed that an organism's survival in a system is often linked to the size of the patches, quality of its surrounding matrix, and distance between patches. In this talk, we will model the effects of habitat fragmentation at the landscape level using a reaction diffusion system. We will explore dynamics of the model via study of the model's positive steady state solutions. Our results are obtained through the quadrature method and Mathematica computations. We will briefly explore their biological implications.

SS1.2*	Friday	Areas of Fibonacci and Lucas Polygons	
	2:20		
Jeremiah Bartz		Francis Marion University	
In this talk, we present a compact formula for computing the area of polygons whose vertices are			
comprised of consecutive Fibonacci numbers. In addition, we discuss related formulas for the area of			
triangles whose vertices involve certain subsequences of Fibonacci and Lucas numbers.			

UT8.3	Saturday	Effectiveness of a Supplemen	ntal Instruction Program in a	
	10:40	Statistics Classroom		
Emily Baum		Georgia College	Brandon Samples	
			Georgia College	
At most universi	ities, an introduct	ory statistics course is required	for the majority of the students	
before they beg	in their specific m	ajor classes. Roughly 25% of un	dergraduate students at a given	
university will ta	ke a statistics cla	ss during a single academic year	r. Of these students, several will fail	
to retain the info	ormation, making	aking future classes more difficult, or fail to successfully pass the course,		
increasing the lil	kelihood a studen	t will not graduate on time. Pro	viding academic support through the	
implementation	of a Supplement	al Instruction (SI) Program gives	students the opportunity to receive	
free, out-of-clas	s help focused on	student achievement in this co	urse. Lead by a SI Leader, students	
are able to atter	nd sessions to rec	eive conceptual help while revie	ewing class material, developing	
study strategies	, and collaboratin	g with classmates. We will be fo	ocusing on the effects SI can have on	
student achieve	ment in a statistic	s classroom. Since statistics is a	necessary and important course in	
several disciplines, proper academic help is crucial for the success of the students. We will share our				
data analysis for using SI in a statistics course over a 4-year period, providing participants the			· · ·	
opportunity to i	dentify the positiv	e effects SI has on student succ	cess.	

SS6.4*	Saturday 11:00	Comparing 2-adic Orders of Factorials and Fibonacci Products	
Brian Beasley		Presbyterian College	

A recent entry in the Problems Section of *Crux Mathematicorum* offered an interesting challenge to readers: Determine when the highest powers of 2 in a factorial and a corresponding product of Fibonacci numbers will be the same. Using a result of Lengyel from *The Fibonacci Quarterly*, we outline the solution of this problem. Lengyel's theorem also allows us to extend the original problem by examining the difference of the 2-adic orders of the given numbers.

CP6.5	Saturday	Linear Algebra in compressed sensing	
	11:00		
Ghan S. Bhatt		Tennessee State University	
The signals, images	The signals, images and other data live in a Hilbert space. This space is equipped with several useful		
basis needed for a	basis needed for applications. Frames generalize the same concepts except they are redundant but		
there is flexibility in construction. The compressed sensing uses basis, frame and optimizing tools to			
recover the signal from a fewer measurements of the signal. We study a mathematical formulation of			
the problem and p	the problem and possible solutions. Some challenging problems will be presented.		

SS7.2*	Saturday	Note-Taking: One Step Ahead	Note-Taking: One Step Ahead	
	10:20			
Cindy Box		Perimeter College @ Georgia		
		State University		
Effective note-taking is a necessary skill that students need to have in order to keep up with the fast			order to keep up with the fast	
pace of college lectures. However, students often lose focus of the concept being taught because th		oncept being taught because they		
are too busy trying to write down every word that the professor is saying. As instructors, we can help				
students use the classroom time more efficiently by freeing them from intensive note-taking time and				
allowing them to engage in more discussion and problem-solving. Examples of note-taking templates				
and classroom teaching strategies will be presented.				

CP1.3	Friday	Abstract Algebra Discovery Projects	
	2:40		
Karen Briggs		University of North Georgia	
Abstract Algebra is one of the most challenging courses taken by our undergraduate mathematics and			
mathematics-se	mathematics-secondary education majors. Because of the depth of abstraction of the course content		
and students' re	and students' resistance to proof-writing, I also find it to be one of the most challenging courses to		
teach. In this presentation, I will share a collection of discovery projects I have used to introduce			
fundamental concepts in group theory such as the definition of a group, cyclic groups, group			
isomorphisms, cosets, and quotient groups.			

GW1.2	Friday	Students' Performance, Challeng	es and Needs in High School
	2:20	Mathematics in the Southwest Georgia	
Courtney Brown		Albany State University	Dr. Li Feng, Math Faculty @
			Albany State University
In this research pro	oject, we use des	criptive and inferential statistics to	o systematic study all the past
five year End-Of-Co	ourse Tests (EOC	Γ) math scores of the county school	ol systems in southwest Georgia
region. The data ar	nalysis on the tes	t scores shows that, averagely, the	e math performance of the high
school students in	southwest Georg	gia was significantly lower than the	e state average. The low level
performance appe	ared in all the ma	ath courses in 9th and 10th grades	s, the topics covers algebra,
geometry, data ana	alysis, statistics a	nd probability. There were also sig	gnificant higher percentage of
do-not-meet-stand	lard students in t	he southwest region than the stat	e's, Those students
demonstrated a m	inimal understan	ding of and proficiency with the p	rocedures and concepts in 9th
and 10th grade ma	th courses. Henc	e a substantial effort needs to be	made to improve the math
teaching and learning in all the math courses and improve the students' math performance. We will			
discuss the pedagogical needs and technology needs to improve the high school math teaching and			high school math teaching and
learning in the Sou	thwest Georgia.		

UT6.5	Saturday	A Decomposition of Parking Fur	nctions By Undesired Spaces
	11:20		
Melody Bruce		Western Carolina University	Ian Nicolas, Pacific University Michael Dougherty, University of California, Santa Barbara Max Hlavacek, Harvey Mudd College Ryo Kudo, University of California, Los Angeles
There is a well-known bijection betw noncrossing partition lattice. Using Hasse diagram is the union of the co parking functions based on the larg corresponding posets. In particular, including local self-duality, a nice ch function. We also explore connection		this, we associate to each set of porresponding maximal chains. We set number omitted and prove set, they share properties with the nearacterization of intervals, and a	parking functions a poset whose e introduce a decomposition of everal theorems about the noncrossing partition lattice
CP4.1	Friday 2:00	Hypergraph Ramsey Numbers I	nvolving Paths and Stars
Mark Budden	1	Western Carolina University	Josh Hiller (University of Florida) Aaron Rapp (University of North Carolina Greensboro)
In 1974, Parsons de	etermined the va	alues of Ramsey numbers of the f	orm $R(P_m, K_{1,n})$, where P_m is a
path on m vertice	s and $oldsymbol{K}_{1,n}$ is a st	tar having partite sets with cardin	alities 1 and n . In the setting of
		eralizations of paths and stars exi -tight paths and stars having t ve	

UT2.6	Friday	Distributions of Twin, Cousin, & S	Distributions of Twin, Cousin, & Sexy Primes and Conjectures	
	3:40			
Cydney Caldwell		Lenoir-Rhyne University		
One of the greates	t problems in ma	thematics is whether twin, cousin	, and/or sexy primes are infinite.	
The mathematics c	ommunity has p	roven that at least one is infinite, l	out are not sure which. This	
presentation tries t	o figure out if th	ey all are infinite, just two are, or	just one. Sage is used to test	
new ideas by calcu	lating what large	numbers are prime, creating grap	hs, and equations. Large prime	
numbers are run th	rough sage and	formed into a graph based on gro	uping. After, the graph is used to	
calculate a line of b	est fit to mainly	see the tail end of the graph. Ano	her test is done by groupings of	
intervals that incre	ase by a power c	of ten as you look at more graphs.	This gives a better picture on	
how these methods and computer tools are helpful in finding the answers and conjectures on how to				
move forward based on the data found. None of these methods proves that any one of them is				
infinite, but leads t	o a new directio	n that look promising.		

UT6.4	Saturday	Complete Graph Decompositions and P-Groupoids	
	11:00		
John Carr		University of North Alabama	
Kotzig gave a corre	Kotzig gave a correspondence between decompositions of complete graphs and certain groupoids		
(called P-Groupoid	(called P-Groupoids). Our main goal is to characterize these groupoids when the corresponding		
decomposition is a	decomposition is a Hamiltonian decomposition. We also study a specific example of a P-Quasigroup		
constructed from c	constructed from cyclic groups of odd order due Denes and Keedwell. We show such P-Quasigroups		
have characteristic left and right multiplication groups, as well as the right multiplication group is			
isomorphic to the dihedral group.			

UT5.1	Saturday	Elliptic Curve Cryptography and the Lenstra Algorithm
	10:00	
Moses Chanc	diga	Methodist University
The increase	in the level of threa	ts on data security has prompted the adaptation of efficient and
secure crypto	ographic techniques	like the Elliptic Curve Cryptography (ECC). ECC, based on the
principle of e	elliptic curves defined	d over finite fields, is an example of asymmetric cryptography that
uses shorter	keys and easy imple	mentation protocols in data manipulation. Implementing ECC
requires find	ing the Elliptic Curve	e discrete logarithm (ECDL) of a random elliptic curve element with
respect to a publicly known base point; hence, creating a Trapdoor function. ECDL is significantly		
harder than factoring; therefore, a more computationally intensive problem means a stronger		
cryptographic system. The security of ECC depends on the ability to compute a point multiplication,		
and the size of the elliptic curve determines the difficulty of the discrete logarithm problem. Hence,		

using Lenstra elliptic curve factorization algorithm, I will demonstrate how to find the ECDL value. In order to build a secure ECC protocol the ECDL value has to be large enough so that its computation is made infeasible. In this session, I will set the constant parameters of the Elliptic curve equation to be smaller, and ECC will be defined over a smaller finite field.

CP2.2	Friday	Abel's Identity, Vandermonde M	Abel's Identity, Vandermonde Matrices, and Proof	
	2:20			
Sungkon Chang		Armstrong State University		
There are sever	There are several mathematical problems where a Vandermonde matrix rises naturally, and in this			
talk we conside	talk we consider examples where the matrix rises from the Wronskian of a basis of the homogeneous			
solutions to an	solutions to an ordinary linear differential equation with constant coefficients. When the			
characteristic p	characteristic polynomials of such differential equations have multiple roots the matrix specialized at			
an initial value	an initial value can be considered as a {\it generalized Vandermonde matrix}. In this talk we introduce			
the well-known formula for the determinant of the matrix and a new proof of the formula that uses			proof of the formula that uses	
the theory of differential equations.				

CP2.5	Friday 3:20	Double Negative Behavior	Double Negative Behavior in Metamaterials	
Yue Chen	÷	Auburn University at	Robert Lipton	
		Montgomery	Department of Mathematics,	
			Louisiana State University	
Metamateria	Metamaterials are a new form of structured materials designed to have electromagnetic properties			
not generally	found in nature. T	This talk will introduce a rigorou:	s mathematical framework for	
controlling lo	controlling localized resonances and predicting exotic behavior inside optical metamaterials. The			
theory is mult	theory is multiscale in nature and provides a rational basis for designing microstructure using			
multiphase no	multiphase nonmagnetic materials to create backward wave behavior across prescribed frequency		ehavior across prescribed frequency	
ranges.				

