MAA SOUTHEASTERN SECTION

Ninety-Sixth Annual Meeting

Mercer University

Macon, Georgia

Thursday—Saturday, March 9-11, 2017

http://sections.maa.org/southeastern/?2017_Conference

Abstracts for all Talks

SS2.4	Friday	My PIC Math Experience: Finding Problems, Course Design, and
	2:40:00 PM	Lessons Learned
Zach Abernathy		Winthrop University
mathematics cours Sciences (PIC Math establishing contac engaged and mana software. I will also	e as part of the N) program spons t with local indu ge team dynami discuss various	share my experiences teaching a research-focused industrial NSF-funded Preparing Industrial Careers in the Mathematical ored by the MAA and SIAM. I will focus on the process of stries, offer suggestions for course design to keep students cs, and share several other tips such as how to acquire data mining outcomes (for both myself and my students) that emerged from d for improving the course in its next iteration.

SS1.4	Friday	Using Embroidery to Explore Mapping the Sphere to the Plane		
	3:00:00 PM			
Shemsi Alhaddad		University of South Carolina at Lancaster		
I use hand-embroid	I use hand-embroidered balls (temari) and hand-embroidered fat quarters to illustrate properties of			
stereographic and cylindrical projections of the sphere to the plane. In this talk I will start with a brief				
introduction to temari. Then I will explain the mathematics used in projecting the spherical temari				
designs to the fat quarters that represent the plane. I will describe mathematical properties of the				
designs that are preserved and ones that are lost under the projection. I will also present teaching				
ideas and adaptations that will allow these concepts to be introduced to students of different levels.				

UT9.5	Saturday	Ensuring Fairly Timed Network Communication	
	11:20:00 AM		
James Andrus		The Citadel	
Given the rise in ne	etwork based coll	aboration, online stock trading, and competitive online gaming, it	
has become increa	singly important	that all parties involved receive information at the same time. We	
propose an algorit	hm to fix the issu	e of unfair delays between different parties participating in a	
collaborative appli	cation. The algori	ithm proposed applies to networks with a single source and with	
multiple destination	ons. It starts with	a modified form of Dijkstra's algorithm that ensures that all	
destinations are le	af vertices. For ar	ny destinations that are outside a given delay bound, the algorithm	
finds a new path fr	finds a new path from the source vertex to the specific destination vertex within the delay bound if		
such a path exists.	such a path exists. The algorithm works by concatenating simple paths, meaning that no vertex will be		
used more than tw	used more than twice if cycles arise, ensuring that bandwidth does not become an issue. The process		
used by this algorit	used by this algorithm is similar to a depth first search, recursively exhausting adjacent vertices that		
meet certain criter	meet certain criteria until a suitable path is found or terminating if no such path exists. This algorithm		
has a variety of direct applications where fair and timely communication is essential, including			
sending updates to distributed financial databases, maintaining quality of service in video			
conferencing, or ensuring fairness in online gaming. In our research, we propose this algorithm for			
fairly timed netwo	fairly timed network communication, provide proof of correctness for the proposed algorithm, and		
perform simulation experiments to analyze its efficiency.			

SS3.4	Friday	Bounding the k-Domination Number	
	3:00:00 PM		
John Asplund		Dalton State College	
When faced w	ith a parameter that	is computationally infeasible to calculate, finding a	
computationally efficient bound on the parameter can be a helpful starting point. Caro and Pepper			
introduced in 2014 the degree sequence index strategy (DSI-strategy) which provides a unified			
framework for	framework for using the degree sequence of a graph to bound NP-hard invariants. This talk will		
describe a new domination invariant based on this DSI-strategy that bounds the k-domination			
number. The <i>k</i> -domination number is the minimum cardinality of a set of vertices <i>S</i> such that each			
vertex not in S	vertex not in <i>S</i> is adjacent to at least <i>k</i> vertices in <i>S</i> . In addition, we will describe properties that are		
inherent in this new domination number.			

SS1.6	Friday	Teaching Algorithms using the Josephus Problem and Music		
	3:40:00 PM			
Shaun Ault		Valdosta State University		
The Josephus Prob	lem is a famous o	counting problem in which elements of a circular array are chosen		
in turn according t	o a simple rule: s	kip a fixed number of elements before choosing the next element.		
In fact this problem	In fact this problem leads to an algorithm that produces a permutation of the original sequence of			
elements. In this p	elements. In this preliminary report we discuss the use of the Josephus Problem in teaching primary			
school students ab	school students about combinatorics and algorithms. To make the lessons fun and memorable, we			
relate the permutation to a sequence of notes of the diatonic or chromatic scales, varying the number				
of initial notes as well as the number of skipped notes. This can be done in a hands-on way using an				
instrument with movable notes such as a xylophone, which we intend to demonstrate during the				
presentation. This study can bridge the gap between mathematics and art, as students can use the				
Josephus Problem to compose new music "algorithmically."				

Saturday	Ascending Subgraph Decompositions of the Oriented Multipartite	
11:40:00 AM	Graphs K(2 : 3n)	
	University of Tennessee at Martin	
In 1987, Alavi, Boals, Chartrand, Erdos, and Oellermann conjectured that all graphs have an ascending		
subgraph decomposition (ASD). We will show that all oriented complete multipartite graphs with 3 <i>n</i>		
partite classes each containing 2 vertices or oriented <i>K</i> (2:3n) have an ASD.		
	11:40:00 AM s, Chartrand, Erd sition (ASD). We	

DS.1	Friday	Undergraduate Research in Galois Theory
	9:00:00 AM	
Chad Awtrey		Elon University
The work of 19th century mathematician Evariste Galois shows that roots of polynomials have		
inherent symmetries. These symmetries are encoded as permutations of the roots, and they reveal many important properties of the polynomial. In this talk, we will discuss some of these properties,		
the history of Galois' work, and recent results obtained by the speaker's undergraduate researchers in		
the area of computational Galois theory. General benefits of conducting undergraduate research will		
be highlighted throughout the talk.		

UP1.1	Saturday	Dominance Domains and the 17-Year Cicada		
	10:45:00 AM			
Sam Barker		King University		
Why the lifespan o	of the 17-year Cica	ada is so long has stumped biologists. But what if the answer to		
this puzzle lies in tl	he sky above? In	particular, extrapolating the current recession rate 3.8 cm/yr of		
the Moon from the	e Earth, shows th	at about 250 million years ago, the number of moons per year ω		
was about 12 + 2/3	was about 12 + 2/3 rather than what is today, namely, $\omega \approx$ 12.369, a number in the dominance			
domain of 12+7/19	domain of 12+7/19. Thus the life span of the cicada's ancestors may have had a three year life cycle			
250 million years a	250 million years ago. As time went on, ω decreased into the dominance domain of 12+3/5			
moons/year, wher	moons/year, whereupon the cicada's lifespan may have leapfrogged into five years, and so on. We			
apply continued fraction algorithms and dominance domains to model this leapfrogging until ω				
reached the dominance domain of 12+10/19, an event occurring about 100 million years ago, at				
which time the cicada may have finalized its life span to what it is today.				

UP1.2	Saturday	Sabermetrics and it's historical impact in sports	
	10:45:00 AM		
Tyler Barker		Western Carolina University	
This poster will pr	esent the concep	t of Sabermetrics in a variety of sports, and its historical context.	
From early in the	popularization of	modern sports in America, there has been a competitive desire for	
tools that allow for	or an athlete's cur	rent impact on the game to be compared to how said athlete	
projects in the fut	ure. Traditionally	this was done based off of key raw measurable data and a scout's	
intuition. A fatal f	law that existed w	vas a tendency towards a exclusionist system, which categorized	
the have's and the	e have-not's on a	limited basis. Specifically in Baseball, In the 1950's, this system of	
scouting included	scouting included an evaluation-based rating, scaling from "poor" to "very good" . Restricting in		
nature, this scouting had the potential to sabotage an athlete due to Surgery, or an			
uncharacteristically poor performance. Further development occurred in the late 1970's, based off a			
more concise "1-7" scale in more measurables which time had shown to be an indicator of future			
success. Limited by what only the eyes could see, certain statistics could not exist. Bill James, in a			
series of 40 journals known as The Baseball Analytics (the foundations of the Society of American			
Baseball Research, or SABR) ushered in a new era looking past blinding biases of the past, Such a		d in a new era looking past blinding biases of the past, Such as age,	
size, or injuries. By producing these new statistics, known as Sabermetrics, traditional methods of			
scouting and review in all major sports are being revolutionized.			

SS1.2	Friday	Flowers, Kaleidoscopes, and Coloring Book Images Hiding in	
	2:20:00 PM	Complex Rational Function Projections	
Julie Barnes		Western Carolina University	
There is a surprisin	g interplay betw	een the Julia sets of complex rational functions, R(z), and the level	
curves of the real p	oarts of the iterat	es of these complex functions. For level curves of height 2 and -2,	
we can begin to se	e the actual Julia	set for R(z) appear as the number of iterates of R(z) increases.	
The 0 level curves,	The 0 level curves, on the other hand, produce intricate images near the critical points of R ⁿ that		
happen to land at (happen to land at 0 under n iterations. Since all critical points of the real part of R ⁿ are saddle points,		
these level curves l	these level curves have surprising shapes like flowers, kaleidoscopes, and other images that resemble		
popular adult coloring book pages. In this talk we look at a variety of images produced, the simple			
Mathematica code used to produce the images, and how these images are related to complex			
rational maps.			

UT9.3	Saturday	Weakened Gallai-Ramsey Numbers	
	10:40:00 AM		
Gabrielle Beam		Western Carolina University	
Through the years,	Through the years, different mathematicians have constructed and derived many different		
generalizations of a t-colored Ramsey Number r ^t (n). The research this talk will be based upon is			
concentrated on th	concentrated on the amalgamation of two such generalizations. Specifically, we will focus on		
weakened Ramsey Numbers and Gallai-Ramsey Numbers. Briefly defined, weakened Ramsey			
Numbers determine the existence of subgraphs spanned by edges containing at most s colors where			
(s <t), (meaning<="" avoid="" colorings="" consider="" gallai-ramsey="" numbers="" only="" rainbow="" td="" that="" triangle="" while=""></t),>			
three vertices x, y, and z such that the edges of xy, yz, and xz are different colors).			

UP1.3	Saturday	An Examination of the RSA Cryptosystem		
	10:45:00 AM			
Brooke Beeksma		Converse College		
The following post	er will survey the	undergraduate senior seminar project, "An Examination of the		
RSA Cryptosystem.	" The project pap	per discusses the history of Cryptology and the RSA Cryptosystem		
and how Cryptolog	and how Cryptology is used today. It then continues to explain some important math concepts			
involved with the p	involved with the process of the RSA Cryptosystem. It proceeds to explain, in detail, an original Diffie-			
Hellman-Merkle Key Exchange problem, the process of Successive Squaring, and the process of				
computing k roots modulo m. Finally, original RSA encryption and decryption problems are				
presented. This information will be presented, focusing on the original Diffie-Hellman-Merkle Key				
Exchange Problem, and a detailed presentation of the original RSA Cryptosystem problems. An				
understanding of RSA Cryptosystem will be communicated.				

SS4.5	Saturday	Using Kahoot! in your Classroom
	11:20:00 AM	
Jim Beuerle		Elon University
Kahoot! is an online quiz/poll/survey system that allows participants to use their own internet		
connected device to answer questions in real time. In this talk, the basic overview of the system will		
be discussed as it was used in the first several weeks of an introductory Statistics class. Bring your		
smartphone or other internet connected device to participate in a live Kahoot! session.		

PUB.3	Friday 3:00:00 PM	Refresh Algebra and Trigonometry Skills and Improve Conceptual Understanding Through Visualization with WebAssign for Calculus	
Glenda Blake	Glenda Blake Cengage Learning		
Although the concepts of Calculus have not changed since Newton, the technology available to assist in their teaching continuously evolves. View the unique tools that will help students refresh algebra and trigonometry skills, before interactive assets aid the learning of the critical concepts of the dynamic Calculus course.			