UT6.3	Saturday	Random Visibility in Unit Bars	
	10:40		
Jiarui Chu		Davidson College	Dr. Laurie J. Heyer, Davidson
			College
Two unit bars are	Two unit bars are visible to each other if an unobstructed vertical sightline can be drawn between		
them. The study o	f visibility in bar	s is motivated by Very-Large-Sca	le-Integration (VLSI) layout
problems, and has	applications in	robot navigation, hidden-surface	e removal, and computer-aided
software-engineer	software-engineering (CASE) tools. Although there is a rich body of research on visibility in bars, the		
existing research i	existing research is mainly done in fields of computational geometry and graph theory. No result has		
been published or	been published on the probability aspects of visibility problems. Our research focuses on three ma		ur research focuses on three major
problems. Assuming n unit bars have uniformly distributed locations within width w, we first		ns within width w, we first	

conjecture and prove the probability of having zero visibility among the n bars. Then we conjecture the probability density function and expected value for the number of bars required to cover the top bar. At last, we derive the expression for the maximum number of visible pairs among the n bars.

UT4.1	Friday	Momentum Term for the Mo	dified Spectral Projected
	2:00	Subgradient Method (MSPS)	
Samantha Clapı	ס	Georgia College and State University	Milagros Loreto, University of Washington, Bothell Charles Cratty, Westminster College Breeanna Page, Eastern Washington University
The phenomen	on of Zigzagging	of Kind I is present in pure subgrad	dient optimization algorithms when,
at an iterate p_k	, the subgradie	nt direction $s_k^{}$ forms an obtuse ar	ngle with the previous movement
m_k . Our goal is	m_k . Our goal is to identify and correct this phenomenon for the Modified Spectral Projected		
Subgradient method. We do this by adding a proportion of m_k to s_k ; this proportion is called the			$\boldsymbol{s}_{\boldsymbol{k}}$; this proportion is called the
momentum term and is denoted by $ au$. Also, we conduct numerical experimentation showing improved numerical results when compared to those of the original MSPS algorithm.			

СР3.2	Friday 2:20	No Fractions: Integer Solutions for Linear Equations	
Jeffrey Clark		Elon University	
This talk will discuss the Smith normal form for matrices and describe how it can be used for problems requiring integer solutions. It will also describe generalizations to more advanced problems in computing with abelian groups.			

UT7.2	Saturday	Graphical Modeling of Time Sensitive Resource Allocation	
	10:20		
Nikolas Colbrook		Georgia Southern University	
In this presentation	In this presentation we will discuss creating a graphical model to show the allocation of time sensitive		
resources given cer	resources given certain constraints. While following the classic flow network construction, we		
incorporate variou	incorporate various new concepts such as the transaction nodes and varying flow capacities to create		
our graphical mode	our graphical model and show how these resources and materials flow through time. We will also		
explain how different constraints added to the model will affect the model and its optimization.			

SS3.2	Friday	Incorporating Real Data Sets and	Writing into an Introductory
	2:20	Statistics Course Focused on Sports and Games	
Joe DeMaio		Kennesaw State University	Amy Hillen
			Kennesaw State University
The ability to reaso	on statistically is o	critical to becoming an informed c	itizen and intelligent consumer
(Aliaga, et al., 2010). Despite its imp	portance, research indicates that s	tudents struggle to reason
statistically and that	at students typica	ally enter introductory statistics co	ourses "under sufferance, with
levels of resistance	related to their	beliefs of the relevance of statistic	cs" (Howley, 2008).
One approach for h	nelping students	make sense of complex mathema	tical ideas is to situate the ideas
in real-world conte	xts that have me	aning for students. We contend t	hat the context of sports and
games might be pa	rticularly promis	ing, because: 1) it is a rich site for	studying statistical ideas (e.g.,
probabilities in care	d and board gam	es; correlation of player and/or te	eam statistics); and 2) it is likely
of interest to a wid	of interest to a wide range of students.		
In this talk, we describe writing assignments that use real data sets in a general education elementar			a general education elementary
statistics course focused on sports and games, and discuss student reflections on the efficacy of s		flections on the efficacy of such	
assignments.			

SS6.1*	Saturday	The Fibonacci Number of Tadpole and Jellyfish Graphs	
	10:00		
Joe DeMaio		Kennesaw State University	
Given a graph G, a set S is an independent set of vertices if no two vertices in S are adjacent.			
Prodinger and Tick	Prodinger and Tichy define the Fibonacci number of a graph G to be the number of independent sets		
of the graph. They	of the graph. They do so because there are a Fibonacci number of independent sets on the path graph		
and a Lucas numb	and a Lucas number of independent sets on the cycle graph. The tadpole graph is created by placing		
an edge from any	an edge from any vertex of a cycle to either pendent of a path. The resulting triangular array of		
Fibonacci numbers of tadpole graphs yields many interesting properties. Generalizing tadpoles, we			
define the jellyfish graph as the concatenation of a single cycle and multiple paths.			

СР7.4	Saturday	New examples of almost positive curvature	
	11:00		
Jason DeVito		The University of Tennessee at	
		Martin	
are positively curv	A Riemannian manifold is said to be almost positively curved if the set of points for which all 2 -planes are positively curved is open and dense. We show the \$15\$ dimensional homogeneous space $M = Sp(3) / Sp(1)^2$ admits a metric of almost positive curvature. Further, this metrics admits two		
	distinct free isometric S^1 actions, giving two new examples of 14 dimensional almost positively curved manifolds. More specifically, we show the quasi-positively curved metric on M which was		

constructed by Kris Tapp is almost positively curved. By way of contrast, we also show that many of the examples constructed by Tapp have open sets of points containing 0 curvature planes.

CP8.5	Saturday	The Cuban Challenge, A Linear Algebra Problem?		
	11:20			
Lothar Dohse		UNC Asheville		
	In 2015 Obama relaxed travel restrictions to Cuba, and the United States may soon have normalized			
	relations with its neighbor to the south. The result of this shift in policy will impact the social and			
economic structure	economic structure of this once isolated island nation. The author will use economic & demographic			
data, first hand obs	data, first hand observations, and dynamic matrix models to highlight the challenges that Cuba faces.			
The models will shed some light on the potential of this Caribbean island, and what it needs to reach				
that potential.	that potential.			

UT1.2	Friday	Exploring Ramsey Theory	
	2:20		
Tucker Dowell		Belmont University	
		ved in the form of a simple problem: finding the minimum number	
(called the Ram	sey number) of _l	people one would have to invite to a party to ensure there are either	
several variation	three mutual strangers or three mutual acquaintances. By using graphs, we are able to easily answer several variations of this question; however, there are still many open problems. When considering		
complete graph	complete graphs (graphs where every vertex is connected to every other vertex), we only know nine		
Ramsey number	Ramsey numbers! Finding Ramsey numbers has proven difficult, but we hope to benefit from a new		
approach. Join u	approach. Join us in trying to view Ramsey numbers through a new lens.		

CP7.2	Saturday	The locus of "median lines" of Sierpinski's triangle	
	10:20		
Eduardo Dueñez		University of Texas at San	
		Antonio	
For a euclidean tria	For a euclidean triangle ABC, the geometric envelope of lines L that cut sides AB, AC and split the		
triangle in two part	s of equal area i	s part of a hyperbola. In this talk w	e consider the question: ¿What
happens if, instead	of splitting a eu	clidean triangle ABC in two parts v	vith equal area, we split
Sierpinski's triangle	Sierpinski's triangle ABC in two parts with equal (fractal) measure? The answer leads to a fractal curve		
analogue to the hy	analogue to the hyperbola. We include pictures and animations. We also raise some arithmetic		
questions related to an "unbalanced binary" number system arising from the geometry of Sierpinski			rom the geometry of Sierpinski's
triangle.			

SS1.1*	Friday	Fibonacci Series Seriously	
	2:00		
Steven Edwards		Kennesaw State University	
We give a survey of	We give a survey of infinite series that involve the Fibonacci numbers. We examine the methods used		
to show whether various such types of series converge, and in some cases what the series converge			
to. We examine the interplay between results from research articles and problems published in			
journals.			

CP2.6	Friday	ADRC Control of Lorenz System	s with Uncertainties
	3:40		
Zachary Espe		Georgia Southern University	Dr. Yan Wu-Advisor and
		Math Department	Professor at GSU Math
			Department
In this work, we	e study the stabil	ity property of a chaotic Lorenz syst	em stabilized by an ADRC (Active
Disturbance Re	jection Control) o	controller. The Lorenz system is know	wn as a benchmark nonlinear
dynamical syste	dynamical system, which is widely seen in many applications such as thermosyphon and lasers. In		
practice, the di	sturbances to the	e system are usually ignored during	the modeling process. Higher
order terms are	e dropped due to	simplification. All these factors con	tribute to the so-called
uncertainties a	ssociated with th	e system. A robust controller should	I take the uncertainties into
consideration.	An ADRC controll	er is shown to be effective in annihi	lating the unmodeled components
of the system v	vhile regulating th	he flow pattern. An ADRC controller	consists of an ESO (extended
state observer)	, which is designed	ed to approximate the uncertainties	, and an annihilator along with a
PI-controller us	ed to cancel the	disturbances and stabilize the state	trajectories. In particular, we first
prove the asym	prove the asymptotic stability of the ESO of the y-state in the sense of Lyapunov. We then establish		
•	the asymptotic stability of the y-state controlled by an ADRC controller. This leads to the global		
stability of all t	hree states of the	e Lorenz system.	

UT3.1	Friday	A 15 Puzzle Game	
	2:00		
W. Dalton Ethridge	1	University of South Carolina	
		Salkehatchie	
In a sequence, a bigger number comes before a smaller number is called an inversion. If we read a 15			
puzzle in a certain way, we can create a unique sequence. In our talk, we will discuss the solvability of			
a 15 puzzle by analyzing the inversion number of the sequence created by that puzzle. We also discuss			
the solution of an ι	unconventional :	15 puzzle we found in two of our re	eferences.

UT6.2	Saturday 10:20	Convergence rates for high-dimensional half-space depth	
Robert Fabrizio		Clemson University	Michael A. Burr, Clemson University

Data Depth is a non-parametric and geometric measure for quantifying the centrality of a point relative to a probability distribution or a finite sample. Depth contours enclose successive regions of increasing depth. Donoho and Gasko (1992) prove that the sample contours converge to the continuous contours as the sample size approaches infinity. We provide explicit estimates of the rate of convergence in specific cases.

UT2.4	Friday	Triangles in Cayley Graphs	
	3:00		
C. Matthew Farme	Matthew Farmer Dr. Jessie Hamm		
Cayley Graphs were	Cayley Graphs were introduced by Author Cayley in 1878. Since then, they have been studied		
extensively due to	their connection	to group theory, graph theory, co	mputer science, and other fields.
In this presentation	In this presentation, we will briefly review Cayley graphs and then introduce two new parameters for		
Cayley Graphs: Cay	Cayley Graphs: Cay^n (G) and Cay_n (G). When n=3, these parameters tell us about the existence of		
triangles within Cayley Graphs. We find Cay^3 (G) for all groups G and gives some results for Cay_3			
(G) along with futu	(G) along with future directions.		

CP6.2	Saturday	Global Asymptotic Stability in a Model of Networks	
	10:20		
Hassan Fathallah-S	Hassan Fathallah-Shaykh UAB		
Global asymptotic	Global asymptotic stability is of importance for theory and application in several in mathematics,		
physics, engineering, economics, and biology. We study a system of cubic polynomials that models			
networks. We show that the property that the interconnection matrix is Lyapunov diagonally stable is			
a key feature that determines convergence to a single equilibrium.			