UT5.2	Saturday	Partial Spanning Trees: A Strategy for Ticket to Ride
	10:20:00 AM	
Catherine Bowers		Birmingham Southern College
Partial spanning trees are trees (sets of acyclic, connected edges) within a graph that do not connect		
all of the graph's vertices. Minimum spanning trees connect all the vertices within a graph in a way		
that minimizes the sum of edge weights. Using graph theory to combine the concepts of partial and		
minimum spanning trees, we modify Prim's algorithm to solve a constraint maximization problem		
with respect to the board game Ticket to Ride. Partial minimum spanning trees provide strategies for		
where to claim routes on the board to collect the most points and, ultimately, win.		

SS3.6	Friday	Fixing Congressional Dysfunction with Polynomials	
	3:40:00 PM		
Axel Brandt		Davidson College	
Imagine how diffic	Imagine how difficult it must be to effectively schedule committee meetings for the U.S. Congress		
without a representative having two meetings at the same time. And imagine how much harder it			
must be to effectively schedule committee meetings if you must work around the existing schedules			
of all 435 members of the House and all 100 members of the Senate.			
In this talk, we use these scheduling problems to motivate and discuss two types of graph colorings.			
Further, we will dis	Further, we will discuss how information can be stored in polynomials and then used to assist in		
coloring graphs. Some results using this technique will also be presented.			

UT3.1	Friday	Global Dynamics of a Colorectal Cancer Treatment Model with	
	2:00:00 PM	Cancer Stem Cells	
Kelsey Brown		High Point University	
We present and an	alyze a mathema	atical model of the treatment of colorectal cancer using a system	
of nonlinear ordina	of nonlinear ordinary differential equations. The model describes the effectiveness of immunotherapy		
and chemotherapy for treatment of tumor cells and cancer stem cells (CSCs). The effects of CD8+T			
cells, natural killer cells, and interleukin proteins on tumor cells and CSCs under the influence of			
treatment are also illustrated. Using the method of localization of compact invariant sets, we present			
conditions on treatment parameters to guarantee a globally attracting tumor clearance state.			
Numerical simulati	Numerical simulations and sensitivity analyses of the model are examined using biologically sound		
parameters to assess the validity of the model.			

PUB.3	Friday	Refresh Algebra and Trigonometry Skills and Improve Conceptual
		Understanding Through Visualization with WebAssign for
	3:00:00 PM	Calculus
Shelita Brown		Cengage Learning
Although the concepts of Calculus have not changed since Newton, the technology available to assist in their teaching continuously evolves. View the unique tools that will help students refresh algebra and trigonometry skills, before interactive assets aid the learning of the critical concepts of the dynamic Calculus course.		

CP6.3	Friday	n-Good Hypergraphs
	11:20:00 AM	
Mark Budden		Western Carolina University
First defined by Burr and Erdos in 1983, an <i>n</i> -good graph <i>G</i> is a connected graph of order <i>m</i> such that		
the Ramsey number $R(G, K_n) = (m-1)(n-1)+1$. From this definition and Chvatal's work in 1977, it follows		
that all trees are <i>n</i> -good. In this talk, we will consider how one might go about defining `` <i>n</i> -good" in		
the setting of <i>r</i> -uniform hypergraphs and consider the problem of determining whether or not <i>r</i> -		
uniform trees satisfy the conditions of this definition.		

Friday	Strategies for Identifying Good Undergraduate Research	
2:40:00 PM	Problems	
	Western Carolina University	
While a student's work ethic and academic abilities play a major role in the success of an		
undergraduate research project, the selection of a good research problem is critical. In this talk, we		
will consider the criteria for judging the quality of an undergraduate research problem and discuss		
some strategies for identifying good problems.		
	2:40:00 PM ork ethic and ac arch project, th teria for judging	

SS1.1	Friday	Hidden Beauty in Penrose Tiling: Weavings, Lace & Skates	
	2:00:00 PM		
Doug Burkholder		Lenoir Rhyne University	
We explore Penrose's subdivision of kites and darts in search for hidden beauty. By dividing the kites			
and darts in half and selectively coloring them based only on their relative position, we create 15			
unexpected and distinctive patterns hidden within Penrose tiling. These patterns tend to have the			
appearance of a weaving. Alternately, by selectively removing tiles as we subdivide, we can obtain			
fractal patterns that appear to be lace. Very different and beautiful artwork can be constructed by			
sketching pursuant curves within each tile tossed out in the previous construction.			

UP1.4	Saturday	Fibonacci and Finance: Finding Universal Solutions to Fibonacci's	
		3 problems from Liber Abaci	
	10:45:00 AM		
Amy Burton		Erskine College	
Though Leonardo F	Though Leonardo Pisano is most famous for the Fibonacci sequence, his work in the world of		
economics spreads	economics spreads almost as wide. This poster closely examines three problems from Chapter 12 of		
Fibonacci's Book of Calculation: "On a Soldier Receiving Three Hundred Bezants for His Fief", "A Man			
Who Travelled through Twelve Cities", and "On a Man Who Leaves a City with Ten Doors". Fibonacci's			
methods of solution are analyzed and explained. Using present value analysis, the summation of			
series, and mathematical modeling, we show the connection between these problems and present			
day modern economic theory.			

CP5.1	Saturday	Informal Writing in the Calculus I Classroom
	10:00:00 AM	
Danielle Burton		University of Tennessee at Knoxville
We will explore how informal writing activities can be easily integrated into a mathematics classroom and can support course goals. We will discuss examples of prompts and student work from a Calculus I class.		

UT6.2	Saturday	A Prime Sieve Using Moduli and Closed Groups	
	10:20:00 AM		
Anthony Bush		Georgia Southern University	
The prime number	s is a subject that	has intrigued mathematicians from ancient times to today.	
Currently, the prim	es find their use	ulness largely in the field of computer science, where the ability	
to generate a list o	f prime numbers	can quickly prove useful to several applications, such as hashing	
or public key crypt	or public key cryptography. In such situations, a generating function for primes would be ideal;		
however, it seems	however, it seems that mankind's struggle to find such a function has come up empty. To date, the		
closest we have co	closest we have come is to implement algorithms called prime "sieves" that efficiently remove		
composite number	composite numbers from a list of candidate primes. This presentation will show how we can use		
certain moduli and closed groups to effectively sieve out composite numbers from a list of integers.			
Multiple tests have been conducted to determine the speed and efficiency of this sieve compared to			
other sieves.			

UT4.3	Friday	Abstract Withdrawn
	2:40:00 PM	

WS.2	Friday	Speed Interviewing Marathon for Students	
	10:00:00 AM		
Janna Carpontar	10.00.00 Alvi	Comphall University	
Jenna Carpenter		Campbell University	
Employers suggest	: that communica	tion skills are a critical component when considering a	
mathematics major for a job. An important time to demonstrate good communication skills is during			
the job interview.	the job interview. This session for undergraduate students and graduate students will start with an		
overview of best practices and tips on job interviewing, then guide participants in several speed			
interviewing sessions of 10 minutes each, where they can practice what they have learned and hone			
their interviewing skills. Speed interviewing sessions will include individual feedback for participants,			
as well as opportunities to network with fellow interviewees.			

CP4.1	Friday	The Initial Impact of No-Cost Materials Engagement and
	2:00:00 PM	Achievement in College Algebra.
Samuel Cartwright		Fort Valley State University
The high cost of textbooks has negatively impacted students' ability to afford the rising cost of a college education. In order to minimize the cost of materials needed for the courses and the increasing of use student loans, Open stax resources were created to help students with online mathematical resources. Observing the increasingly high DWF grades and absentee rates in college algebra, the Math faculty observed that most students could not afford to purchase high cost textbooks. Therefore, the faculty redesigned college algebra using no cost e-textbook with a		
mandatory MATHXL Laboratory installed in the D2L (Brightspace) platform. Best practices information were provided on the course redesign to: make math affordable; increase minority achievement and technology usage; and share skills for adapting open resources in other future higher level math courses.		

UT5.3	Saturday	Network modelling of infectious disease: transmission, control
	10:40:00 AM	and prevention
Christina Chandler		Georgia Southern University
Many factors come into play when it comes to the transmission of infectious diseases. In disease control and prevention, it is inevitable to consider the general population and the relationships between individuals as a whole, which calls for advanced mathematical modeling approaches.		
We will use the concept of network flow and the modified Ford-Fulkerson algorithm to demonstrate the transmission of infectious diseases over a given period of time. Through our model one can observe what possible measures should be taken or improved upon in the case of an epidemic. We identify key nodes and edges in the resulted network, which will help determine an improved plan of disease prevention. This solution has been implemented through a Java code.		

GS2.1	Friday	Mathematical Celebrity Look-Alikes	
	4:15:00 PM		
Tim Chartier		Davidson College	
Who is your celebr	Who is your celebrity look alike? LeBron James? Jackie Chan? Adele? Rihanna? Vectors norms enable		
us to discern what	us to discern what celebrity looks most like a selected individual. Linear algebra allows us to explore		
what linear combination of celebrity photos best approximates a selected photo. Would you describe			
yourself as a cross between Ben Stiller and Hugh Jackman or possibly Marilyn Monroe and Jennifer			
Aniston? In this talk, we learn how to answer this question using linear algebra and on the way get a			
sense of how math aids in facial recognition.			

CP3.1	Friday	Application of neural networks to Classification of handwritten	
		Digits and short term stock returns	
	2:00:00 PM		
Tracy Chen		University of North Carolina-Wilmington	
Artificial Neural Ne	tworks (ANN) ar	e a data mining method that borrows concepts from neuroscience	
to create an inform	nation synthesizi	ng machine similar to the human brain. These sophisticated	
	models have the ability to detect non-linear patterns that other data modeling tools fail to use in their		
•	predictions, making them very popular in recent literature. In this paper we explore the process of		
training and selecting neural network models for two different applications in handwritten Digits and			
short term stock returns. For the positive or negative short term stock returns with data from			
Facebook (FB), we further consider the decision fusion by combining the results from ANN with the			
methods of SVM and boosting to achieve better performance.			

UT8.1	Saturday	Determinant of a Fibonacci matrix	
	10:00:00 AM		
Hsin-Yun Ching		The Citadel	
In this presentation	n I will show the s	solution of an open problem given in the journal Fibonacci	
Quarterly. The pro	Quarterly. The problem was to find the determinant of a matrix of order n with Fibonacci numbers as		
entries. If the squa	entries. If the square matrix have even number rows and columns, such as two by two matrix, the		
determinant of it w	determinant of it would be zero. On the other hand, if it has odd number of rows and columns, such		
as three by three matrix, its determinant would be one. I will highlight some linear algebra techniques			
that I used to solve the problem and the solution has since been submitted for consideration to be			
published in the same journal mentioned earlier.			

UT2.3	Friday	Using Mathematical Models to Rank the Members of Criminal
	2:40:00 PM	Networks
Lucas Chirino		High Point University

Different mathematical approaches to ranking were used to determine the level of importance of every member in two different data sets from the FBI consisting of phone records. The first data set consisted of call logs from a three year span of members of a drug ring. The second data set consisted of the call logs of members in a gang. Linear algebra was used to rank the data and then analysis was done to look at various mathematical properties of the two networks.

CP7.1	Saturday	Comparing Two Populations Using Reaction Time Data
	2:20:00 PM	
Andrew Chockla		Western Carolina University
Comparing two population parameters is an important and useful topic of statistics. Hypothesis tests and confidence intervals are two types of statistical tests that can be utilized to make inferences regarding the populations of interest. Depending on the nature of the data collected, you may be interested in the difference between population mean values using matched pairs, the difference between population mean values not using matched pairs, or the difference in population proportion values. Classroom activities can be an exciting and helpful way for students to become engaged in learning various ways to apply statistics to this study of two populations. However, doing a different		
activity for each method could become tedious and time consuming. During this talk, we will look at one data collection activity and how it can be applied to various methods used to make an inference regarding two populations of interest.		

UT1.3	Friday	Random Unit Bar Visibility and Unit Bar Visibility Graphs	
	2:40:00 PM		
Jiarui Chu	·	Davidson College	
In visibility pro	blems, two unit ba	rs are visible to each other if an unobstructed vertical line of sight	
can be drawn	between them. Sim	ilarly, two unit squares in a two-dimensional space are mutually	
visible if there	is an unobstructed	vertical or horizontal sightline between them. The study of visibility	
problems and	problems and visibility graphs are motivated by Very-Large-Scale-Integration (VLSI) layout design		
problems, and have applications in robot navigation, hidden-surface removal, and computer-aided			
software-engineering (CASE) tools. Although there is a rich body of research on visibility, no result h		s. Although there is a rich body of research on visibility, no result has	
been published on the probabilistic aspects of visibility problems. We assume the locations of the			
bars and squares to be uniformly distributed, and study three problems. We derive the probability			
density function and expected value for the number of bars required to cover the top bar. Then we			
generalize the result to random squares in a two-dimensional space. Finally, we consider unit bar			
visibility as a model for random graphs by studying the probabilities that a random unit bar visibility			
graph has certain properties, such as being cyclic or connected.		as being cyclic or connected.	

UP1.5	Saturday	Image Processing for Classification and Regression	
	10:45:00 AM		
Danielle Chuang		University of North Carolina-Wilmington	
This project focuse	s on identifying o	haracteristics from a set of images of faces. These faces are from	
the MORPH-II data	set that use the I	Bio-Inspired-Feature technology at West Virginia University to	
extract meaningful	extract meaningful data points from the images. Each image is quantified to 4,376 real value points		
and we use mather	and we use mathematical techniques to extract meaningful characteristics from the images. In order		
to predict characte	to predict characteristics from new images we can apply the same models that have learned from the		
old images. Thus, t	old images. Thus, the project can be broken down into steps: 1) Dimension reduction and 2)		
Classification & regression. In order to save computational time, we use dimension reduction.			
Classification methods help us determine the genders, and regression helps determine the			
approximate ages.			

CP4.2	Friday	Strengthening Real World Skills with Math Courses	
	2:20:00 PM		
Erin Cooke Church		Georgia State University	
It is expected that i	It is expected that math courses will focus on math skills to help students master the objectives.		
However, building students' real world skills can contribute to their success in math courses. This talk			
discusses important life skills that many students have not mastered and ways to present these in a			
course. These skills include time management, growth mindset, reducing anxiety and study strategies.			

CP1.6	Friday	Linear Inequalities: We Shouldn't Avoid Them
	3:40:00 PM	
Jeffery Clark		Elon University
This talk will review ways in which linear inequalities naturally occur in Game Theory and Linear		
Programming, and discuss Fourier-Motzkin Elimination, a method for handling small systems that should be better known.		

UP1.6	Saturday	The Fractional Calculus	
	10:45:00 AM		
Laura Coker		University of Tennessee at Martin	
The idea of one-th	ird differintegrals	s started with the study of the text The Fractional Calculus by Keith	
B.Oldham and Jerc	B.Oldham and Jerome Spanier, which focuses on half differintegrals. We have been researching this		
topic with Dr. Curt	topic with Dr. Curtis Kunkel on this project since June 2016. Then we started looking into one-third		
differintegrals and created a table of such differintegrals. The concept of a differintegral is basically			
the creation of an operator that does the same thing as a standard derivative only in multiple steps.			
For instance, if we apply the one-third differintegral to a function three times, it should be equivalent			
to taking the stand	to taking the standard derivative of the same function. Throughout this poster, we will discuss aspect		
of the Gamma function, one-third differintegrals, and various proofs established during our research.			

UT6.5	Saturday	Elliptic curves induced by nice cubic polynomials
	11:20:00 AM	
Darien Converse		Armstrong State University
We say that a cubic polynomial $f(x)$ is nice if it has integer roots and critical numbers. We will study elliptic curves of the form $y^2=f(x)$. We will determine the set of nice cubic polynomials that induce elliptic curves with complex multiplication.		

UT7.5	Saturday	The O-C diagram and Its Application to Astrophysical Systems	
	11:20:00 AM		
Kyle Corcoran		High Point University	
Of all the directly o	bservable quant	ities in astrophysics, time can be measured with the highest	
precision. Some ed	clipsing binary sy	stems and pulsating stars show periodic brightness variations so	
stable that they ca	stable that they can be used as astrophysical "clocks" spread throughout the universe. Using a Taylor		
series expansion, n	series expansion, namely the Maclaurin series, one can calculate the predicted arrival times of the		
pulses in these var	pulses in these variable systems. Once observations reveal the true arrival times, one can compare		
the two in what is	the two in what is called an "observed minus calculated" (O-C) diagram. This simple-but-powerful plot		
can reveal the presence of previously-unknown gravitating companions, pulsational variations in			
evolving variable stars, and even the spin-down of binary stars as they emit gravitational wave			
radiation. Here we present an overview of the O-C method and its applications to extreme eclipsin			
binary star systems.			

UT5.5	Saturday	Effects of competition-mediated dispersal on the persistence of a	
		population	
	11:20:00 AM		
Emily Cosgrove		Auburn University at Montgomery	
Dispersal of an org	anism plays an ir	nportant role in individual fitness, population dynamics, and	
species distribution	n. In the literatu	re, dispersal is loosely applied to movement over different spatial	
scales, e.g. movem	scales, e.g. movement between habitat patches separated in space from other areas. Recently,		
ecologists have fou	ecologists have found that the presence of a competitor can have a major impact on the dispersal of		
an organism, a phe	an organism, a phenomenon known as competition-mediated dispersal. Little is known regarding the		
patch-level conseq	patch-level consequences of habitat fragmentation of competing species in the presence of		
competition-mediated dispersal. In this talk, we will develop a patch-level model built on the reaction			
diffusion framework to explore effects of habitat fragmentation and competition-mediated dispersal.			
Our results will focus on a one-dimensional patch and methods from nonlinear analysis such as time			
map analysis (quadrature method) and linearized stability. We will also briefly explain the biologica			
importance of our results.			

UT3.5	Friday	A MATHEMATICAL ANALYSIS ON THE TRANSMISSION DYNAMICS	
	3:20:00 PM	OF NEISSERIA GONORRHOEAE	
Christine Craib		University of North Carolina-Wilmington	
In this project, we a	analyze an epide	miological model describing the transmission of gonorrhea. We	
address two stratif	address two stratifications-one based on age groups, and one based on education levels-each with a		
core sexual activity	core sexual activity class and two noncore sexual activity classes. Using parameters based on sexual		
	behavior in the United States, we address the impact of the average number of partners per year for		
	each sexual activity class on the behavior of the model around two equilibrium points, a disease-free		
	equilibrium and an endemic equilibrium. The focus of the project is to identify the conditions leading		
to the existence of each of the equilibrium points, analyze the stability of these points, and discuss			
	the results. Ultimately, the goal of the project is to find conditions for the bifurcation of the two		
equilibrium points, in order to find the conditions resulting in the eradication of gonorrhea.			

UT7.1	Saturday	The Quest for the Ultimate Team
	10:00:00 AM	
Henry Crosby		Birmingham Southern College
FanDuel, is the lead	ding one-day onli	ne fantasy sports game in the world. For professional football, a
player is given a sa	lary cap of 60,00	0 dollars to draft a team of 9 professional football players ranging
amongst every play	yer in the NFL. A	winning team must score in the upper 50th percentile amongst all
other players. Play	ers score points l	pased a scoring system developed by FanDuel that is entirely
based upon particu	ular statistics. The	e goal of this paper is to mathematically (1) create a point
predicting model for	or every player a	nd then (2) optimize a drafted team based upon those predictions
given the salary cap as a constraint and ultimately pick a winning team. The point predictor mode		and ultimately pick a winning team. The point predictor model is a
linear regression model that is unique to every position; since each position will have particular		
statistics of interest over others. Then, an augmented version of the simplex algorithm was used to		en, an augmented version of the simplex algorithm was used to
determine the best team given the salary constraint and the amount of players required. For an		salary constraint and the amount of players required. For an
example, week 6 of 2016 is listed in the paper; projecting 155 FanDuel points and actually scorin		the paper; projecting 155 FanDuel points and actually scoring
123.1 FanDuel points. This is slightly above the average score of a winning team which is		above the average score of a winning team which is
approximately 120 points.		

UT7.3	Saturday	Differential Forms of Maxwell's Equations in Free Space	
	10:40:00 AM		
Keisha Daughtry		High Point University	
In the early 1900s,	the theory of dif	ferential forms was developed by French mathematician Elie	
Cartan. The calculu	is of differential f	forms is used in concepts within theoretical physics including the	
theory of relativity	theory of relativity and the theory of electromagnetism which is depicted by Maxwell's Equations.		
These particular ec	These particular equations can be expressed in three forms: integral form, standard differential form,		
as well as different	as well as differential geometric form. Using Stokes' Theorem and the Divergence Theorem, the		
integral form of Ma	integral form of Maxwell's Equations can be rewritten in standard differential form. To express these		
equations in differential geometric form, the exterior derivative and Hodge star operator are used.			
The beauty of expressing Maxwell's Equations in this notation is that there is no limit on the			
dimension we can	dimension we can study. By using differential geometry, the mathematical analysis of curves and		
surfaces extends beyond the three-dimensional Euclidean space.			

CP4.6	Friday	Writing and Reading the AP Calculus Exam
	10:00:00 AM	
Stephen Davis		Davidson College
The AP Calculus Chief Reader discusses aspects of building and grading a high-stakes exam for a large student population. In particular, in the implementation year for an updated AP Calculus curriculum, we explore how a new curriculum framework and associated Mathematical Practices for AP Calculus impact both the development and scoring of the exam.		

UT2.1	Friday	Modeling a Ballistic Shot to the Moon	
	2:00:00 PM		
Leo Degon		Savannah State University	
This project studies	s about the odds	that a projectile will strike the moon if fired from a cannon. A	
number of simplific	cations are made	but certain parameters have been chosen as having stochastic	
error. The formula	tion of the dynar	nic equation is second order ordinary differential equation that is	
non-linear and inhomogeneous. The appropriate statistical model, such as Gaussian or uniform, for			
each term is deterr	each term is determined by the certainty about measurements and the accuracy of formula. MATLAE		
is used as the modeling program to solve the equation numerically. Some consideration on the use of			
the Langevin Equation is given in brief. The system is chaotic with the uncertainty in the beginning			
having much greater effect than later in the shot due to the nonlinear drag of air. The research will			
show that the odds of a moonshot are low enough to be considered approximately zero.			

UT3.4	Friday	Space Filling Curves	
	3:00:00 PM		
Shaquille Dixon		Coastal Carolina University	
A space filling curve	A space filling curve is a function that maps the unit interval onto the unit square. This talk will		
describe a method	describe a method for generating space filling curves, and explore some of their interesting properties		
and applications. In addition to mapping a seemingly smaller set onto a larger one, space filling			
curves fail to be one-to-one. And while the component functions are continuous, they fail to be			
differentiable at even a single point. One application of space filling curves is the ability to transform			
sounds into images.			

UP1.7	Saturday	Prediction of international HIV Populations using the GDP based	
		weights	
	10:45:00 AM		
Hermine Djimound	li	Savannah State University	
This study mainly a	ddresses applica	tion of a new numerical approach to depict the number of	
patients. Based on	patients. Based on the discrete dataset of international population with HIV from 1980 through 2015,		
U U	we investigate the correlation between the number of HIV patients and the gross national product		
(GNP) in each coun	(GNP) in each country. We predict the number of near future patients by using linear and nonlinear		
regression curves v	regression curves which are obtained through the Least Square technique. Moreover, in order to		
emphasize the strong relevance with more recent year data, we suggest the weighted Least Square			
Method whose weight is developed based on countries' GNP values. Finally we analyze the each			
results and seek for the further work.			