UT6.1	Saturday	Logistic Regression Analysis in the NFL	
	10:00		
Alex Fawal		Birmingham Southern College Jordan McKnight - Birmingha	
			Southern College
Teams in the Natio	Teams in the National Football League (NFL) are always looking for ways to attain an edge over their		
opponents and as f	football has evolv	ved, many have turned to statistic	al analysis as a way to maximize
their chances of su	their chances of success. Statistics are meticulously recorded for every game, providing insight to the		
habits of teams and	d players. Becaus	se of this, there is an increased int	erest in determining the
reliability of the sta	atistics, as well as	s discovering how the data can ap	plied to get a win on the
scoreboard. In this	talk, we will pre-	dict a team's probability of making	g it to the Super Bowl, prior to
the first round of t	he playoffs, by us	sing logistic regression and a wide	variety of collected data from
the past fifteen sea	asons of the NFL.		
GW1.3	Friday	Conditions for the Existence of Gorenstein Projective Precovers	
	2:40		
Michael Fox		Georgia Southern University	Dr. Alina Iacob Georgia
			Southern University

The existence of the Gorenstein projective precovers is one of the main open problems in Gorenstein Homological algebra. We give sufficient conditions in order for the class of Gorenstein projective complexes to be special precovering in the category of complexes of R-modules Ch(R). More precisely, we prove that if every complex in Ch(R) has a special Gorenstein flat cover, every Gorenstein projective complex is Gorenstein flat, and every Gorenstein flat complex has finite Goenstein projective dimension, then the class of Gorenstein projective complexes, GP(C), is special precovering in Ch(R).

SS4.2*	Friday	Unique Opportunities for C	Growth and Collaboration via a	
	2:20	Math/CS Club	Math/CS Club	
Kailee Gerzema		Belmont University	Katie Kruzan, Belmont University Savannah Halliday, Belmont University	
		es to not only provide traditional opportunities for scholarly growth,		

but to serve the student as a whole . Through events such as Pizza, Problem Solving, and HackNight, we increase students' exposure to math and the ability to communicate math effectively. We pride ourselves in uniquely fostering relationships among students and professors by providing recreational activities that are extensions of our academic platform. In addition to typical club activities such as monthly meetings and lectures, we aim to produce social structures that allow students to thrive outside of the classroom through events like CRAM JAM.

Moreover, our involvement in events that serve both Belmont and Nashville's communities produces well-rounded students that have a passion for math/computer science, as well as a serving heart.

DS1.1	Friday	How small is too small? Modeling the effects of habitat	
	9:00	fragmentation via reaction diffus	ion equations
Jerome Goddard		Auburn University	
		Montgomery	
Habitat fragmentation occurs when an organism's preferred habitat is divided or broken into smalle			s divided or broken into smaller
fragments (called p	oatches) and can	be caused by natural events, such	as geological processes, or
human activity, suc	human activity, such as land conversion. Habitat fragmentation is often cited as a contributor to		
animal species becoming threatened or endangered. Two important aspects of habitat fragmentat			aspects of habitat fragmentation
are the size of fragmented patches of preferred habitat and the inferior habitat surrounding the			or habitat surrounding the
patches, called the matrix. Ecological field studies have indicated that an organism's survival in a			t an organism's survival in a
patch is often linke	patch is often linked to both the size of the patch and the quality of its surrounding matrix. In this		
talk, we will focus of	on modeling the	effects of habitat fragmentation v	ia the reaction diffusion
framework. The re	eaction diffusion	framework has been extensively e	employed in population
dynamics providing	dynamics providing important biological insight into the patch-level consequences of various		
assumptions made on individual behavior in ecological systems. Such models have seen enormous			models have seen enormous
success both in their empirical validation with actual spatio-temporal distribution data and their			distribution data and their
ability to yield general conclusions about an eco-system based on the analytical results of these		analytical results of these	
theoretical models	theoretical models. First, we will introduce the reaction diffusion framework and a specific reaction		

diffusion model with logistic growth and Robin boundary condition (which will model the negative effects of the patch matrix). Second, we will use mathematics to explore the dynamics of the model via the well-known quadrature method and ultimately obtain a causal relationship between the size of the patch and the quality of the matrix versus the maximum population density sustainable by that patch. This important example regarding habitat fragmentation will hopefully serve to illustrate the usefulness of mathematical models in helping to understand complex biological relationships.

CP4.3	Friday	Monotonicity Violations in Instant Runoff Voting	
	2:40		
Adam Graham-	Squire	High Point University	
It is well-known	It is well-known that the instant runoff voting method violates that Monotonicity Criterionthat is,		
is possible that in an instant runoff election, raising a candidate higher on your ballot could have the			
contradictory effect of making that candidate perform worse in the election. We call this a			
monotonicity anomaly. It is not well-known, however, how frequently monotonicity anomalies arise			y monotonicity anomalies arise
in real-world data. As the prevalence of instant runoff voting increases in the U.S., more instant runof			es in the U.S., more instant runoff
election data is available for analysis to search for monotonicity anomalies. We will present our			
construction of a computer program to find such anomalies, as well as our results regarding the			
prevalence of monotonicity anomalies in the real-world data.			

Adam Graham-Squire High Point University Li High Point University U Ka U Undergraduate calculus courses generally have a mix of students, some before (often AP calculus in high school) and others who have not had ca to first-time calculus students feeling "lost" in comparison to their peers calculus, potentially leading to negative attitudes toward the material ar the course. To test this, we split up some calculus sections into sections calculus before, and other sections of only students who had no prior calculus before.	Differentiated Calculus: How does prior Calculus knowledge of		SS2.1*	
Undergraduate calculus courses generally have a mix of students, some before (often AP calculus in high school) and others who have not had ca to first-time calculus students feeling "lost" in comparison to their peers calculus, potentially leading to negative attitudes toward the material ar the course. To test this, we split up some calculus sections into sections calculus before, and other sections of only students who had no prior ca	peers affect students' experience in Calculus?			
before (often AP calculus in high school) and others who have not had ca to first-time calculus students feeling "lost" in comparison to their peers calculus, potentially leading to negative attitudes toward the material ar the course. To test this, we split up some calculus sections into sections calculus before, and other sections of only students who had no prior ca	indsay Piechnik, High Point Iniversity aren O'Hara, High Point Iniversity	Graham-Squire		
	Undergraduate calculus courses generally have a mix of students, some who have taken calculus before (often AP calculus in high school) and others who have not had calculus before. This can lead to first-time calculus students feeling "lost" in comparison to their peers who have already had calculus, potentially leading to negative attitudes toward the material and/or lower performance in the course. To test this, we split up some calculus sections into sections of only students who had calculus before, and other sections of only students who had no prior calculus experience. Both sections were taught in an identical manner, and we will present our preliminary findings about comparisons between the two sections and to control sections of the course (that is, sections that			

CP1.2	Friday 2:20	Quasigroups and Undergraduate Research Projects	
Mark Greer		University Of North Alabama	

A quasigroup (Q, \cdot) is simply a set Q and binary operation \cdot whose multiplication table is a latin square. This immediately gives a simple algebraic connection to many well-known combinatorial objects accessible to undergraduates, with lots of open questions. This talk will focus on several undergraduate research projects that focused on this idea. We'll discuss Sudoku Quasigroups, decompositions of complete graphs and P-quasigroups, and Zero-Knowledge cryptography using isotopy.

SS7.4*	Saturday 11:00 & 11:20	Easy To Use GeoGebra Functions	
William Griffin		GSU-Perimeter College Joanna Wilson GSU-Perimeter College	
GeoGebra is free software that can easily be used in the classroom to help students visualize mathematical concepts. This presentation will demonstrate commands that can be used in College Algebra, Pre-calculus, and Calculus.			•

CP7.1	Saturday	Circling the Triangle: Constructing a Class of Delta Curves		
	10:00			
William Griffiths		Kennesaw State University	William Selman, Kennesaw	
			State University,	
			Undergraduate Student	
			Philip Davis, Kennesaw State	
			University, Undergraduate	
			Student	
We begin with an equilateral triangle, and wish to inscribe a curve inside of it. Demanding more of				
these curves, we re	equire that, as th	hey rotate, they at all times remained inscribed inside our triangle.		
Such a curve is call	ed a delta curve.	ve. An appropriate circle springs to mind as a basic case of such a		
curve's existence.	The curve of leas	area that satisfies the condition is known as the delta biangle.		

Both of these simple cases can be constructed using a straight edge and compass. We present a construction of an infinite class of such curves, which exist 'between' the circle and the biangle.

SS9.3*	Saturday	What's Your Bid? Encouraging Creativity and Teamwork by
	10:40	Holding a Math Auction

Rachel Grotheer	Clemson University				
It's not easy to get undergraduate s	It's not easy to get undergraduate students to be engaged and excited to think about open-ended				
math problems, especially those who are simply trying to ``get through" the math class required for					
their major. In attempt to encourag	e engagement and excitement, th	ne student chapter of the			
Association for Women in Mathematics at Clemson decided to hold a Math Auction during a Math					
Club meeting. The concept of a Math Auction is to divide students into teams, give them open-ended					
problems (that is, problems with no	o one ``correct" answer), and have	e them bid on their solutions,			
based on their confidence of their s	olution being the best one. We fo	ound that combining teamwork,			
an exciting bidding process, and prizes, caused otherwise mildly interested students think deeply, and					
even be excited about mathematics	s on a Friday afternoon.				

UT5.4	Saturday	Augmented Happy Functions of Higher Power	
	11:00		
Marcus Harbo		The Citadel	Dr. Breeanne Swart - Adviser
The presentation investigates Augmented Happy Functions of Higher Power, defined as			
$T_{[c,q]}\left(\sum_{i=0}^n a_i 10\right)$	$D^{i} = \sum_{i=0}^{n} a_{i}^{q} + c , 0 =$	$\leq a_i \leq 9$ with $c, q \in \square^+$.	This function takes the digits of a positive
integer, raises each digit to the power q , sums the results, and adds a constant, c , to the sum. In			
particular, the iterative properties of this function are investigated for a range of values of c and q			
as well as other number systems.			

SS1.4*	Friday	Covering Systems Concerning t	Covering Systems Concerning the Fibonacci Numbers	
	3:00			
Wilson Harve	У	University of South Carolina	Michael Filaseta, University of	
			South Carolina	
			Ognian Trifonov, University of	
			South Carolina	
Erd\"{o}s asked if there existed a covering system of the integers with arbitrarily large moduli and if				
there existed	a covering system	of the integers with all moduli odd.	. The first question has been	
answered; the second remains open. We consider similar questions concerning covering systems of				
the Fibonacci numbers and show that both questions can be answered in the affirmative for the			ered in the affirmative for the	
Fibonacci numbers.				

GS3.2 Saturday Some of my favorite problems from the UGA Math To	ournament

8:45		
Mo Hendon	University of Georgia	
I'll show a few of the questions we discuss the act of creating interest slope of the line that bisects the a	ing and challenging problems. As a	n example, can you find the

UT4.6	Friday	3D Hyperstereo Image Stitching	
	3:40		
Jonathan Hesser		Belmont University	Michelle Guinn, Assistant
			Professor, Mathematics,
			Belmont University
Current techniques and programs for stitching hyper stereo images for three dimensional encoding			
leaves gaps and blind spots in the product image. Using fundamentals of multivariable Calculus it is possible to more accurately construct depth maps for hyper stereo images and render more accurate three-dimensional images.			

CP5.5	Saturday	Jumping in the shark tank for community-based learning	
	11:20		
Laurie Heyer		Davidson College	
techniques that em row, I am taking a " based projects. The	phasizes real-wo 'shark tank" entr e first attempt wa exhilarating day o	as a huge success, leading to bette of class. I will discuss the projects	ojects. For the second year in a developing ideas for community- er projects, more engaged

UT6.6	Saturday	On Bond Percolation in the Infinite Knight Graph	
	11:40		
Kristin Hinson		Winthrop University	Dr Arran Hamm, Winthrop
			University
Imagine placing a k	night (the chess	piece) on an infinite chessboard.	Suppose we now use coin flips
('Yes' and 'No' with	probabilities p a	and 1-p respectively) to restrict wh	nich moves the knight can make
•	• •	w as the classic bond percolation of	C
		ig path after every restriction is m	
		ig path after every restriction is in	aue:
Consider the follow	ving subcase of t	his question. Namely, fix an "origi	" square and only allow certain
	•	norizontal squares (and thus one v	. ,
		the structure generated by startir	
•		o ,	c c c
	•	ately all possible type two moves.	
	randomization scheme to the one described above, we may again ask the bond percolation question		
We provide nontrivial bounds on p-values which have an affirmative/negative answer.		negative answer.	
Joint work with Dr. Arran Hamm.			
CP5.3	Saturday	Use of Internship Experiences to	Recruit Pre-service Math and
		<u> </u>	

1	10:40	Science Teachers	
Tim Howard		Columbus State University	Deborah Gober, Kimberly
			Shaw, Cindy Ticknor -
			Columbus State University
program for universi encourage the interr projects, supported I Scholarship Program	ity freshmen an ns to consider c by funding from (award #11363 to identify stre	Tuture Teachers of STEM (CRAFT-S d sophomores and a STEM camp areers in teaching. Interns assist v n the National Science Foundation 356). As part of an ongoing resear ngths and weaknesses of the expe	for pre-college students to vith camp activities and other I's Robert Noyce Teacher

SS6.2*	Saturday	On the number of decompositions of $0 = \pm F_0 \pm F_1 \pm F_2 \pm \cdots \pm F_n$		
	10:20			
Eugen Ionascu	J	CSU, Columbus, GA	Dorin Andrica, Babes Bolyai	
			University	
For an Erdös-Surányi sequence it is customary to consider its signum equation.				
Based on some classical heuristic arguments, we conjecture the asymptotic behavior for the number				
of solutions of this signum equation in the case of the sequence $\{n^k\}_n$ ($k \ge 2$) and the sequence of				
primes.				
Surprisingly, we show that this method does not apply at all for the Fibonacci sequence. By computing				

Surprisingly, we show that this method does not apply at all for the Fibonacci sequence. By computing the precise number of solutions, in this case, we obtain an exponential growth, which shows, in particular, the limitations of such an intuition.

UT8.5	Saturday	Using Hierarchical Linear Models to Measure Resin Growth on		
	11:20	trees in the Peruvian Amazon		
Vaibhav Jain		George Washington University		
Weevils continue t	Weevils continue to be an evolving yet valuable species since it produces Breu resin that sells as a			
viable non-timber f	viable non-timber forest product in the Peruvian Amazon. Some challenges surrounding Breu resin			
include determining the optimal conditions in which to harvest this substance and identifying				
significant factors contributing to its growth. This study uses hierarchical linear modeling to predict				
Breu resin growth and identify those significant predictors. The study concludes with				
recommendations	recommendations that can maximize resin production.			

PUB1.1	Friday	Hawkes Learning: Revolutionizing Math Courseware
--------	--------	--

2:00			
Emily Judy	Hawkes Learning		
Hawkes Learning has enhanced its courseware, building new functionality for customization with the			
feedback of instructors from across	feedback of instructors from across the country! Exciting innovations are now available with our		
tablet-friendly learning platform. Check out the new customization tools to individualize your			
curriculum and tailor the student experience in the learning path, including single sign-on from			
Blackboard, Canvas, and D2L. Join us to learn more about these exciting developments, including			
several brand-new courses availab	e for review, and enter to win a \$25 Amazon gift card!		

UT4.3	Friday	Optimizing power and efficiency of a model heat engine	
	2:40		
Erez Kaminski		Birmingham-Southern College	
whose width and t which assumes tha equilibrium Marko construct a compu	emperature are l it the system is w v chain formulati tational model o show that a prot	t engine composed of a particle in an harmonic potential well both cyclically modulated in time. The model in questions is one yell defined by a series of energy levels. We will use the non- ion to describe the time evolution of the system. We then f the system and use it to optimize two system parameters, power tocol can be created in which power and efficiency are both	

CP4.2	Friday	Extremal Graph Theory for Graph Substructures	
	2:20		
Lauren Keough		Western Carolina University	Jamie Radcliffe, University of
			Nebraska-Lincoln
complete graph or mathematical que instead: how could maximum number possible number o	n r vertices? Tura stions, we are le l we arrange a g of complete gra f independent s num number of	s, how many edges can we stuff in in answered this question for all n d to more questions. Let's flip Tura iven number of edges among n ver phs? Should we arrange them diff ets? In this talk we will explore que a particular substructure a graph (and r in 1941, but, as with many án's theorem on its head and ask rtices so that we have the erently if we want the smallest estions of the form "What is the

CP3.4	Friday	Investigating the Truncated Jacobi Triple Product	
	3:00		
Louis Kolitsch	-	The University of Tennessee at	
		Martin	
Derivatives of particular partition generating functions will be used to investigate the truncated Jacob			
triple product.			

UT1.1	Friday	State Space Graphs and the N-Queens Problem	
	2:00		
Abrahim Ladha		Armstrong State University Dr. Tricia Brown (Mentor)	
In this project, we study a change of rules to the traditional n-queens problem, and observe both			
symmetric and chaotic properties of $n \times n$ chess boards and state-space trees.			

SS8.3*	Saturday	Symmetry, geometric phase, and holonomy: falling cats and		
	10:40	swinging clocks		
Jeffrey Lawson		Western Carolina University	Matthew Rave	
			Western Carolina University	
Geometric phase in	Geometric phase in a dynamical system appears when two competing frequencies in a closed orbit go			
in and out of "sync	h". In many sim	ole mechanical systems with rotat	ional symmetry we can compute	
geometric phase b	y integrating a d	ifferential form obtained from the	energy function and a single	
conservation law.	The dynamical ir	formation required is minimal - w	e never even have to solve a	
differential equation	differential equation! Geometric phase can be used to explain how cats (almost) always land on their			
feet and how that	feet and how that big pendulum at the science museum tells us the time of day. We conclude with an			
interpretation of geometric phase in terms of the concepts of holonomy and curvature.				

CP3.1	Friday	Runs of Consecutive Abundant Numbers	
	2:00		
Bill Linderman		King University	
Long runs of abund	lant numbers are abundant numb	bf abundant} if the sum of its prop e scarce. For example, the starting pers has 39 digits. We present a m	term of the smallest known set

UT1.5	Friday	The Radio Number of $K_n \Box P$			
	3:20	- 11			
Sarah Locke		University of Tennessee at	Amanda Niedzialomski,		
		Martin	University of Tennessee at		
			Martin		
For a simple, connected graph G, we consider $f:V(G) \rightarrow \Box_+$ that satisfies					
$ f(u) - f(v) \ge di$	$ f(u) - f(v) \ge diam(G) + 1 - d(u, v)$ for all distinct vertices <i>u,v</i> . Such an f is a radio labeling of G .				
The largest elemen	The largest element in the range of f is called the span of f , and the smallest possible span of any				
radio labeling of G is called the radio number of G . We will talk about $K_n^{\Box}P$, a family of graphs					
whose radio numbers we have recently found.					

CP3.5	Friday 3:20	Capelli-Rédei Theorem, Solvable Quintics, and Finite Fields		
Matt Lunsford	Matt Lunsford Union University			
polynomials over fi irreducible radicals	A situation analogous to the classic casus irreducibilis exists in the context of irreducible cubic polynomials over finite fields if it is required that solvability by radicals means solvability by irreducible radicals. In this talk, we extend this analogy to irreducible quartics and quintics over fini fields by use of the Capelli-Redei Theorem.		cals means solvability by	

GW1.4	Friday	An Improved Modal Interv	al Algorithm for Unconstrained	
	3:00	Continuous Minimax Prob	lems	
Xin Luo	·	University of Alabama	Min Sun, University of Alabama	
Continuous I	minimax problems	can be applied to engineering, f	inance and other fields. Based on	
Miguel Á. Sa	inz, we introduced	a new definition of semantic ex	tensions and developed an improved	
algorithm us	ing modal intervals	to solve unconstrained continu	ous minimax problems. Inspired by	
Maurice Sior	n, we also applied a	maxmin version and combined	with the minimax version of the	
algorithm to	solve unconstraine	ed continuous minimax problem	s. A uniform partition is introduced.	
The convergence of the algorithm and more deletion conditions are proposed in this paper.				
Numerical re	esults of several typ	ical examples show that the algorithm is reliable and efficient.		

SS7.1*	Saturday	Engaging Non-Majors in Quantitative Reasoning Students	
	10:00		
Laura Lynch		College of Coastal Georgia	
research conducte this freshmen cour Learning project w	d over the last tw se: (1) incorpora here students pa	ourse in Georgia for non-STEM stu vo years into the efficacy of two di ting student group projects and (2 ired with local middle schools to r tention and performance as well a	ifferent teaching strategies for 2) incorporating a Service- run math-based fantasy football

SS9.4*	Saturday	Service Projects for Math Clubs	
	11:00		
Laura Lynch		College of Coastal Georgia	
All clubs at the	All clubs at the College of Coastal Georgia are required to participate in community service each		
semester. The Math and Engineering Club members at CCGA have satisfied this requirement through			
robotics training using Lego Mindstorms NXT kits and through free public tutoring to the community.			
This talk will share the development and outcomes of these two projects.			

UT8.2	Saturday	Fermat and Descartes: An Unlikely Collaboration		
	10:20			
Caleb Macdonald		UNC Asheville	Gregory Boudreaux	
The animosity betw	veen Pierre de Fe	ermat and Renee Descartes is well	known. Both developed	
methods for findin	g the tangent to	a point at relatively the same time	e. Fermat's method, using his	
own notion of 'ade	quality', was full	of logical leaps that left many of h	is contemporaries skeptical - the	
argument he made	argument he made only held water if you already believed it was true. Descartes method was			
intricate in detail a	intricate in detail and required many steps. However, In a letter to Claude Hardy, Descartes clearly			
explains how Ferm	explains how Fermat's method works using the same steps, with one key exception: starting with a			
secant line instead of a tangent line. This key difference was likely inspired by Descartes original				
method, in which the chords of circles drawn to find the tangent are also secants on the curve of			also secants on the curve of	
interest.				

SS4.3*	Friday	Math Club Events at the University of North Alabama		
	2:40			
Emily Malone	Emily Malone University of North Alabama			
events for not only the events and action	mathematics mainstructure mathematics mainstructure mathematics that we as	e University of North Alabama is e ajors but the entire student body. a club have hosted and participat Pi Day and our final exam tutoring	This talk will present a few of ed in over the last couple of	

UT5.6	Saturday	A new quasi-positively curved biquotient of Sp(3)		
	11:40			
Wesley Martin		The University of Tennessee at	Jason DeVito	
Martin				
In 2014, DeVito, DeYeso, Ruddy, and Wesner classified biquotients of the form Sp(3)//Sp(1) and				
showed that 8 of them admit metrics of quasi-positive curvature. We show their general methods				
apply to a 9th example and no more, finding a ninth biquotient of Sp(3) with quasi-positive curvature.				

DS1.2	Friday	Partitions and compositions: A tale of two symmetries		
	10:00			
Sarah Mason Wake Forest University				
Big questions in ma	Big questions in mathematics are often solved through a series of smaller contributions. Sometimes,			
when we set out to solve one problem, we end up making progress on other problems along the way!				
This talk is the story of a result that connects two different types of symmetries and ends up helping				
to prove a conjecture that arose from a completely different and seemingly unrelated problem.				