UT1.4	Friday	Creating a Topological Adventure with Dungeons and Dragons	
	3:00:00 PM		
Tucker Dowell		Belmont University	
Math, in itself, is a	fascinating, beau	itiful world to be explored, but many of the concepts we study are	
only ever cataloged	d in our minds as	abstractions. The goal of this talk is to present a fun way of	
becoming more far	becoming more familiar with and teaching mathematical ideas whose properties have always seemed		
a little out of reach to me. I will be talking about how I incorporated ideas such as the projective plan			
and Möbius strips into a Dungeons and Dragons campaign that I put together. By weaving these			
topological objects into an exciting, fantastical narrative, I was able to introduce a few friends who			
have never studied mathematics to some incredibly intriguing ideas, while coming to understand			
them more deeply myself as well. Even if we feel like we are lost on a nonorientable surface, we will			
surely enjoy ourselves as we embark on this adventure!			

UT1.5	Friday	Super-SET	
	3:20:00 PM		
Tucker Dowell		Belmont University	
The card game SET	has fascinated n	nathematicians for decades, and, this summer, the mathematics	
community saw hu	ge leaps into the	study of the game. A deck of SET cards is made up of cards having	
four attributes, eac	ch attribute havir	ng three possibilities. Typically, players race to find "sets" of three	
cards such that all	cards such that all three of the cards are either identical or completely different with respect to any		
attribute. Mathem	attribute. Mathematicians have traditionally studied the smallest number of cards necessary to		
ensure that there is	ensure that there is at least one "set" within the dealt cards. We define a variation of SET we call		
'Super-SET' where players search for any two pairs of cards such that both pairs need the same card			
to complete a classic set. We study the smallest number of cards necessary to ensure that there		the smallest number of cards necessary to ensure that there is a	
super-set.			

UP1.8	Saturday	Games for Generalizing Finite Groups with Cross Product of Z2	
	10:45:00 AM	and Finite Abelian Groups	
Ashly Earley		Converse College	
I will present a stud	dy into the two g	ames analyzed in the paper Impartial Achievement and Avoidance	
		s by Ernst and Sieben. These games were originally proposed by	
Anderson and Hara	Anderson and Harary in a 1987 paper. In these games, two players alternatively select previously		
unselected elemen	unselected elements within a finite group. For the first game, players will select elements with the		
intent of creating a	intent of creating a generating set from their selected elements to win the game. For the second		
game, the player w	game, the player will select elements with the intent of not creating a new generating set from their		
selected elements	selected elements to win. I will apply group theory, game theory, and probability concepts to these		
games to provide preliminary results on one of the proposed questions at the end of the paper of			
Ernst and Sieben. Specifically, this project contributes to the understanding of the nim-numbers of			
generalized dihedral groups from the cross product of Z2 and A, where A is a finite abelian group.			

CP3.5	Friday	Modeling the Role of Education in Ebola Virus Disease Outbreaks	
		in Sudan	
	3:20:00 PM		
Christina Edholm		University of Tennessee at Knoxville	
In light of the Ebola	In light of the Ebola outbreak in 2014, we worked on an Ebola model during our South African		
Mathematical Sciences Association Masmau program in 2014 and 2015. Our model partitions the			
population into those who take precautions against contracting the disease and those who do not.			
We consider new infections arising in both hospital settings as well as in the community, and include			
transmission from dead bodies and the environment. Our goal is to illustrate role of education in			
limiting a potential future Ebola outbreaks in Sudan using data and modeling. We considered			
implications of a new strain with respect to different death rates and recovery rates.			

UT8.2	Saturday	Creating a Field Structure for the Pythagorean Triples
	10:20:00 AM	
James Eskew		University of Tennessee at Martin
It is possible to construct maps from the Pythagorean triples to the extended rational numbers by		
plotting the triples as points on a unit circle, where the triple (x, y, z) is plotted as the point $(\frac{x}{z}, \frac{y}{z}, 1)$,		
and then taking the slope of the secant line between each triple and a fixed point on the circle. We will use these maps to create a field structure for the Pythagorean triples.		

CP6.1	Saturday	Enumerating cycles in the graph of overlapping permutations
	10:00:00 AM	
Brad Fox		Austin Peay State University
permutations as it length within the permutations. In	ts vertices and ed De Bruijn graph, s this talk, we will o found in particula	ions is analogue to the De Bruijn graph that consists of ges. Previous researchers have counted the cycles of a particular to we attempt to do this with the graph of overlapping discuss the challenges that this graph poses and some successful ar cases, such as counting 2-cycles and the counting number of length.

WS.1	Friday	Workshop for Directors of Mathematics Tournaments
	9:00:00 AM	
Chuck Garner		Rockdale Magnet High School
universities each a between the tourn organizations, such which oversees Ge collaboration by sh doesn't. We also p topics at tourname level teacher organ	cademic year in c ament organizer as NCTM Affiliat orgia's State Mat aaring what work ropose a more co ents, and to estat nizations. Althoug	math tournaments for high school students at colleges and our section. There is virtually no coordination or collaboration s and directors, and very little collaboration with local teacher te groups (like the Georgia Council of Teachers of Mathematics th Championship). This workshop is offered as a step toward s with your tournament and to ask colleagues for help with what bordinated effort to voluntarily introduce targeted mathematical olish a more firm line of communication with regional and state- gh we will facilitate the discussion towards math tournaments for burnaments for other student populations are encouraged to join

UT1.6	Friday	Plugging in to the 3n+1 Problem	
	2:40:00 PM		
Kailee Gerzema		Belmont University	
Proving the Collatz	Conjecture has b	been said to be outside of the realm of possibilities given the	
current advanceme	current advancement of mathematics, so, obviously, we thought it would be fun to play around with		
the famous proble	the famous problem. Our talk will not present a solution or proof for the 3n+1 problem, but we will		
discuss our approa	discuss our approach to working toward a solution. This talk is as much a dialogue on what it means		
to wrestle with an unsolved problem and how that struggle can help one learn about the process of			
doing research as it is a discussion of our enlightening (if not helpful) perspective on the 3n+1			
problem. Even if none of us ever solve a problem that has been open for decades or centuries during			
our lifetime, we su	our lifetime, we suggest that failing to find solutions to such problems can be just as lucrative for the		
growth of the individual as a mathematician.			

CP3.3	Friday	Hybrid Chebyshev Polynomial Scheme for the Numerical Solution	
	2:40:00 PM	of Partial Differential Equations	
Balaram Ghimire		Alabama State University	
In this talk, we pro	pose hybrid Cheb	byshev polynomial scheme (HCPS), which combines two matrix	
systems of Chebysl	hev polynomial s	cheme into a single matrix system. This hybrid formulation	
requires solving on	requires solving only one system of equations and opens up the possibilities of solving large classes of		
partial differential equations (PDEs). We consider various boundary value problems and the			
inhomogeneous Cauchy-Navier equations. The solution is approximated by the sum of the particular			
solution and the ho	solution and the homogeneous solution. Chebyshev polynomials are used to approximate a particular		
solution of a PDE. The Laplacian or biharmonic operator is kept on the left side and all other terms are			
moved to the right side and treated as a forcing term. Numerical results show that our approach is			
highly accurate and stable.			

CP3.6	Friday	Combinatorics of n-Colored Cyclic Compositions	
	3:20:00 PM		
Meghann Moriah G	Gibbs	Georgia Southern University	
Integer compositio	Integer compositions and related enumerative problems have been of interest to combinatorialists		
and number theori	and number theorists for a long time. The cyclic and colored analogues of this concept, although		
interesting, have not been extensively studied. As a result, we have chosen to explore the			
combinatorics of n-colored cyclic compositions, and we present generating functions, bijections,			
asymptotic formulas related to the number of such compositions, and the number of parts and			
restricted parts for certain types of compositions.			

CP3.2	Friday	Three Algorithms for Numeric Series Function Approximation	
	2:20:00 PM		
Gregory Goeckel		Presbyterian College	
When we teach po	wer series, stude	ents are taught how to find the power series' interval of	
convergence and h	ow to find how r	nany terms are needed to calculate at certain degree of accuracy.	
What is almost alw	ays overlooked i	s that numerical calculations are not done with infinite precision.	
Loss of precision er	Loss of precision enters when a large number of calculations are performed, i.e, there is a large		
number of terms c	number of terms calculated. Also, loss of significant digits occurs when numbers of near equal values		
are subtracted. So,	are subtracted. So, if the series is not always positive and the result has a magnitude smaller than the		
	largest magnitude, then one may assume that the loss of digits is at least the difference between the		
two magnitudes. I will present algorithms, for the exponential, logarithmic, and Bessel (first kind, of			
integer order) functions, that use as few terms as possible and reduce the risk of loss of signification		s few terms as possible and reduce the risk of loss of significant	
digits.			

SS5.2	Saturday	Introducing Fun Research Through a One-credit Course	
	2:20:00 PM		
Adam Graham-Squ	ires	High Point University	
In an effort to intro	In an effort to introduce research to undergraduates earlier in their mathematical career, we created		
a one-credit resear	a one-credit research course aimed at freshmen and sophomore students. The idea is to introduce		
students to a number of mathematical topics, with a focus on investigating topics as opposed to			
finding answers. We practice problem-solving skills and asking interesting questions in a variety of			
settings, most of which the students have never seen before. Topics have included number theory,			
mathematical games such as Set and Nim, Graph theory, math modeling, and the game of life, among			
others.			
others.			

CP1.4	Friday	The Pathways of Colored Balls Lighting the Queen's Walk
	3:00:00 PM	
William G. Griffiths	s IV	Kennesaw State University
using only the step enumerate using c special case. We g by Delannoy as a "	os (0,1), (1,0), and onfigurations of a ive a combinator Queen's Walk") a	een used to enumerate the number of paths from $(0,0)$ to (n,n) l $(1,1)$. We have discovered a family of integer sequences we colored balls, wherein the Delannoy numbers have appeared as a ial equivalence between the traditional paths (originally described and special sequences of colored balls. Properties of the family of the bijection, revealing interesting properties of this classic set of

CP2.3	Friday	A mathematical model of Mersenne's water jet experiment
	2:40:00 PM	
Charles Groetsch		The Citadel
water jets to simu the curve of the je provide a rigorou: undergraduates, f	ulate Galileo's the et differed qualita s mathematical va for a dynamical m nrichment topics	When Mersenne, O.M. conducted experiments on gravity driven oretical analysis of horizontally projected motion. He observed that tively from the idealized Galilean trajectory in a specific way. We alidation of Mersenne's observation, in a form accessible to odel with Stokes resistance. This historical episode provides an in courses in calculus, elementary differential equations and

UP1.9	Saturday	Optimal Scheduling of an Educational Therapist's Sessions
	10:45:00 AM	
Rickie Grooms		Emmanuel College
This work presents	a solution to the	fluid scheduling problem that a therapist encounters. Schedules
change weekly in t	his occupation ar	nd must be optimized to maximize time with clients and caseload.
The difficulty appears when constraints such as travel time, client availability, and individual		
education plans are considered. Using the branch-and-bound approach with a look-ahead mechanism		
alongside a schedule generation scheme, the resources relevant to this application are assigned		
optimally within several possible rankings of the criterion. Through tweaking of the dominance rules,		
multiple, near-optimal schedules may be produced and ordered by user preferences.		

CP4.3	Friday	A GUEST Course in Statistics	
	2:40:00 PM		
Bob Guest		University of Tennessee at Knoxville	
		f fields by a large variety of people. Thus it is essential to provide	
an exceptional exp	an exceptional experience in college statistics courses that is approachable by students of any major.		
In the intro-level co	In the intro-level course Statistical Reasoning, we are implementing a redesign that is a hands-on		
approach to data c	approach to data collection and analysis. In this partially "flipped" class, students watch narrated		
videos at home and practice their skills in class. During class, students collect data from large,			
portable populations of Scrabble tiles, Uno cards, and dice. Then each data set is used in an			
assortment of lessons, allowing students to realize important ideas for themselves. This self-discovery			
facilitates deeper understanding of the material.			