SS9.2*	Saturday 10:20	Successful Math Club Activities at UNG	
Catrina May		University of North Georgia	Brandon Myers, University of North Georgia Shae Lecroy, University of North Georgia Miranda Booker, University of North Georgia Karen Briggs, University of North Georgia
development of within our math informational se nature of these of campus. This	mathematical sk mematics departm essions that contr activities makes t presentation will aining, and succes	cover the planning and implemen	ve student-faculty relationships ctivities, guest speakers, and our mathematics students. The s organizations on almost any type

SS8.2	Saturday 10:20	A Non-Hereditary Realization [vio Diffusion Equation] of Fractional Arbitrary Function: An Applicatio Dimensional Euler-Bernoulli Equa	Derivatives with Respect to an n to the Stabilization of a One-
Brahima Mbodje		Lenoir-Rhyne University	

In this paper, we consider the idea of a fractional derivative operator [with respect to an arbitrary function]. We show that such an operator may be modeled by or realized via a [Kolmogorov-Einstein type] diffusion equation.

We then present a nontrivial application of our non-hereditary realization. The application in question is to the study of a one dimensional Euler-Bernoulli beam which is subjected to boundary fractional derivative controls. The investigation is fivefold:

- 1. Proof the well-posedness of the partial differential equations describing the control system [Existence and uniqueness of a solution.]
- 2. Proof of the asymptotic stability of the system.
- 3. Proof of the lack of exponential stability of the system. [In fact, we will sharpen this result by showing that even for partial state variables exponential stability remains impossibility.]
- 4. Proof of an energy decay rate for sufficiently smooth solutions.
- 5. And finally, in the remainder of this paper, we will also demonstrate how our approach carry over to other more computationally involved models such as the Timoshenko beam equation, the so-called fluid-filled porous media equation, the nonlinear Schrodinger equation, and the nonlinear reaction diffusion equation.

UT5.5	Saturday 11:20	A Series of Four Sums of a Fibond	acci Number to the Fourth Power
Nathan McAnally		The Citadel	

The Fibonacci Numbers provide a unique sequence observable in many different areas of nature and applicable in a significant portion of theoretical mathematics. These numbers provide a definition for the aesthetically appealing golden ratio and can define the growth of a population. They can be heard in music and observed in the petals of a flower. Due to the numerous applications of this sequence in the physical world and theoretical mathematics, it is important to find identities related to this unique set of numbers.

In 1965 Graham published a closed formula for the sequence of four sums of squares of Fibonacci numbers. Since then, as far as I know, there has been no other similar results for these type of natural questions. However, in 2015 the Fibonacci Quarterly proposed a problem, which was classified by the journal as an Advanced Problem related to Graham's result. In the problem, instead of power two, the Fibonacci number was raised to power four. I found a proof for the proposed problem and also found that it gives rise to a potential future research problem.

In this talk I discuss the proof of the problem described above. I submitted this problem for publication in the Fibonacci Quarterly.

UT4.4	Friday	Using Weighted Bipartite Matchings to Decrease Profit Loss	
	3:00		
Kevin McCarey		Coastal Carolina University	
sending one farm's	crop to one of the into what meth	nd n plants and wants to know ho he plants. The problem can be exp ods there are to solve this probler e.	pressed as a weighted bipartite

UT1.4	Friday 3:00	Strategy for a Closed Knight's To	Strategy for a Closed Knight's Tour in the Fourth Dimension	
Taylor McCra	cken	Mathmatics department,	Xiaokun Ye Mathmatics	
		Birmingham-Southern College,	department, Birmingham-	
		900 Arkadelphia Rd,	Southern College, 900	
		Birmingham, AL,35254	Arkadelphia Rd, Birmingham,	
			AL,35254, xye@bsc.edu	
The closed knight's tour problem has been around for nearly three hundred years. In 2012, Erde, B.			undred years. In 2012, Erde, B.	
Golenia, and S. Golenia gave the solution for n-dimensional rectangular boards to have a closed			lar boards to have a closed	
knight's tour, for n≥4, using a (1,2) knight's move. In 2010, Bai, Yang, Zhu, Jiang, and Huang found a			Zhu, Jiang, and Huang found a	
solution to a	solution to a generalized knight's tour problem in three dimensions using a (1,2,2) knight's move. In			

this talk, we focus on a (1,2,2) closed knight's tour on a four dimensional board.

SS2.2	Friday	Review Revisited	
	2:20		
Diana McGinnis		Perimeter College, Georgia	
		State University	
Deep learning requires that students have the opportunity to revisit the same concept in a variety of		he same concept in a variety of	
forms. Rather than simply reviewing before a test, infuse review into each lesson in a way that will			
augment student understanding. Examples from Calculus I and Calculus II will be provided.			

CP3.3	Friday	Progress on the Perfect Cuboid	
	2:40		
John McKinley			
cuboid. Finally son but it's an infinite triple parameteriz polynomial in one	ne progress on p part out of the ir ation than the tr variable instead	r the past fifty years laboriously failing to find a 'small' perfect roving a perfect cuboid doesn't exist! It's not the whole solution, nfinite entirety. What if someone used a different Pythagorean aditional (m^2-n^2, 2mn, m^2+n^2)? What if this approach led to a of four variables? Come see how this polynomial with leading and cannot have natural number solutions greater than one.	

CP2.4	Friday	Mathematical and Computational Modeling of Certain Biological	
	3:00	Systems	
Marrisa Merrell		Albany State University Dr. Anilkumar Devarapu	
			Albany State University
			Albany GA
Mathematical Biology is one of the fastest growing fields of science and engineering. In this paper our goal is to develop mathematical models to certain biological systems using the deterministic and the			
stochastic analysis	stochastic analysis approach. Then we will try to find analytical and numerical approximations to the		
mathematical syste	mathematical systems using MATLAB software. Furthermore, we will discuss about their linear		
stability analysis of their respective systems.			

CP1.5	Friday	Encouraging Higher Level Thinkin	ng in an Inverted Multivariable	
	3:20	Calculus Class		
Joshua Mike		University of Tennessee,		
		Knoxville		
We will describe h	ow we are using	Mathematica to supplement both	the in-class and out-of-class	
experiences of stu	dents enrolled in	an inverted multivariable calculus	s course. In particular, we will	
focus on the creat	ion of flexible mo	odular course materials including n	otes, guided pre-class practice,	
structured group v	structured group work, and homework.			
Branching off from	Branching off from work done in this area by our coordinator, Dr. Brodskiy at UTK, our approach			
focuses on delegat	ting the lower co	gnitive thinking outside class using	notes and short practice, and	
developing higher	level thinking in-	class through Mathematica based	conceptual activities. Our goal is	
to focus our stude	nts on the mathe	matical concepts and processes, v	vhile they use Mathematica to	
perform most of th	perform most of the calculations and as an aid for visualization and exploration during in-class			
activities and hom	activities and homework. This semester, we are sharing our method with more instructors and look			
forward to seeing	the modular stru	cture of the class evolve.		

UT2.5	Friday	Determining the Rank of a Kronecker Sum and Characterizing Its	
	3:20	Generalized Eigenvectors	
Kirsten Morris		Georgia College & State	Dr. Brandon Samples, Georgia
		University	College & State University
Sylvester equation	Sylvester equations of the form $AX - XB = C$, for given matrices A, B, and C, play an important		
role in control theo	role in control theory and stability theory. Let $vec(X)$ denote the function that takes a matrix X an		
creates a vector fro	creates a vector from its columns. Using the Kronecker sum of matrices we rewrite $AX - XB = C$ as		
the linear equatior	the linear equation $(I \otimes A - B^T \otimes I) \operatorname{vec}(X) = \operatorname{vex}(C)$, where I is the identity matrix. We present		
a result regarding	a result regarding the rank of the Kronecker sum $(I \otimes A - B^{^T} \otimes I)$, where A and B are similar		
matrices. We also present a partial characterization for generalized eigenvectors of this Kronecker			
sum for certain matrices A and B .			

UT2.3	Friday	On the Sequences of Exponents in Prime Factorization	
	2:40		
Safa Motallebi		Auburn University at	Dr. Luis Alberto Cueva-Parra,
		Montgomery	Auburn University at
			Montgomery
Since the patterns	of the exponents	in prime factorization of number	s has not been studied in depth,
we have examined	we have examined these patterns in even numbers for their first prime factor. We will present a		
formula which gen	formula which generates a sequence of the exponents of the first factor in the prime factorization of		
even numbers as well as the product of two consecutive even numbers. Eventually, we could use a			rs. Eventually, we could use a
similar approach to study the behavior of the exponents of other factors, odd numbers and factorials.			

CP1.4	Friday	Introducing Students to Conjectures, Exploration and Visual	
	3:00	Proofs using Experiments in Topology	
Antara Mukherjee		The Citadel	Rigoberto Florez (The Citadel)
In this presentatio	n I will talk about	some classical experiments in top	ology, my collaborator Dr. R.
Flórez and I used to	o stimulate the c	uriosity of students in our freshma	an level math classes. We
designed some exp	designed some experiments where the student could ask questions, conjecture results and ultimately		
reconstruct some	reconstruct some visual proofs which helped them gain better understanding of what a mathematical		
•	•	nvolved construction of topologic	-
projective plane ba	and and the Klein	bottle band, observing their prop	erties, stating conjectures,
verifying the conje	ctures and writin	g sketch of proofs. I will also discu	iss how the students discovered
	via experiments that altering topological objects by cutting do not preserve their hereditary		
properties. These experiments encouraged them to learn more about topology and other complex			t topology and other complex
mathematical topi	cs.		

UT7.5	Saturday	Balancing Skeletal Chemical Equations Using Matrices	
	11:20		
Emir Nazdrajic		Methodist University	
Balancing skeletal	Balancing skeletal chemical equations is necessary due to the law of conservation of mass. In such		
way, one is able to	way, one is able to determine the quantitative ratio of reactants and products required. Majority of		
chemical equations	chemical equations are very easy to balance, using one of the most common methods – balancing by		
inspection. This tal	inspection. This talk will discuss how matrices can be used to balance difficult skeletal chemical		
equations. Further	equations. Furthermore, by finding the kernels of matrices, we will get the family of balancing		
solutions. Extracting the family of balancing solutions, one can use it to discover unique way of			
making reaction feasible, yet under unfamiliar conditions to today's knowledge.			

SS8.1*	Saturday	Stability in a scalar differential equation with multiple, distributed	
	10:00	time delays	
Israel Ncube		Alabama A & M University and	
		Massachusetts Institute of	
		Technology	
We consider a linear scalar delay differential equation (DDE), consisting of two arbitrary distributed			
time delays. We study the stability of the trivial solution as well as the explicit effects of a specified			
distribution on some qualitative features of the DDE. This represents joint work with S.A. Campbell.			