SS3.5 F
3
Arran Hamm
We define an even k- an even number of e where researchers for of graphs among oth On a (slightly) unrela of edges a k-uniform 2 edges? This questi This talk will discuss results to the stated

UT8.5	Saturday	Augmented Happy Function with Complex Variables	
	11:20:00 AM		
Marcus Harbol		The Citadel	
Let the Augme	nted Happy Functior	with Complex Variables be defined as follows.	
If $a = \sum_{i=0}^{n} a_i 1$	10^{j} and $b = \sum_{i=0}^{m} b_i$	10^{j} , then define $G_{[c,d,q]}(a+bi) = c + di + \sum_{i=0}^{n} a_{i}^{q} + \sum_{i=0}^{m} (b_{i}i)^{q}$	
for integers a_{i}	b_i , $0 \le a_i \le 9$, $0 \le 1$	$b_i \leq 9.$	
A fixed point in G is some complex integer $a+bi$ such that for a constant $c,d,q, G_{[c,d,q]}(a+bi) = a + bi$			
		di, with positive integers <i>c</i> , <i>d</i> , there exist a finite number of fixed	
points in G. W	e prove properties o	f fixed points and under what circumstances fixed points can be	
restricted. We	also extend these ob	servations to arbitrary bases.	
UP1.10	Saturday	Essentially Unique Representations of Ternary Quadratic Forms	

UP1.10	Saturday	Essentially Unique Representations of Ternary Quadratic Forms	
	10:45:00 AM		
Raymond Herbert		Samford University	
ancient times, math [a,b,c,d,e,f]=n. For represented in esse	Ternary quadratic forms are polynomials of the form [a,b,c,d,e,f]:=ax ² +by ² +cz ² +dyz+exz+fxy. Since ancient times, mathematicians have examined these forms to see what solutions are given when [a,b,c,d,e,f]=n. For specific forms [a,b,c,d,e,f], it was our goal to find a list of integers n that the form represented in essentially one way. By represented in essentially one way, we mean that there is only one solution if we take into account automorphs, which will be defined in the poster.		

CP9.3	Saturday	Nonlinear Oscillations, Elliptic Functions and Simulation	
		Differential Equations in Simulink	
	10:40:00 AM		
Russell Herman Universi		University of North Carolina-Wilmington	
We discuss differential equations, such as the nonlinear pendulum equation, which lead to solutions			
involving elliptic functions and elliptic integrals. These classic forms, accessible to undergraduates, are			
	not often encountered in differential equation courses but are often left for advanced courses in		
complex analysis. We discuss the connection of elliptic functions to differential equations and show			
how graphical editors for designing simulations of systems, such as Simulink, can be used to model			
solutions of nonlinear oscillators.			

UT7.1	Saturday	The Quest for the Ultimate Team
	10:00:00 AM	
Stephen Himic		Birmingham Southern College
FanDuel, is the	leading one-day onli	ne fantasy sports game in the world. For professional football, a
player is given a	salary cap of 60,00	0 dollars to draft a team of 9 professional football players ranging
amongst every	player in the NFL. A	winning team must score in the upper 50th percentile amongst all
other players. P	layers score points l	based a scoring system developed by FanDuel that is entirely
based upon par	ticular statistics. The	e goal of this paper is to mathematically (1) create a point
predicting mod	el for every player a	nd then (2) optimize a drafted team based upon those predictions
given the salary	cap as a constraint	and ultimately pick a winning team. The point predictor model is a
linear regression model that is unique to every position; since each position will have particular		
statistics of interest over others. Then, an augmented version of the simplex algorithm was used to		
determine the best team given the salary constraint and the amount of players required. For an		
example, week 6 of 2016 is listed in the paper; projecting 155 FanDuel points and actually scoring		
123.1 FanDuel points. This is slightly above the average score of a winning team which is		
approximately 120 points.		

UP1.11	Saturday	Optimizing Aircraft Boarding Strategies		
	10:45:00 AM			
Qixuan Hou		Georgia Tech		
In order to achieve	e high aircraft util	ization, commercial airlines has made efforts to improve its		
turnaround perfor	mance, which is r	neasured by the time between an airplane's arrival and its		
departure. Passeng	departure. Passenger boarding is one of the many factors which determine turnaround time. We			
simulate distinct ai	simulate distinct airline boarding procedures with Python, such as outside-in, random, rear to front,			
reverse pyramid, re	reverse pyramid, rotating zone, zone/block style, and also provide a mathematical model to measure			
the goodness of each procedure. By analyzing the model, we want to evaluate distinct boarding				
processes and to identify the most efficient boarding strategy. Ideally, with field observations and				
data analysis, a new procedure will be proposed to optimize the boarding time and improve				
turnaround performance.				

UT5.4	Saturday	Abstract Withdrawn
	11:00:00 AM	

CP2.1	Friday	On a Generalization of Wolff's Ideal Theorem
	2:00:00 PM	
Andrew Incognito		Coastal Carolina University
We settle an open question to generalize Wolff's Ideal Theorem on certain uniformly closed subalgebras of $H_1(D)$. Also, some subalgebras where Wolff's Ideal Theorem holds true without the additional condition $F(0) = 0$ will be discussed.		

UT4.2	Friday 2:20:00 PM	Higher Degree Polynomials and Their Solvability by Radicals
Peter Jakes		Elon University
polynomials. Howe exactly, or solved k of each function ca solved exactly and polynomials. By us determined by only information, it can	ever, it was prove by radicals. As a r alled its Galois gr which could not ing computer so y using two resol then be determine re higher degree	existed to find exact solutions to quadratic, cubic and quartic en later that not all solutions to quintic polynomials can be found result, a method was created in the 20th century using a property oup in order to determine which degree five polynomials could be . This project expands upon this discovery by exploring degree six ftware, the Galois group of a degree six polynomial can be lvent polynomials, improving upon prior methods. From this ined whether or not the polynomial is solvable by radicals. Further e polynomials as well as reducible polynomials, as the current e polynomials.

UT9.4	Saturday	Doughnuts of Many Colors
	11:00:00 AM	
Joseph Johnson Lenoir Rhyne University		Lenoir Rhyne University
graphs can be emb torus. With graph t	We will explore map coloring problems on tori with one or more holes. We start by finding which graphs can be embedded on a torus with no crossings. Using this, we create map colorings on the torus. With graph theory and the Euler characteristic we show that seven colors are necessary and sufficient to color the one-holed torus.	

PUB.1	Friday	Web Accessibility, New Courses, and Custom Tools
	11:00:00 AM	
Emily Judy		Hawkes Learning
the beta release of course customizati	Hawkes Learning will present new corequisite courses aligned with STEM and non-STEM pathways, the beta release of Calculus software, an overview of Web Accessibility basics, and new features for course customization, including the latest innovation in question-authoring technologies: Question Builder. Win a \$25 Amazon gift card!	

UT9.1	Saturday	The Shapley Value of Digraph Games	
	10:00:00 AM		
Krishna Khatri		Piedmont College	
Digraph games ar	e transferable util	ity (TU) games with limited cooperation among players, where	
players are repres	sented by nodes. A	A restrictive relation between two adjacent players is established	
by a directed line	by a directed line segment. Directed line segments, connecting the initial player with the terminal		
player, form the c	player, form the coalition among players. Dominance relation is established between players and this		
relation determin	relation determines whether or not a player wants to cooperate. To cooperate, we assume, player		
joins coalition where he/she is not dominated by any other players. The Shapley value is define as the			
average of marginal contribution vectors corresponding to all permutations that do not violate the			
subordination of players. The shapley value for various digraph games is calculated and analyzed. For			
a given characteri	a given characteristic function, a quick way to		
calculated Shapley values is formulated .			

UT3.3	Friday	Variable Step Implementation of an Extended Block Method in		
	2:40:00 PM	Solving Stiff Differential Equations		
Kindyl King		Austin Peay State University		
We present a varia	We present a variable step method in solving first order ordinary differential equations (ODEs).			
Systems of stiff diff	Systems of stiff differential equations arise in many real-world applications. Thus, it is imperative for			
stable and accurate numerical methods to be developed. Traditionally, a constant step size is used in				
numerical methods. However, if the solution to the ODE changes rapidly, then the constant step size				
will result in large errors. To overcome this occurrence, a variable step method can be implemented				
so that if the error exceeds a certain magnitude at each point, the step size will be adjusted. Our				
method is based on Cash's Extended Backward Differentiation Formula and involves an extended				
block method. We will analyze stability and compare the accuracy of our method to the well-known				
predictor-corrector	r method.			

SS4.2	Saturday	Intuitive sense of mechanisms or misconceptions: investigating			
	10:20:00 AM	undergraduate students' comprehension of variability			
Oguz Koklu		University of Georgia			
Research literature	Research literature abounds cognitive studies that document student misconceptions for various				
content including t	content including the discipline of statistics. Researchers often investigated students' conceptions of a				
content by evaluat	ing student unde	erstandings based on the normative meanings and researcher-way-			
of thinking, and stu	udents' "non-star	ndard" ways of understandings have been called misconceptions			
	•	tanding. The implications of these studies usually include that			
misconceptions sh	ould be confront	ed, overcome, and replaced by the valid forms of understandings			
(McCloskey, 1983)	. Although this bo	ody of research has provided invaluable resources on how student			
	understand certain topics and concepts, these studies typically focus less on explaining how students'				
own conceptions c	ould be instrume	ental in teaching the very same topic or concept that they hold			
misconceptions.	misconceptions.				
		93) knowledge-in-pieces epistemological framework (KiP) for my			
investigation of college students' various ways of reasoning about variability for quantitative data.					
Viewing student conceptions with a KiP perspective, I conducted task-based interviews with four					
undergraduate students to understand how they conceptualize variability in different situations. The					
study provided an opportunity to observe students conceptions more thoroughly as against to calling					
students' partial and fragmented ways of understandings as mere misconceptions (and not furthering					
the investigation). The results of my study have also enabled to reveal some of the very fundamental					
and primitive foundations of understanding variability, which could play important roles in the					
		bility concept for students. Overall, the presentation will showcase			
potential benefits of viewing students' understanding in more broad ways. Implications for practice					
such as classroom interventions will also be discussed.					

CP8.2	Saturday	Some interesting properties of p-regular partitions
	10:20:00 AM	
Louis W. Kolitsch		University of Tennessee at Martin
In this talk, p-regular partitions will be defined and some of their interesting properties will be discussed.		

UT7.2	Saturday	Optimizing Checkout Times
	10:20:00 AM	
Katie Kruzan	•	Belmont University
Most major supermarkets have both general checkout lanes and express lanes with item limits. What is the express lane item limit that will minimize the average customer's waiting time? A natural extension of this question concerned how might we apply our findings to minimizing congestion in other contexts? This required more advanced probabilistic and programing methods to optimize the system. This model and future improvements may help lead to efficiently simulate optimizing congestion and traffic flow.		

CP9.5	Saturday	Differential Equations with Hypergeometric Solutions of Degree 1
	11:20:00 AM	or 2
Vijay J. Kunwar		Albany State University
Differential equations with hypergeometric solutions are very common in Combinatorics, Physics, and		
Engineering. If a second order differential equation arises from a convergent power series, then its		
solution can be expressed in "closed form" using hypergeometric functions. In this talk, we will		
discuss about our algorithms to solve second order linear differential equations in terms of		
hypergeometric solutions of degree 1 or 2.		

UT8.6	Saturday	The Relationship between Primes and Consecutive Integers	
	11:40:00 AM		
Adam Kurban	sho	Methodist University	
Although num	ber theorists have es	stablished myriad theorems regarding prime numbers, our	
preliminary st	udy has exposed intri	iguing properties of primes and their decomposition into	
consecutive ir	ntegers. In this paper,	we develop a method for analyzing consecutive integers, note	
their relations	ship with prime numb	pers, and record the unique properties with the intent to augment	
the knowledg	the knowledge of the prime set. Our research demonstrates that there are several interesting		
connections between prime numbers and their decomposition into consecutive integers, which is			
promising for future research in this area. Analyzing the properties of consecutive integers through			
"integer tables" reveals several noticeable patterns, one of which suggests that there are certain			
cases where we can expand on the accuracy of Bertrand's Postulate. We also analyze the case of twin			
primes and note their unique status of sharing a consecutive integer that has a factor of three. Lastly,			
we explore th	we explore the decomposition of primes into consecutive integers through tree diagrams. The relative		
scope of our methods spans across the fields of elementary number theory, set theory, and algebra.			