CP8.2	Saturday	A fair-bold gambling function is simply singular	
	10:20		
Richard Neidinger		Davidson College	
(the derivative is ze have fractal structu are limited in sayin been described as	ero almost every ure. For strictly in g exactly where a probability of s ph where we car	[0,1] is continuous, increasing, and where and does not exist elsewhe creasing examples, derivative res the derivative exists and where it uccess in a gambling scenario. We exploit the fractal structure to ch	ere). The graphs of such functions ults are usually existential and is zero. One classic example has e modify the scenario and

SS2.4*	Friday	Why Undergraduate Students cannot Execute Their own Global	
	3:00	Plans for Solving Mathematical F	Problems in In-class Assignments.
Kedar Nepal		Mercer University	
This qualitative stu	idy examines und	lergraduate students' execution b	ehaviors of their own global
plans for solving th	ne problems. Und	ergraduate students enrolled in C	alculus I, Calculus II, and
Introduction to Dif	ferential Equatio	ns courses were required to write	their global plans for solving the
mathematical prot	mathematical problems and follow their own plans to solve problems in their in-class quizzes and		
tests. First phase o	of data analysis in	volves only those student works t	hat have valid global plans for
U	solving the problems. Less than half of the students with valid global plans were able to solve their		
problems successfully. Student errors were categorized into many pre-determined and other new			
categories that emerged from data analysis. Student errors that had the significant impact in their			
abilities to execute their own global plans will be discussed.			

UT1.3	Friday	On the 6-cordiality of trees	
	2:40		
Michelle Nguyen		Clayton State University	Elliot Krop- PH.D -Clayton State
			University
			Keith Driscoll -PH.D - Clayton
			State University
In 1991, M. Hovey	defined the k-co	rdial labeling of a graph as a funct	ion from the set of vertices to Zk
so that			
i. Each label	i. Each label appears on at most one more vertex than any other		er
	The induced edge-weights are found by summing the labels on vertices incident to a given edge, modulo k		

iii. Each edge-weight appears on at most one more edge than any other.

He conjectured that for any positive integer k, all trees are k-cordial, and showed this holds for $3 \le k \le 5$. We discuss the problem of showing all trees are 6-cordial without the aid of a computer.

CP6.1	Saturday 10:00	A New Algorithm for Maximum Flow Distribution Networks: The Modified Push Algorithm	
	10:00	Mouijieu Push Algorithm	
Allan Pangburn	Allan Pangburn UNCW Thesis Dr. John Karlof		Dr. John Karlof
In this presentation, we present a new method to determine an initial feasible flow by revising:			
Goldberg and Tarjan's algorithm of 1988, and Sheu, Ting, and Wang's algorithm of 2006. Major			
revisions include: defining a pre-determined search order, resetting capacities on arcs, two formulas			
to lessen the amount of excess flow, and defining a new subgraph.			

UT3.3	Friday	Finding Fractional Order Derivatives on Discrete Domains	
	2:40		
Philip Paynter		Coastal Carolina University	
Using basic difference calculus, can develop the theory needed to find fractional order sums and differences on discrete sets of natural numbers.			

SS5.1	Friday	Essential Pattern Groups of Finite Tree Automorphisms	
	2:00		
Andrew Penland		Western Carolina University	
Every automorphis	Every automorphism of a finite binary tree can be represented via a labeled binary tree called a		
\textit{pattern}, an	\textit{pattern}, and so groups of finite binary tree automorphisms correspond to collections of		
labeled trees. Rece	labeled trees. Recently, this fact has been used to define a class of finite groups of tree		
automorphisms kn	automorphisms known as \textit{essential pattern groups}, which can be studied using combinatorial		
properties of their patterns. We will describe the patterns of certain classes of these groups, and use			
this information to characterize the count certain types of essential pattern groups.			

UT8.5	Saturday	Using Hierarchical Linear Models to Measure Resin Growth on	
	11:20	trees in the Peruvian Amazon	
Luke Plowden		George Washington University	
Weevils continue to be an evolving yet valuable species since it produces Breu resin that sells as a			
viable non-timber f	viable non-timber forest product in the Peruvian Amazon. Some challenges surrounding Breu resin		
include determinin	include determining the optimal conditions in which to harvest this substance and identifying		
significant factors contributing to its growth. This study uses hierarchical linear modeling to predict			
Breu resin growth and identify those significant predictors. The study concludes with			
recommendations that can maximize resin production.			

UT8.4	Saturday	A Mathematical Model for Predicting 300 Meter Hurdle Race	
	11:00	Times	
Marquis Pratt		Birmingham-Southern College	Conner Young. Birmingham-
			Southern College
Previous researchers created models for predicting sprint race times for 300 and 400 meter races as			for 300 and 400 meter races as
well as 110 meter hurdle races. By manipulating their equations, we created a model combining these			
concepts to predict a world record race time for the 300 meter hurdles.			

SS5.5*	Friday	Undergraduate Research in Per	rmutation Groups and Sliding Disk
	3:20	Puzzles	
Lee Raney		University of North Alabama	W. Andrew Craft, University of North Alabama; Austin Oldag, University of North Alabama; Andrew Penland, Western Carolina University
A sliding disk puzzle is a graph-generalization of Sam Loyd's famous 15-puzzle. Here, we discuss the arrangement group, a finite permutation group which controls the collection of legal arrangements of a sliding disk puzzle. We summarize results from an undergraduate research project on the structure of arrangement groups such puzzles, including constructions and a conjecture affirmed by a 1974 theorem of Richard Wilson.			

G\$1.1	Friday	Graph Labelings for Everyone!	
	12:45		
Christopher Raridan		Clayton State University	
In this talk, we will explore a few of the many graph labelings that have been developed over the		e been developed over the	
years.			

UT7.1	Saturday	A Generalization of an Inequality with Harmonic Means	
	10:00		
John Risher		USC Salkehatchie	
For positive sequer	For positive sequences $\{a_i\}_{i=1}^n$ and $\{b_i\}_{i=1}^n$, we consider the series $\sum_{i=1}^n 1/(a_i + b_i)$. Using AM-HM		
inequality, we prov	inequality, we proved that $rac{n}{lpha_a+lpha_b}$ is a lower bound of this sequence, where $lpha_a$ and $lpha_b$ are the		
arithmetic means of sequences $\{a_i\}_{i=1}^n$ and $\{b_i\}_{i=1}^n$. Using a technique introduce by Cauchy, we also			
proved that $\frac{n}{\gamma_a + \gamma_b}$ is an upper bound of this sequence, where γ_a and γ_b are the harmonic means			
of sequences $\{a_i\}_{i=1}^n$ and $\{b_i\}_{i=1}^n$.			

CP2.3	Friday	A delay differential equation model of phosphorylation of endothelial nitric oxide synthase			
	2:40				
Lake Ritter		Kennesaw State University	John Salerno, Kennesaw State		
			University		
			Carol Chrestensen, Kennesaw		
			State University		
Nitric Oxide (NO) is	a gaseous comp	ound that serves as a signaling m	olecule in cellular interactions. In		
the vasculature, NO	D is synthesized f	rom endogenous agents by endot	helial nitric oxide synthase		
(eNOS) where it pla	ays key roles in s	everal functions related to homeo	stasis, adaptation, and		
development. Rece	ent experimental	studies have revealed repeated in	ncreases and decreases in NO		
production when e	production when eNOS is subjected to various stimuli (e.g. glucose and insulin). In this talk, we				
present a model of	present a model of eNOS site activation via phosphorylation by a pair of kinase and phosphatase				
species. The model	species. The model presents as a system of ordinary differential equations with time delay. We show				
that under condition	that under conditions on the model parameters, varying the delay time may give rise to a Hopf				
bifurcation. Proper	bifurcation. Properties of the bifurcating solutions are explored via a center manifold reduction, and				
numerical illustration is provided.					

SS8.4*	Saturday	Mixed mode oscillations in a stochastic two-trophic ecological		
	11:00	model		
Susmita Sadhu		Georgia College & State		
		University		
We consider a three	e dimensional st	ochastic system comprising of two	p predators competing for the	
same prey under H	Iolling type II fun	ctional response. Assuming that th	ne growth rate of the prey is	
much faster than t	he growth rates of	of the predators, the problem is vi	ewed as a singular perturbed	
system with two slow and one fast variables. As the mortality rate of one of the predators is varied,				
the deterministic model undergoes a singular Hopf bifurcation, in addition to exhibiting a variety of				
complex dynamics such as mixed mode oscillations, relaxation oscillations and chaos. In presence of				
environmental variations, the model is viewed as a slow-fast stochastic system. We study this system,				
and in particular show numerical simulations of the effect of noise on mixed mode oscillations.				

CP5.2	Saturday	Supplemental Instruction Shaping Student Success			
	10:20				
Brandon Samples		Georgia College	Emily Baum - Georgia College		
Academic support	programs are es	sential when it comes to increasing	g student success. Such		
programs are part	icularly vital for t	he mathematical sciences, which h	nave historically lower success		
rates. Building a p	rogram that prov	ides effective academic enhancem	ent opportunities for all		
students requires	a consideration o	of many factors. One must identify	the areas of greatest need and		
provide high impa	provide high impact instructional support while considering a myriad of resource limitations. In this				
talk, we will examine a supplemental instruction program and highlight the key factors that contribute					
to quality academic enhancement. We will provide both statistical evidence and qualitative feedback					
about the effectiveness of such a program. We will also highlight the mentorship and professional					
development opportunities afforded our Supplemental Instruction (SI) Leaders that truly make					
learning a verticall	y integrated, dyr	namic collaborative experience.			

SS4.4*	Friday	Using Popular Games to Promote	e Mathematics	
	3:00			
Ronda Sanders		University of South Carolina		
Our math club uses	s popular games	to promote mathematics to stude	nts regardless of their	
mathematical back	ground. Student	s who enjoy mathematics find it ir	teresting to see the connections	
between popular g	ames like Sudok	u and Graph Theory or The Price is	Right and Combinatorics.	
Students who enjo	y the games the	nselves benefit from seeing mathe	ematics in everyday life and	
higher level mathe	matics hidden in	the most obvious places. Our larg	est game is the Integration Bee,	
which was started	in 2003 by one o	f our graduate students. The comp	petition is similar to a spelling	
		ng integration problems. We have		
		tion with student seminars on the		
	•	pete to see who can solve the mos	•	
		e discuss the basics of Sudoku vs g	• •	
		own bounds on generating a fair p	• •	
	•	ears, we have held a local Math Je		
preparation for the MAA-SE Math Jeopardy competition. One of our professors gave a talk on the				
	Mathematics of the Price is Right and let students play a mock game to test their skills. One of our			
		on the mathematics of juggling. C		
-	gave a talk on the mathematics behind the peg puzzle at Cracker Barrel. We also hold an annual			
Dessert and Games night where the students get together to play board games - one of the most				
	•	the games are strategy and logic g	-	
•		e, Student Organizations, the Resi		
		lenges involved in organizing and	hosting competitions such as	
those described ab	ove.			

SS5.2	Friday	Infinite Wedge Representations of a Lie Superalgebra	
	2:20		
Brad Schleben		Belmont University	
associated Clifford representation of t mathematical phys	algebra. This ser he Lie algebra gl sics in the contex g this constructio	edge representation of the Lie sup ves as an analogue to Victor Kac's ∞, which is of fundamental impor t of the boson-fermion correspon n, as well as related structures tha h.	construction of the basic tance for dence. We hope to discuss open

CP7.3	Saturday 10:40	Triangular billiard surfaces	
Jason Schmurr		Dalton State College	
"Rational triangular billiards" involves associating a topological surface with the dynamical system of point bouncing around inside a triangle. We will discuss some basic tools in this area and present recent results on maps between billiard surfaces.			

UT7.4	Saturday	Codes in Higher Dimensions	
	11:00		
Samantha Scoggins	ns Methodist University		
coding. The Perfect from the former, an	binary Golay Co re two such code	ant role in the research and devel de and the Extended binary Golay s. This project will study and com s as they relate to Group Theory a	Code, which actually "extends" pare the origins, properties, and

UT4.5	Friday	Integrating 3D Printing and Co	omputational Tools in Synthetic	
	3:20	Biology		
Erica Shook		Davidson College	Dr. A. Malcolm Campbell & Dr.	
			Laurie J. Heyer	
Our research f	ocused on identify	ing new riboswitches for molecule	es in the xanthine family. We	
started with a	theophylline ribosy	witch and mutated bases in the ho	opes of identifying new	
riboswitches.	PDB files were used	to determine which bases were i	nteracting with the theophylline. A	
PDB file conta	ins all necessary int	formation to render a 3D model o	f a molecule. The actual positioning	
of atoms is de	termined experime	entally. After we determined which	n bases were interacting with the	
theophylline v	ve used Chimera so	ftware to view the RNA molecule	bound to theophylline. We then 3D	
Printed the RN	IA molecule and fo	ur ligands from the xanthine fami	у.	
An important	An important tool used in our lab is the Oligator. The Oligator is a web based tool that takes a DNA			
sequence and	sequence and cuts it into smaller segments termed oligos. Ideally the overlaps of the oligos have			
similar melting	similar melting temperatures and therefore anneal at a similar temperature. However, sometimes			
users of the Oligator will get results of full length oligos, or the may want to specify certain oligo				
sequences. The Do-It-Yourself Oligator was developed to give a user tools to determine Oligos on			er tools to determine Oligos on	
their own inte	ractively.	vely.		

	Saturday 10:40	A greedy continued fraction	
andrew simoson	10:40	king university	
	i sequence f_n is	s determined by the difference eq	Juation $f_{n+2} = f_{n+1} + f_n$, so in
	- 10	ns $F_n = a_n / b_n$ that approximate	
		em general mediant} $F_{n+2} = kF_{n+1}$	
		A = a / b and $B = c / d$; a, b, c, d, d	
		ther m or $m+1$, and x is between the set of $m+1$ and m+1 and $m+1$ and $m+1$ and $m+1$ and $m+1$ and $m+1$ a	
$mF_{n+1} + F_n$ and $(m + 1)$	$+1)Fn+1+F_{n}$. When all of the m 's are positive	e, ever taking k as m is
However, this choice choose) closer to x . better approximatio the signature of x to a strange Strang gra consecutive integers like branches, each of signature of e (the r 39. Similarly, the sign translate 71, and so approximating e , we	e fails in general . We develop a sonand call it the to be the set of a <i>aph</i> where <i>n</i> i s, the points in t of which appear natural number nature of <i>e</i> can on. That is, thes hich in turn allo	d algorithm appearing in any elem I to select that fraction (between the simple dynamic cut-off rule which he {\em greedy} continued fraction all points $(n,sin(2\pi nx))$ which is any integer. When looking at the he signature seem to align themselve to be arithmetic translates of one aligns itself as a collection of 7 b also be perceived as a collection se branch numbers are the denom- ws us to find the numerators p cor- rocedure is equivalent to the gree	the two fractions from which to selects the fraction giving the n algorithm. Furthermore, define is also known in the literature as e signature over a large span of elves as a collection of m sine- e another. For example the ranches with arithmetic translate of 39 branches with arithmetic ninators q of fractions of the fractions by taking

SS2.6*	Friday	Application of Cycloid to Techniques of Integration		
	3:40			
Dana Stanfill		University of Tennessee at		
		Martin		
In Calculus II, vario	us applications o	f integration are studied, followed	by techniques of integration	
including parts and	including parts and trigonometric integrals. Parametric representation of curves follows with the			
cycloid as the lead example. In this talk, it will be shown that problems involving the cycloid with the				
applications previously studied lead to integration requiring the use of parts and the trigonometric				
integrals (including	integrals (including the sum to product formula).			

UT3.5	Friday 3:20	Modeling the Dynamics of Glioblastoma Multiforme and Cancer Stem Cells	
Stephen Steward		Winthrop University	Maria Voelstad, Dr. Kristen Abernathy, Dr. Zachary Abernathy

In this talk, we extend the work of Kronik, Kogan, Vainstein, and Agur (2008) by incorporating the cancer stem cell hypothesis into a treatment model for Glioblastoma Multiforme. Cancer Stem Cells (CSCs) are a specialized form of tumor cell with normal adult stem cell properties. CSCs are believed to be one of the primary reasons for cancer recurrence since they are more resilient to current treatment practices and are able to repopulate the tumor. We present a system of nonlinear ordinary differential equations that describes the interaction between cancer stem cells, tumor cells, and alloreactive cytotoxic-T-lymphocytes (CTLs). Under the assumption of constant treatment, we present conditions on the treatment amount that leads to a locally stable cure state. We also explore a more biologically accurate treatment schedule in which CTLs are injected periodically. In the case of periodic treatment, we numerically establish treatment schedules that lead to cancer persistence, cancer recurrence, and cancer eradication. We conclude with a discussion of biological implications.

SS2.3*	Friday 2:40	Computer-Based Precalculus and	d Calculus
Francesco Strazzull	0	Reinhardt University	

Shouldn't we use computers to explore, understand, and apply Calculus concepts? Algebraic and trigonometric manipulations are a burden in Calculus courses. Let's lift these burdens with CAGS' (Computer Algebra and Graphing Systems) like GeoGebra, starting in Precalculus, thus improving the learning experience in Calculus.

During this presentation, a ``non-standard'' syllabus for Calculus I, using the ``local linearity'' approach, will be discussed. The presenter will provide statistics about his ongoing pedagogical project, which includes two computer based Calculus cycles.

Attendees will see some of the tools provided by GeoGebra (version 5 or newer). The regression analysis tool will be reviewed, by presenting a rate of change exercise that includes data collection, model building, and differentiation.

UT8.1	Saturday	Dynamics of Co-orbital Moons Near Collision	
	10:00		
Kimberly Stubbs		UNC Asheville	Fahd El Yahiaoui, UNC Asheville
			Samuel R. Kaplan, UNC
			Asheville
techniques used ir model we're work body co-orbital sys They were only int collision. We're int done the necessar	n modern celest ing with is a 3-b stems and deter cerested in these cerested in findi y change of vari	nanics and dynamical systems. Spe al mechanics to analyze near-collis ody co-orbital system. Josep Cors a mined when the moons will pass e two occurrences, and so they left ng out what happens near collisior ables to allow analysis of the dyna what they mean for the entire syst	and Glen Hall wrote a paper on 3- each other and/or change orbits. t out the dynamics of near- n of the two moons and have mics and chaos.

SS5.3*	Friday	Statistical Analysis of Sediment	Statistical Analysis of Sedimentological and Paleontological Data	
	2:40	from the Blackwater Draw Form	nation	
Jillian Stupiansky	·	University of North Alabama	David Schmidt, Westminster	
			College; Brian Steffen, South	
			Louisiana Community College	
A fossil-bearing str	ratum within t	the Blackwater Draw Formation has	revealed new information about	
the ancient chann	el of Running	Water Draw (RWD) in Texas. Textura	al changes in sediments and fossil	
mollusc abundanc	es occur later	ally along the fossil-bearing stratum.	. Statistical analyses were	
performed on the	sediments an	d fossils from three sampled interva	ls along the stratum, and the	
results suggest that	it different mi	icroenvironments exist within the ch	annel. To further support this	
conclusion, statist	ical comparisc	ons were made between the stratum	ι of RWD and different regions of	
the Double Mountain Fork Brazos River channel. Our study used integrated sedimentology,				
invertebrate paleontology, and statistics to demonstrate a more complex depositional history of RWD				
channel than was	previously kno	own. The focus of this talk will be on	the statistical analysis.	

GS2.1	Friday	Voting in Agreeable Societies	
	4:15		
Francis Su		Harvey Mudd College	
outcome? What do objects have a soci some classical mat	bes mathematics al interpretation hematics about t eferences and un	oes the geometry of the political s have to say about how people bel , the associated results have socia he geometry of convex sets and th derstand voting in "agreeable" soc	have? When mathematical I applications. We will show how neir intersections can be used to

CP8.1	Saturday	Reality Math		
	10:00			
Dot Sulock		University of North Carolina at		
		Asheville		
Math education h	as taken an unf	ortunate turn towards the abstract.	Citizens often cannot benefit	
from or understar	nd abstract mat	hematics. In the old days, practical r	nathematics regarding	
agriculture, units,	agriculture, units, money, etc. was taught and produced a reasonably numerate population. Now			
graduates of colle	graduates of college as well as graduates of high school often do not understand the mathematics of			
personal finance,	personal finance, of energy, of government, of health and nutrition, etc. We are failing to produce			
numeracy in our c	numeracy in our citizens, a serious drawback for a democracy. Reality Math is an approach for			
middle-school, see	condary, and no	middle-school, secondary, and non-STEM college math that might help with this problem.		

CP5.1	Saturday	Analyzing the Factors of Predections on Student Performance in the HBCU in the Calculus	
	10:00		
Mohammed Hanif	Talukder	Elizabeth City State University	
Calculus sequence	are fundamental	l courses for STEM program. Failur	e in calculus sequence is one of
academic and socio sequence. The qua	o-economic reasont it at the second seco	M program during their academic y ons of failure of STEM students en Is of various statistical analysis was in calculus sequence.	tering in HBCU in the calculus

SS9.1*	Saturday	Dead Poets Society	
	10:00		
Ron Taylor		Berry College	Robert Vallin, Lamar University
In this talk we de	scribe a model for	extracurricular mathematical eng	agement that combines aspects
of journal proble	m solving groups, I	Putnam competition preparation,	math clubs and community
service organizat	ions. This model is	based around creating a collaboration	ative setting where people can
focus on having f	un while interactir	ng with mathematical questions ar	nd other people who enjoy
mathematics. Th	e activities of this ${\mathfrak g}$	group provide a safe place for stud	lents, and faculty, to experience
some camarader	ie and have some f	fun thinking about interesting prol	blems and discussing alternative
solutions. This allows for an atmosphere that is communal without being as passive as listening to			
lecture and also intellectually stimulating without being as solitary as working alone on contest			
problems.			

GW1.1*	Friday	On the Density of Reciprocal Bas	es
	2:00		
Keith Terrill		Tennessee Technological	
		University	
the positive rationareciprocals of distin will show that ther density less than 1 in one indetermina	al numbers when nct elements fror e exist sets of an that fail to be re ite over a finite fi d we will show th	n ancient Egypt, a set S is consider every positive rational number can m S. After some preliminary work y natural density that are reciproc ciprocal bases. Then, in the contex eld, we will present analogous den nat there are sets of any nonzero of ses.	an be expressed as a sum of with arithmetic progressions, we cal bases, as well as sets of xt of rings of formal polynomials efinitions for reciprocal bases and

UT5.3	Saturday	Figure Eight Sidewalk Patterns: Let's Count with Fibonacci and	
	10:40	Lucas Numbers	
Thinh Truong		Student	Chelsea Noel, undergraduate
			student
possible "Figure Eig notice interesting r sidewalk and "Circu attainable patterns numbers count for	ght" sidewalk par elationships emu ular" sidewalk par s of a Straight sid the total of union of the Figure Eigh	can form on a sidewalk? In this ta tterns created by square and dom erged between Figure Eight sidew tterns. It is known that the Fibona ewalk created by square and dom ue Circular sidewalk patterns. As at sidewalk patterns and derive ex	ino pieces. From exploration, we alk pattern and "Straight" acci numbers enumerate all no pieces. Similarly, the Lucas a result, we demonstrate a

SS7.3*	Saturday	Elementary Preservice Teacher Education: Facilitating a Focus on	
	10:40	Student Thinking	
Patty Anne W	'agner	University of North Georgia	
This talk will f	ocus on the often d	ifficult task of increasing elementary preservice teachers' (PST)	
mathematical knowledge for teaching. By facilitating an environment in which PSTs are frequently			
required to analyze the thinking of their fellow classmates as if the classmate is an elementary			
student, PSTs	are motivated to an	nalyze errors and to consider alternative solution paths, multiple	
representations, and the consequences of language choices.			
I will share some of the activities that I have used in my mathematics content courses for elementary			
PSTs that have facilitated deeper understandings of mathematics and increased the focus on student			
thinking.	-		

UT2.2	Friday	Matrix Group Representation of Music Compositions	
	2:20		
Jack Wagner		Armstrong State University	
The connection bet	The connection between mathematics and music has been apparent and studied as far back as		
Ancient Greece wit	Ancient Greece with plenty of overlap between great and mathematicians and great musicians. In this		
talk we will genera	talk we will generate a representation of the tools of musical composition as a transformation group.		
Several group theo	Several group theoretic properties will be illustrated in the context of musical thematic development.		
It will be shown that element order, cyclic subgroups, orbits, and eigenspaces each have a meaningful			
interpretation in th	interpretation in the field of musical composition.		