PUB.2	Friday	My MathLab
	2:00:00 PM	
Seanna Landry		Pearson
Pearson's MyMathLab continues to evolve in response to trends in today's math education. In this session, we're going to focus on features and innovations designed to support students taking		
Calculus and Differential Equations. Come see how MyMathLab solutions promote Just-In-Time help, Personalized Learning, Conceptual Understanding & In-Class Engagement.		

UP1.12	Saturday	Medieval Europe's Next Top Model: Using NetLogo to Model the		
	10:45:00 AM	Black Death		
Megan Lenaghan		Converse College		
The bubonic plague	e, considered to	be one of the most well-known and devastating pandemics in all of		
human history, has	human history, has been studied at the biological level for years by the Center for Disease Control. In			
addition to biologis	addition to biologists studying the disease, expert historians have attempted to estimate the numbers			
of casualties and the proportion of the population affected. Mathematical modeling has the potential				
to help us more accurately assess how this disease spread in a changing population, accounting for				
factors such as growth and deaths. Using the programmable modeling environment NetLogo and SIR				
continuous modeling principles, along with what is already known about the plague, a mathematical				
simulation has been designed to estimate the possible influence fleas, rats, and immunity had on ho				
many survived the Black Death.				

UT1.2	Friday	Artificial Neural Networks for Stochastic Time Series Regression		
	2:20:00 PM			
Andrew Linzie		Gardner-Webb University		
Over the past deca	des, machine lea	rning has become an essential area of research with relevant		
applications in clas	sification and reg	ression. Artificial intelligence techniques can be used for		
statistical analysis	of stock markets	which is one example of a time series. Within this research, we		
trained artificial ne	trained artificial neural network models for the purpose of stochastic time series regression. One of			
the models used is	the models used is an Extreme Learning Machine, which is proposed by G. Huang, et. al; the other			
model is a Multi-Layer Perceptron using back-propagation, a method where the weights are				
iteratively modified	iteratively modified according to learning the training set. The models use previous historical data to			
try and give estimates of the next days' closing price with the goal of positive correlation between the				
predicted and real time series. The stock market is just one example of a noisy system with				
applications in fore	applications in forecasting, and models for stochastic regression have far reaching applications in all			
STEM fields.				

CP1.1	Friday	Finite Ideal Factorization Domains	
	2:00:00 PM		
Anna Litchford		Tennessee Tech University	
In "Factorization in	Integral Domain	s", D.D. Anderson, D.F. Anderson, and Zafrullah introduced the	
concept of a finite	concept of a finite factorization domain, an integral domain in which every nonzero nonunit has a		
finite number of factorizations into a product of irreducibles. We introduce an analogous structure a			
the level of ideals, a finite ideal factorization domain, or FIFD, an integral domain in which every			
nonzero proper ideal has a finite number of factorizations into a product of nonfactorable ideals. We			
will explore polynomial-type domains and the classical D +M construction and examine under what			
conditions they are FIFDs.			

СР7.4	Saturday	Providing real-time instructor feedback about undergraduate	
		learning through machine learning algorithms	
	11:00:00 AM		
Alex Lyford		University of Georgia	
Constructed-respo	nse questions, th	ose in which students must respond to a posed question using	
their own words, h	their own words, have been shown to help researchers and instructors understand students'		
knowledge and understanding better than multiple choice questions. One principle advantage of			
these open-ended	these open-ended questions is that students are able to elaborate, often both correctly and		
incorrectly, about how they arrived at their answers. One effective approach is to leverage machine			
learning algorithms to make classifications about student responses. In this presentation, I will utilize			
several machine learning algorithms together in an ensemble to classify student responses and			
provide real-time instructor feedback. I will then demonstrate how these classifications can be used			
to improve instruction in all courses and offer unique perspective into student knowledge for large-			
lecture courses.			

UT5.1	Saturday	Finding a Better Concert Tour	
	10:00:00 AM		
Caitlin McCurdy		Birmingham Southern College	
Consider the scena	ario in which a pe	rformer is trying to find the best concert tour through a set of	
cities. Given a set o	cities. Given a set of cities, with a benefit associated with each, a weighted complete graph is formed.		
Cities can be visited multiple times, although a recovery time dictates the amount of time that must			
pass before a city can be revisited. The goal is to find the path that maximizes the total benefit. First,			
we create a model and discuss the variables. Then we define three algorithms used to find paths and			
introduce MATLAB code for each. We then simulate a concert tour using the code. Finally, we analyze			
the results when allowing the recovery time to vary.			

CP5.2	Saturday	Exploring Virtual Reality in a Calculus III Class
	10:20:00 AM	
Erin McNelis		Western Carolina University
As Virtual Reality (VR) and Augmented Reality (AR) technology becomes more accessible for		
departments and individuals, how might we make appropriate use of it for our mathematics classes?		
This presentation will explore current uses of VR and AR in mathematics classes, issues to consider,		
and the steps taken to develop a virtual reality activity exploring the method of Lagrange multipliers.		

UT4.5	Friday 3:20:00 PM	Constructing irreducible polynomials over prime fields using complex mulplication
Tyler Melton		Armstrong State University
For a certain discriminant D and a prime field F, the Hilbert class polynomial H(D) has a high probability of being irreducible over F. We will use this fact and the Chinese Remainder Theorem to naively construct irreducible polynomials over F.		

CP9.2	Saturday	The Contributions of Women Mathematicians throughout the
		History of Athens State University
	10:20:00 AM	
Ronald L Merritt, Jr.		Athens State University
Athens State is a small liberal arts university in Athens, Alabama which will celebrate its bicentennial		
in 5 years. Athens State has a rich history of women mathematicians who have transformed the		
mathematics program throughout the last two centuries, conforming the program with the needs of		
the time. Moreover, they have made significant local, national and international impacts on		
humanity.		

UT4.6	Friday	The Classification of Timbres via Overtone Sequences
	3:40:00 PM	
Zhian Mi		Birmingham Southern College
and timbre. Timbre and it depends on	e, also known as t the overtone seq	ments of sound" to describe a certain sound: amplitude, frequency tonal color, has the most complicated mechanism of the three, uence. Using software that can produce and edit sounds, I classify looking for mathematical description of musical categories.

UT6.3	Saturday	Quantifying CDS Sortability of Permutations Using Strategic Piles	
	10:40:00 AM		
Bethany Molokach		Western Carolina University	
We investigate the	sorting of permu	utations using context directed swaps (CDS). Sorting has important	
applications in mat	thematics and ot	ner disciplines, such as biology and computer science. Not all	
permutations are 0	CDS sortable. We	seek to quantify the degree of sortability. Prior work introduced	
the concept of fixe	the concept of fixed points, which represent permutations on which no more swaps can be made		
develop mathemat	tical methods for	quantifying the number of permutations from which a given	
number of fixed po	oints can be reach	ned. These methods incorporate fields such as combinatorics,	
algebra, and graph theory. We also consider this problem from a game theoretic perspective by			
exploring strategic methods for reaching specific fixed points. Our findings include formulas that			
explain both previously reported and newly collected		d newly collected data. These results clarify the role of CDS as a	
sorting operation.			

CP3.4	Friday	A Survey of Recent Work on the Collapse of the Tacoma Narrows	
	3:00:00 PM	Bridge	
George Moss		Union University	
The Tacoma Narroy	The Tacoma Narrows Bridge collapsed over 75 years ago, and its failure has been analyzed in great		
detail since then. T	detail since then. The TNB experienced vertical oscillatory motion from the time of its construction		
until its destruction. On the morning of its collapse, it exhibited a new torsional motion that led to its			
demise. We examine several models from the literature in mathematics, engineering, and physics in			
an attempt to understand the behavior of suspension bridges and ultimately to try to determine why			
these torsional oscillations suddenly appeared.			

CP8.3	Saturday	Which Triangular Numbers are perfect
	10:40:00 AM	
Tilahun Muche		Savannah State University

A number n is perfect when $\sigma(n)=\sum_{i=1}^{\infty}(0 \le d < n, d \mid n)$ (d). It was Euclid who proved that if (2^k-1) is a prime number, Mersenne prime, then N=2^(k-1) (2^k-1) is an even perfect number. Moreover, if N is an even perfect number then N=T_m for some m \in N and m \ge 3 is a triangular number where $T_m=\sum_{i=1}^{\infty}(i=1)^m$ (i).

In this paper we proved the necessary and sufficient condition for an even triangular number T_m to be a perfect number N= $2^{(k-1)}$ (2^{k-1}) besides a triangular number T_m is $\neq 4 \mod 10$ and T_m $\neq 2 \mod 10$.

SS2.2	Friday	Solving open problems with students as a first research	
	2:20:00 PM	experience	
Antara Mukherjee		The Citadel	
In this talk I will sha	are some experie	nces about working with students on research projects. Instead of	
giving them proble	giving them problems from our own projects to work, my co-author and I use open problems from		
journals. Using these resources we have worked with several undergraduate and some graduate			
students giving the	students giving them a taste of their first research experience. Many of these students have published		
their research in journals and won awards for their presentations and posters on their research			
projects. I will also describe how these projects were conducted and the various criteria we thought			
about when we found the right problems for the students to work on.			

SS3.3	Friday	Polytopes, Diagrams, and g-Vectors: Oh, My!		
	2:20:00 PM			
Sarah A. Nelson		Lenoir Rhyne University		
I bet you have enco	I bet you have encountered convex polytopes most of your life. The Platonic solids and 2-dimensional			
convex <i>n</i> -gons are some examples. In this talk, we will formalize this notion before introducing its				
associated Gale dia	associated Gale diagram. We will further discuss how to encode information about the polytope's			
faces in its associated flag-f- vector and toric g-vectors. In 1990, Carl Lee showed some interesting				
results for a special class of polytopes, which are classified as simplicial. As time permits, we will even				
share some exciting extensions to polytopes in general.				

SS4.3	Saturday	Who Can Better Predict of Their Own Performance? A Preliminary
	10:40:00 AM	Report.
Kedar Nepal		Mercer University
Research shows that low-achieving students are usually not aware of their weaknesses. As a res		students are usually not aware of their weaknesses. As a result,
many might fail to see the need to explore the subject matter more deeply, in order to improve the conceptual understanding and procedural fluency. This study investigates undergraduate mathematics students' self-assessment behaviors. Students from a wide range of mathematics courses were asked to predict their scores on in-class assignments, and those predictions were compared with the grades assigned by their instructors. The students were also asked to justify the predicted scores if they did not give themselves full points. Preliminary results showed that stude overall overestimate their grades. There was a significant difference between expected and actual grades. As test scores increased, the difference increased from negative to positive. Students in the		edural fluency. This study investigates undergraduate nent behaviors. Students from a wide range of mathematics scores on in-class assignments, and those predictions were by their instructors. The students were also asked to justify their themselves full points. Preliminary results showed that students here was a significant difference between expected and actual

UT4.1	Friday	Exploring Patterns in the Hailstone (3n+1) Problem For Predictive	
		Purposes	
	2:00:00 PM		
Nathan Nickelson		Austin Peay State University	
This Hailstone Problem (also known as the Syracuse Problem, the Collatz Conjecture, Ulam's			
Conjecture, or the 3n + 1 problem) has many predictable patterns with its integer sequences. The			
purpose of this study was to examine those patterns and their possible use in facilitating an eventual			
solution. Convergence of infinite series, combinatorics, and alternative boundary conditions are some			
of the techniques used to establish the patterns evident within the problem. Also explored were			
alternative methods for observing the progression of integers through the problem's iterations.			

UT4.4	Friday	The Collatz Conjecture and Some Cousins		
	3:00:00 PM			
Chelsea Noel		Lenoir Rhyne University		
The Collatz function	The Collatz function takes a natural number and halves it if it is even, and triples it and adds one if it is			
odd. The Collatz Conjecture says that iterating the Collatz function always results in a 1-4-2-1 loop. In				
this presentation, we will share results from our explorations of what sequences arise when we				
modify or create modulo 3 analogs of the Collatz function. This talk should be accessible to a general				
audience.				

GS3.1	Saturday	Gems of Ramanujan and their Lasting Impact on Mathematics	
	8:45:00 AM		
Ken Ono		Emory University	
Ramanujan's	work has has a truly t	ransformative effect on modern mathematics, and continues to do	
so as we understand further lines from his letters and notebooks. In this lecture, some of the studies			
of Ramanujan that are most accessible to the general public will be presented and how Ramanujan's			
findings fundamentally changed modern mathematics, and also influenced the lecturer's work, will be			
discussed. The speaker is an Associate Producer of the film The Man Who Knew Infinity (starring Dev			
Patel and Jeremy Irons) about Ramanujan. He will share several clips from the film in the lecture.			

UP1.5	Saturday	Image Processing for Classification and Regression		
	10:45:00 AM			
Jacob Oullette		University of North Carolina-Wilmington		
This project focuses on identifying characteristics from a set of images of faces. These faces are		haracteristics from a set of images of faces. These faces are from		
the MORPH-II data	the MORPH-II dataset that use the Bio-Inspired-Feature technology at West Virginia University to			
extract meaningful	extract meaningful data points from the images. Each image is quantified to 4,376 real value points			
and we use mather	and we use mathematical techniques to extract meaningful characteristics from the images. In order			
to predict characte	to predict characteristics from new images we can apply the same models that have learned from the			
old images. Thus, the project can be broken down into steps: 1) Dimension reduction and 2)				
Classification & regression. In order to save computational time, we use dimension reduction.				
Classification methods help us determine the genders, and regression helps determine the				
approximate ages.	approximate ages.			

SS2.1 Friday		Undergraduate research in the first year as a faculty member.
	2:00:00 PM	
Frank Patane		Samford University
In my first summer after joining the faculty of Samford University, I had the audacity to host an undergraduate research project. I will discuss this experience, and give pros/cons from a junior faculty member's perspective.		

CP9.4	Saturday	Porous Medium Equation and Its one parameter family of	
	11:00:00 AM	solutions with degenerate interface	
Laxmi Paudel		Albany State University	
We reduce the porous medium equation into second order ordinary differential equation and prove			
the existence of one parameter family of solutions. The solution has degenerate interface that			
advances at a constant speed. We show that the interfaces occur under a very general initial			
conditions and the solutions are stable under certain class of perturbations. We also discuss the			
relevance of the solution to the flow of a thin layer of fluid on a horizontal surface under the action of			
gravity.			

UT2.6	Friday	Conway's Cats
	3:40:00 PM	
Emily Pazdera		Lenoir Rhyne University
control the popula similar to, but far n observing mathem	Abstract. We examine whether the Trap-Neuter-Release (TNR) program can be effectively used to control the population of free-roaming feral cats. We do this by constructing a Game of Cats, which is similar to, but far more complex than, Conway's Game of Life. After construction of the game we are observing mathematical populations of cats to see the effects of sterilization of both randomly	
selected male and randomly selected female cats.		

CP1.2	Friday	Small Hausdorff Dimension in Finitely Constrained Groups	
	2:20:00 PM		
Andrew Penland		Western Carolina University	
Finitely constrained	Finitely constrained groups of tree automorphisms are compact groups defined by finite		
combinatorial "pat	combinatorial "patterns", given by labeled graphs corresponding to finite quotient groups. The		
Hausdorff dimension of such a group is easy to calculate. All previously known examples of finitely			
constrained groups of binary tree automorphisms had relatively large Hausdorff dimension (close to			
1). In this talk we discuss an infinite family of examples of finitely constrained groups whose Hausdorff			
dimension is just above 1/2.			

SS5.1	Saturday	Cellular Automata and Pseudorandom Number Generators
	10:00:00 AM	
Andrew Penland		Western Carolina University
Generating pseudorandom numbers is important to many scientific applications, including simulation		
and cryptography. One approach (initiated by Stephen Wolfram) is to use Cellular Automata (CAs) as		
pseudorandom bit generators (PRBGs); however, the specific class of rules considered by Wolfram		
have since been discovered to have an inherent algebraic property which makes them predictable		
and hence insecure. In this talk, we will discuss working with undergraduate students on a		
mathematical, computational, and experimental search for suitable PRBGs in a larger space of CAs.		

CP7.2	Saturday	Abstract Withdrawn
	10:20:00 AM	

UP1.13	Saturday	Infinite Donuts: Integrating in the p-adics over regions with many
	10:45:00 AM	holes.
Caleb Pierce		Wofford College
In this poster, we examine how to evaluate integrals of the form		
$\int_{(a+p\mathbb{Z}_p)+(a+p^2\mathbb{Z}_p)+(a+p^3\mathbb{Z}^p)+\cdots+(a+p^m\mathbb{Z}_p)}\chi\left(\frac{f(x)}{p^n}\right)dx$ using Jun-Ichi Igusa's Stationary Phase Formula.		

UT2.5	Friday	The Automatic Construction of Fractals of Arbitrary Dimension	
	3:20:00 PM		
Nathan Pool		Elon University	
Have you ever gaze	ed into a work of	art or a coastline on a map and noticed a repetitive pattern the	
closer that you obs	serve it? This dist	inct quality is characteristic of fractals. These geometric figures	
diverge from the st	tructure of tradit	ional polygons with their fractional dimension. Not only do they	
have dimensions o	f non-integer val	ue, but they have self-similarity. Kenneth Falconer addressed an	
equation for dimer	nsions of self-sim	ilar sets – the iterated function systems used to construct fractals	
from initial figures	. My investigatio	n uses this equation by taking into account the number of	
similarity transforr	nations to produ	ce a fractal and the contraction factor used in the transformations.	
I began this resear	ch by writing an	algorithm to construct fractals out of a regular polygon	
corresponding to t	he number of ve	rtices inputted. The end product of this research will have the	
ability to construct	fractals of any g	iven dimension using just one function. With access to this data,	
people will be able	people will be able to more adequately analyze the correlation and relationship between fractals'		
aesthetic characte	aesthetic characteristics and their corresponding dimensions. I hope to push this research even		
further by examini	further by examining the connection between dimension and sound in the area of fractal music. As		
many classical composers made use of self-similar themes in their music, perhaps there is a way to			
portray that self-similar composition technique through the mapping fractals' coordinates to			
corresponding frequencies. Furthermore, dimension has the potential to be connected to the sound			
just as it has a connection to self-similarity. The existence of a successful algorithm for creating			
fractals of arbitrary dimension gives access to countless fractals varying in dimension in any way that			
researchers desire	•		

UT6.1	Saturday	Topological and Combinatorial Characterizations of Factorization in Integral Domains
	10:00:00 AM	
Adam Pratt		Birmingham Southern College
We investigate the irreducible divisor simplicial complexes of elements in atomic domains, proving topological and combinatorial results concerning the homology of these complexes and a new classification for unique factorization domains.		

SS5.3	Saturday	An overview of metric distances between Cayley tables of finite
	10:40:00 AM	groups
Jesse Prince-Lubawy		University of North Alabama
Upper level proof o	ourses provide a	platform for undergraduates to refine their proof-writing
techniques. Undergraduate research problems, on the other hand, give students a chance to wrestle with the unknown. These problems allow the student to see the process of discovery, through examples and counterexamples. The question at hand is how do we find an interesting problem and how do we motivate the student? In this talk we will discuss the process of finding a research proble targeted to a particular undergraduate math major, the process of working on the problem, and the process of motivating research talks at undergraduate conferences.		allow the student to see the process of discovery, through e question at hand is how do we find an interesting problem and n this talk we will discuss the process of finding a research problem ate math major, the process of working on the problem, and the

CP4.4	Friday	Twenty Students, Four Faculty, and the University's Squirrel
	3:00:00 PM	Population: An Undergraduate Research Project for Non-Calculus
		Ready Science Majors
Jeff Pullen		Mercer University
Program in Integrative Science and Mathematics (PRISM) is a pilot project in its second year at Mercer		
University, designed to guide a selected cohort of our at-risk, non-calculus ready, incoming student		
population. In this program, students study Statistics, Precalculus, Biology, Physics, and Psychology in		
an integrated manner over the course of an entire academic year as they learn how to conduct an		
authentic research project using the squirrel population on campus. We will share our experiences,		
some assessment results, and planned changes for future installments.		

UP1.13	Saturday	Infinite Donuts: Integrating in the p-adics over regions with many
	10:45:00 AM	holes.
Aidan Quinlan		Wofford College
In this poster, we examine how to evaluate integrals of the form		
$\int_{(a+p\mathbb{Z}_p)+(a+p^2\mathbb{Z}_p)+(a+p^3\mathbb{Z}^p)+\cdots(a+p^m\mathbb{Z}_p)}\chi\left(\frac{f(x)}{p^n}\right)dx$ using Jun-Ichi Igusa's Stationary Phase Formula.		

CP2.4	Friday	Fractional differential equations and monotone iterative
		techniques
	3:00:00 PM	
Diego Ramirez		Savannah State University
In this work we first present the definition of a fractional derivative given by Caputo and some definitions and results of fractional calculus. We will finish the talk by proving the existence of coupled minimal and maximal solutions of initial value problems with fractional derivatives by using the method of lower and upper solutions combined with a monotone iterative technique.		

UT2.2	Friday	Mathematical Modeling of Prevention Methods of Dengue Fever		
	2:20:00 PM			
Michelle Rave		Elon University		
Dengue fever is a v	virus that is trans	mitted by mosquitos. It is prevalent in tropical areas of the world.		
There is no cure, b	ut there are poss	sible prevention methods such as vector control and vaccines. One		
method of vector of	control is a bacte	ria, Wolbachia. Wolbachia infected mosquitos are unlikely to		
transmit dengue b	etween human h	nosts. We use ordinary differential equations (ODEs) and an SEIR		
(Susceptible, Expos	(Susceptible, Exposed, Infectious and Recovered) model to model the transmission of dengue fever.			
The set of ODEs is then used to examine the possible prevention methods. Wolbachia is incorporated				
into the model by	into the model by creating a Removed category of mosquitos that cannot transmit the disease.			
Vaccines are separately incorporated into the model by creating Vaccinated categories for humans.				
Computer simulations of the models are run yielding graphical results. The presence of Wolbachia				
infected mosquitos shortens the duration of the dengue fever presence in the human population. The				
greater the number of infected mosquitos released, the shorter the infection becomes. The use of				
vaccines also shortens the duration of dengue fever presence in the human population. This is				
dependent on a sufficient number of people being vaccinated in a timely manner.				

UT7.4 Saturday	Simulations on a Mathematical Model of Dengue Fever with a
11:00:00 AM	Focus on Mobility
Kelly Reagan	Elon University
Kelly ReaganElon UniversityDengue fever is a major public health threat, especially for countries in tropical climates. In order to investigate the spread of dengue fever in neighboring communities, an ordinary differential equation model is formulated based on two previous models of vector-borne diseases. The resulting SIR/SI model is used to simulate transmission of dengue fever in neighboring communities of differing population size with particular focus on cities in Sri Lanka. Initial infection details and relative population size may affect the dynamics of disease spread. An outbreak in a highly populated area may spread somewhat more rapidly through that area as well as neighboring communities than an	

UT7.6	Saturday	Generalization of Two Inequalities with AM, GM, and HM
	11:40:00 AM	
John Risher		University of South Carolina Salkehatchie
and harmonic mea	n of a finite sequ ttlewood and Po	o inequalities involving sums of arithmetic mean, geometric mean ence. In our study, using our own method we proved two old lya. We then use these results to generalize Lai and Kim's ces.

CP4.5	Friday	An Incentivized Early Remediation Program in Calculus 1: To
		Require Office Hours or Not?
	3:20:00 PM	
Lake Ritter		Kennesaw State University
Lack of readin	ess, in terms of prer	equisite skills, can be a major impediment to student success in
Calculus 1. Or	ne author has been ι	using an early remediation intervention program for several years in
which student	s are assessed at the	e beginning of the term. Students are then given the option to
retake the assessment provided they perform targeted skill building tasks including required office		
hour attendance. This requirement, in particular, results in a significant workload for the instructor.		
In this study, we seek to determine the importance of this office hour requirement. Each author is		
teaching two sections of Calculus 1, one with and one without the office hour requirement. Through		
comparison of grades and student performance on select exam questions and through pre and post-		
surveys, we seek to determine whether there are appreciable differences in course outcomes and		
whether the office hour requirement impacts students' attitudes toward instructor office hours. The		
remediation program as well as preliminary results will be presented.		