UT2.1	Friday	Intermingled ascending wave M-sets with three colors	
	2:00		
Takuya Wakayama Da		Davidson College	Dr. Carl Yerger (Davidson
		Undergraduate Student	College Associate Professor)
Let [a, b] denote th	Let [a, b] denote the integers between a and b inclusive and, for a finite subset $X \subseteq Z$, let diam (X) =		
max(X) – min(X). W	/e write X <p pi<="" th="" y=""><td>ovided max(X) < min(Y). For a pos</td><td>itive integer m, let n(m;3) be the</td></p>	ovided max(X) < min(Y). For a pos	itive integer m, let n(m;3) be the
least integer N sucl	least integer N such that any 3-coloring Δ : [1,N] \rightarrow {1,2,3} has two monochromatic m-sets A, B \subseteq		
	[1,N] (not necessarily of the same color) with A \leq diam (B), and bj – aj \leq bj+1 – aj+1 for j		
∈ [1,m−1]. We show that for m ≥ 27, 12m−23 ≤ n(m;3) ≤ 12m−11, and give conjectures for the value			
of n(m; 3) when m	< 27.		

CP8.4	Saturday	Some Unusual Calculus Problems	
	11:00		
Barrett Walls		Georgia State University	Iason Rusodimos iason.rusodimos@gpc.edu Georgia State University
that are very these probler	different from the n	najority of problems in a beginni h a clever use of calculus either	uctors. We present several problems ing calculus course. Though unusual as part of a lecture or by the

UT3.4	Friday	Periodic Billiards Paths in Rational Approximations of Non-	
	3:00	Rational Triangles	
Harrison Watts		Dalton State College Dr. Jason Schmurr,	
		Dalton State College	
off the boundary: investigate the ur approach: use cou their binary repre	Dynamical billiards describe a particle moving at constant speed in a region with specular reflections off the boundary: the angle of incidence equals the angle of reflection. In this presentation, we investigate the unsolved problem of establishing periodic billiards paths in non-rational triangles. The approach: use computer modeling to approximate irrational angles by sequences which converge to their binary representations and to explore the relationships between the existent closed paths in triangles constructed from these rational expressions.		

UT7.3	Saturday	Modeling infectious disease epid	emics in discrete time with	
	10:40	stochastic simulation for measles		
Valerie Welty		Georgia Southern University	Faculty Advisor - Dr. Patricia	
			Humphrey, Georgia Southern	
			University	
As they are the lea	ding cause of dea	ath among children and adolescer	ts worldwide, it is of extreme	
importance to cont	importance to control the spread of infectious diseases. Information gained from mathematical			
modeling of these	modeling of these events often proves quite useful in establishing policy decisions to accomplish this			
goal. Human behav	/ior, however, is	quite difficult to recreate when us	ing equations with pre-	
determined results	s, such as determ	inistic differential equations ofter	used with epidemic models.	
Because of this, the	e focus of the res	earch was to create a program us	ing JavaScript to more accurately	
simulate an epiden	nic, specifically o	f measles, by using an imaginary p	opulation experiencing	
simulated stochast	ic events on a dis	screte time scale. This allows us to	model a more complex	
population, which	includes various	levels of immunization as well as o	lifferent stages of infection.	
Another major fact	Another major factor that the program accounts for is the phenomenon of self-quarantine during a			
disease outbreak.	disease outbreak. An important supplement to mathematical analysis, the results from the program			
may provide new ii	may provide new insight on dynamics of epidemics such as herd immunity and effective disease			
transmission.	- •	-	-	

SS3.1	Friday	Low Tech Student Engage	Low Tech Student Engagement Techniques	
	2:00			
Cathy Whitlock		UNC Asheville		
increasing studer cadet from the C	it engagement t tadel helped on ntures in chanti	hat are still worthy of conside e instructor reconsider the be	ere any simple, low-tech techniques for eration? A recent encounter with a enefits of a few decidedly old-school s without clickers in an Introductory	

SS2.5*	Friday	Creating Connections in an Online Classroom	
	3:20		
Allison Williams		Perimeter College at Georgia	
		State University	
Retention is an issue that we deal with in our online mathematics courses. The presenter will share different methods that she uses to engage her students. From Weekly Helpful Hints to quick responses to an engaging Discussion Board, the online classroom can be inclusive and supportive.		y Helpful Hints to quick	

UT5.2	Saturday	Weaker Forms of Lehmer Numbers	
	10:20		
Tyler Woolley		Wofford College	
A Lehmer number	A Lehmer number is a composite integer m such that $\varphi(m)\Box m - 1$. As of today there are no		
explore weaker for numbers. Unlike Le numbers. Specifica -radimichael numb Wright and Nathar	ms of Lehmer nu ehmer numbers, Ily, we will inves ers or make ther McNew, we wil	tich satisfy this condition. Howeve umbers, such as k -radimichael nu- we can find and prove interesting tigate certain forms of products of m impossible to construct. Followi I then demonstrate that there are) -Lehmer numbers for any natura	mbers and $\ell - k$ -Lehmer things about these types of f primes which can either yield k ng up on the work of Thomas infinitely many $[-1] - k$ -Lehmer

SS1.5*	Friday	Fibonacci in Cantor's Proof of Uncountability	
	3:20		
Tom Wright		Wofford College Mike Krebs - Cal State, LA	
In this talk, we find	In this talk, we find a surprising appearance of the Fibonacci numbers, stemming from Cantor's		
original attempt to prove the uncountability of the real numbers.			

SS8.5*	Saturday	A problem on global stability of a ratio-dependent predator-prey		
	11:20	model		
Yinshu Wu		Alabama A&M University	Dr. Wenzhang Huang	
			The University of Alabama in	
			Huntsville	
The models of	The models of predator-prey systems have played an important role in the research of ecological			
problems. In n	problems. In many cases, when predators are searching for food, the ratio-dependent functional			
response may	best describe the o	dynamical interaction between th	ne prey and predator species. Y.	
Kuang and E. I	Beretta investigated	d a class of ratio-dependent pred	ator-prey, in which they gave a	
complete anal	lysis of local stabilit	y of the co-existence equilibrium	\overline{E}^{*} . However, the issue of global	
stability has no	ot been resolved e>	cept some partial results. In this	paper, we use some	
	transformations and the Liapunov function method to show the equivalence of local and global			
stabilities of I	stabilities of E^* under certain parametric conditions. Our result gives a positive answer to a questi			
posted in the	posted in the paper by Y. Kuang and E. Beretta.			

GW1.5	Friday	On linear list r -hued colorings of sparse graphs	
	3:20		
Murong Xu		West Virginia University	
For an integer $r >$	For an integer $r > 0$, and a k-list assignment L to vertices of a graph G, a linear (L, r) -coloring of		
a graph G is a colo	a graph G is a coloring c of the vertices of G such that for every vertex v of degree $d(v)$,		
$c(v) \in L(v)$, the n	$c(v) \in L(v)$, the number of colors used by the neighbors of v is at least $\min\{d_G(v), r\}$, and such		
that for any two distinct colors i and j , every component of $G[c^{-1}(\{i,j\})]$ must be a path. The			
linear list r -hued chromatic number of a graph G , denoted $\chi^\ell_{L,r}(G)$, is the smallest integer k such			
that for every k -list L , G has a linear (L,r) -coloring. We will present some of the recently			
achieved results or	achieved results on linear list r -hued coloring of graphs with bounded maximum subgraph average		
degrees.			

CP8.3	Saturday	Handicapping No-Tap Bowling	
	10:40		
Carl Yerger		Davidson College Richard Yan, Davidson College	
In the alternative no-tap bowling scoring system, bowlers earn a strike if they knock over nine or all			
ten pins on their first ball. For many no-tap tournaments, organizers use averages and handicaps			
based on standard bowling scoring to equalize differences in skill. We investigate whether			
modifications to these systems should be made for no-tap competition and whether these			
modifications s	modifications should depend upon the difficulty of the tournament's oil pattern.		

CP6.3	Saturday	Feasibility Sampling in Interval Methods for Special Multi-
	10:40	Constrained Global Optimization
Mengyi Ying	·	University of North Goergia
		ling procedure is added to the framework of interval method for al optimization problem over a bounded interval domain subject to
	-	ain feature is the ability to detect infeasibility or actually locate a
feasible sample objective funct	e in any working su ion value than the	ubinterval. Thus it provides tighter upper bounds of the optimal standard methods. Numerical results will be provided to
demonstrate it	s effectiveness.	

SS1.3*	Friday	From Fibonacci Sequence to Solving Polynomials. Preliminary	
	2:40	Report.	
Soowhan Yoon		Mercer University Curtis Herink, Mercer	
		University (advisor)	
A careful examinat	A careful examination of the Fibonacci sequence lead to an idea to solve polynomials in the form of		
infinite series. This	infinite series. This talk presents how such an idea was formed and developed over time. The		
derivation of the general formula for the roots of polynomials involves making use of the properties			
of polynomial sequences of binomial type and the Lagrange inversion formula.			

CP2.1	Friday	Compute the exponential of matrix with new scaling-squaring		
	2:00	Chebyshev algorithm		
Yilian Zhang University of South Carolina				
		Aiken		
The calculation of matrix exponential is extensively studied due to the key role of matrix exponential				
in differential equa	in differential equation. One of the most widely used method is a scaling and squaring methods with			
Padé approximatio	Padé approximations. New implementations of the scaling and squaring method based on Padé			
approximation and	approximation and Taylor series are proposed in recent literature. In this paper, we present a similar			
modification that is based on Chebyshev series. Numerical tests show that it is comparable to other				
effective methods.				

CP6.4	Saturday 11:00	Construction of compactly supported tight wavelet frames			
Jie Zhou		Methodist University			
Frames have been widely used in signal processing. In this talk, I will discuss a particular way to construct compactly supported tight wavelet frames and show an example by using the symbol of B-spline of degree 1 as the trigonometric polynomial.					

CP5.4	Saturday	Using Formative Assessment with Pre-service Teachers to			
	11:00	Develop a Conceptual Knowledge of "Arithmetic & Algebraic"			
		Fractions and Operations			
Darley		Georgia Southern University	Ha Nguyen (Georgia Southern		
			University):		
			hnguyen@georgiasouthern.edu		
In this session, the presenters will demonstrate formative assessment tasks used with pre-service					
teachers. These tasks are designed to develop a conceptual knowledge of fractions and fraction					
operations so that this knowledge with transfer to algebraic fractions and operations. Fraction Bars					
and Fraction Circles will be used along with number lines in order to make sense of fraction					
definitions and operations. Mathematical Communication while connecting algorithms with the					
models will be emphasized.					