DS.2	Friday	The Game of Hex and its Surprising Implications	
	10:00:00 AM		
Stephen Robinson		Wake Forest University	
Hex is a simple two	p-player game the	at is well known to both mathematicians and non-mathematicians.	
Two players, Blue a	and Red, take tur	ns placing tiles on a board until one of them has created a path	
connecting their si	des. East and We	st for Blue, and North and South for Red. Unlike some other	
familiar games, suc	familiar games, such as tic-tac-toe, Hex is guaranteed to have a winner. This is known as The Hex		
Theorem. It turns out that this simple game, and its associated theorem, captures some deep and			
beautiful mathematical ideas that have been fundamental to mathematical progress over the last			
century. In particular, as David Gale demonstrated in a 1980 article in the Mathematical Monthly, The			
Hex Theorem is equivalent to the Brouwer Fixed Point Theorem in the plane. The main goal of this			
talk is to discuss the connection between these two theorems. The proofs are accessible to anybody			
who can play the g	who can play the game, draw some pictures, and contemplate continuity. Given time I will mention		
further implications that are near and dear to my heart.			

SS4.6	Saturday	Initial Findings about Graduate Teaching Assistants' Training
	11:40:00 AM	Needs to Foster Active Learning in Statistics
Kristen E. Roland	k	University of Georgia
As enrollment in	introductory statis	tics courses across the country rises, more instructors for these
courses are need	ded. Many statistics	s courses are now taught by Graduate Teaching Assistants (GTAs).
Little is known, h	nowever, about the	training needs of GTAs to foster active learning and promote
conceptual unde	erstanding, critical r	ecommendations of the GAISE guidelines to improve
undergraduate l	earning in statistics	. This talk will discuss some active learning activities and the
•	•	n we have developed for our introductory statistics course. We
	01 0	ssons learned about GTA development through the two-year pilot
program. Specifically, we have found that GTAs struggle with connecting their theoretical knowled		
to the conceptual ideas that are the focus of the new activities. This talk will focus on changes in o		
training program with a specific example of GTAs conceptual understanding and ability to facilitat		C C
activities focused on the conceptual understanding of confidence intervals for on population		
proportion.		
The research for this talk is from an NSF project (DUE 1504587) that will provide classroom materia		NSE project (DUE 1504587) that will provide classroom materials
to foster active learning in statistics as well as research results on student outcomes and needs for		
GTA training associated with the instructional practice of fostering active learning. This talk will		

to foster active learning in statistics as well as research results on student outcomes and needs for GTA training associated with the instructional practice of fostering active learning. This talk will discuss some of the initial results of a project designed to add active learning activities and companion training material for an introductory statistics course.

SS1.5	Friday	Origami in Teacher Education
	3:20:00 PM	
Alan Russell		Elon University
I introduced a class of pre-service mathematics teachers to an origami manipulative. This session		
explores the model, its flexibility as a teaching aid, and the ways in which my students used the model		
to design lessons for K-8 mathematics classrooms. I will also share how I use the manipulative in		

various college math settings.

CP9.1	Saturday	The Seven Tellings of Time: The Mathematics and Politics Behind	
		the Hands on Your Clock	
	10:00:00 AM		
Damon Scott		Francis Marion University	
We show how time	e of day was reck	oned according to seven methods, in their historical order: (1)	
Primitive Time, wh	Primitive Time, which leads to reckoning time by the sun's altitude above the horizon; (2) Seasonal		
Hours; (3) Equinoctial Hours, also called Apparent Solar Time or Pure Sundial Time; (4) Local Mean			
Time; (5) Apolitical Standardized Time; (6) Politicized Standardized Time; and (7) Politicized			
Standardized Time with Daylight Saving Time component. Civil Time, by definition, is the time after all			
politics have played themselves out, which currently is Method 7. Charts will be provided showing			
how the seven methods reckon time in comparison with one another. We also intend to provide a			
qualitative explanation of the celestial mechanics and spherical geometry behind the Equation of			
Time, which is the departure of Method 4 from Method 3.			

UT8.6	Saturday	The Relationship between Primes and Consecutive Integers	
	11:40:00 AM		
David Shane		Methodist University	
Although number t	theorists have es	tablished myriad theorems regarding prime numbers, our	
preliminary study l	has exposed intri	guing properties of primes and their decomposition into	
consecutive intege	ers. In this paper,	we develop a method for analyzing consecutive integers, note	
their relationship v	with prime numb	ers, and record the unique properties with the intent to augment	
the knowledge of t	the knowledge of the prime set. Our research demonstrates that there are several interesting		
connections betwe	connections between prime numbers and their decomposition into consecutive integers, which is		
promising for future research in this area. Analyzing the properties of consecutive integers through			
"integer tables" reveals several noticeable patterns, one of which suggests that there are certain			
cases where we can expand on the accuracy of Bertrand's Postulate. We also analyze the case of twin			
primes and note their unique status of sharing a consecutive integer that has a factor of three. Lastly			
we explore the dec	we explore the decomposition of primes into consecutive integers through tree diagrams. The relat		
scope of our methods spans across the fields of elementary number theory, set theory, and algebra.			

UP1.6	Saturday	The Fractional Calculus
	10:45:00 AM	
Anna Shelton		University of Tennessee at Martin
The idea of one-thi	rd differintegrals	s started with the study of the text The Fractional Calculus by Keith
B.Oldham and Jero	me Spanier, whi	ch focuses on half differintegrals. We have been researching this
topic with Dr. Curtis Kunkel on this project since June 2016. Then we started looking into one-third		
differintegrals and created a table of such differintegrals. The concept of a differintegral is basically		
the creation of an operator that does the same thing as a standard derivative only in multiple steps.		
For instance, if we apply the one-third differintegral to a function three times, it should be equivalent		
to taking the stand	to taking the standard derivative of the same function. Throughout this poster, we will discuss aspects	
of the Gamma fund	ction, one-third d	ifferintegrals, and various proofs established during our research.

CP1.3	Friday	Canonical bases for subspaces of a vector space and applications
	2:40:00 PM	
Uladzimir Shtukar		North Carolina Central University
Canonical bases are	e introduced in tl	ne report, and they are illustrated by the real evaluation for the 6-
dimensional Lie algebra of Lorentz group. Then the general cases of canonical bases for (n-1)-		
dimensional subspaces and (n-2)-dimensional subspaces of a n-dimensional vector space will be		
found and represented. Meanwhile all reduced row echelon forms for mxn matrices of the ranks (n-1)		
and (n-2) will be found also. Canonical bases generalize the well known Gauss-Jordan elimination		
method. Finally, the method of canonical bases is applied to find all subalgebras of some real Lie		
algebras.		

CP1.5	Friday	Diophantine Eclipses	
	3:20:00 PM		
Andrew Simoson	5.20.00110	King University	
We apply a little nu	We apply a little number theory to show how to predict when solar eclipses occur. In particular, let		
ω≈1.085196 be the ratio of the moon's synodic (lunation) period and its draconic period. We find two			
consecutive continued fraction convergents to ω , which correspond to 223 and 358 lunations. Given			
a central solar eclipse occurring at lunation 0, if the Diophantine equation			
223x+358y=c has a solution (where c is an integer number of lunations and where the extreme			
integer values for x and y are subject to a rule of thumb convention) then there should be a solar			
eclipse at lunation C. Finally, we check our results versus NASA's dates for solar eclipses.			

UP1.14	Saturday	Golf: Rapid, Optimal Driver Fitting for a Player	
	10:45:00 AM		
Andrew Smith		Emmanuel College	
A golf swing is extr	emely complex; i	nvolving significant mathematics and physics in modeling and	
statistical analysis.	Many times one	little adjustment can make a vital impact on a person's game.	
Therefore, when m	nany people buy a	a driver, they get fitted to try to find the best driver to improve	
their game. Howev	ver, most of the t	ime these fittings either take too long to find out what the person	
likes, or they are fitted too quickly and improperly. This project is to determine a quick and efficient			
way to proper fit a player. This project will not deal with improving the player's swing, but rather it			
will determine what information about the player and their swing are necessary to model them and			
fit them properly. This information will include parameters like face angle, club head speed, and swing			
speed. The project investigated a basic formula for distance; linear models for the rates of change			
dependent upon different shafts, and other factors and functional relationships used to model the			
distance the subject	distance the subject's ball would travel with that driver. Using this model and optimization, results		
were developed to create an optimal driver recommendation.			

UT2.4	Friday	An Area Based Fan Beam Projection Model	
	3:00:00 PM		
Richard Steele		Georgia Southern University	
Area based project	ion models mitig	ate errors by treating X-Rays as beams, whereas traditional line	
based projection m	nodels treat an X-	Ray like a line and not a beam, which generates significant error.	
In the area based f	In the area based fan beam projection model a rotation matrix, Q, is used to simulate the rotation of		
the emitter detector	the emitter detector pair. This reduces the computational load at the cost of introducing		
approximations. W	approximations. When the grid is rotated, the squares will no longer align with each other. To		
eliminate approxim	eliminate approximations we derive an exact formula for the entries of Q. Using a rotation of axes and		
by considering the neighboring cell's contribution to the area, the result has formulations for the			
exact calculation of the matrix Q. Thus the phasing out of approximations allows for the minimization			
of error in the projection data for image reconstruction.			

UP1.15	Saturday	Can Cellular Automata Improve Data Security?	
	10:45:00 AM		
Bailey Stillman		Western Carolina University	
The technological a	advances of the 2	Oth century led to an increase in demand for random numbers,	
especially in the fie	eld of cryptograp	hy. Due to the difficulty of gathering random numbers, Pseudo-	
Random Number G	Generators (PRNG	s) were developed. Recently extreme weaknesses in commonly	
implemented PRN	implemented PRNGs which were once thought to have been secure were discovered. An alternative		
number generator,	number generator, Cellular Automata, first proposed by John von Neumann are now proffered as a		
solution. The use o	solution. The use of Cellular Automata as PRNGs was proposed by Dr. Stephen Wolfram, who		
conjectured that so	conjectured that some Cellular Automata had inherently random properties. Wolfram separated		
Cellular Automata into classes ranging from homogeneous patterns to automata capable of universal			
computation. We will evaluate the frequency of randomness in each class using a small battery of			
tests designed by t	tests designed by the National Institute of Standards and Technology. A discussion will be initiated or		
whether the Cellular Automata we examined are suitable as PRNGs.			

SS3.1	Friday	The Devastation of Hemlock Trees in the Great Smoky Mountains
	2:00:00 PM	
Jillian Stupiansky		University of North Alabama
the Great Smoky M an insect which pre created a model th	fountains Nation events the spread at represents the	line in the health and number of Eastern hemlock trees found in al Park. This is due to the presence of the Hemlock Woolly Adelgid, I of nutrients through a tree by feeding on the tree's sap. We have e spread of the devastation. The ultimate goal is that the analysis and a solution that will revive the hemlock population.

UP1.16	Saturday	Measles and the Importance of Vaccination	
	10:45:00 AM		
Abigail Sweet		Converse College	
Measles is a highly	contagious virus	often associated with childhood. It was thought to be eradicated	
from the United St	ates in 2000 due	to high vaccination rates of the MMR vaccine. However, in recent	
years the anti-vacc	years the anti-vaccination movement has caused the vaccination rates to drop below the 93%		
necessary for herd	necessary for herd immunity to be effective. This has caused new outbreaks to occur. While no		
epidemics have be	epidemics have been reported so far, the threat is real. The following simulation modifies a basic SIR		
model and makes u	model and makes use of Net Logo to model an outbreak of measles with vaccinations and		
births/deaths. The	births/deaths. The Net Logo simulation gives a visual representation for the spread of measles		
through a population with some key assumptions. The model allows the user to change certain			
aspects such as the initial population or death rate. From this, we can observe the necessity of		n or death rate. From this, we can observe the necessity of	
vaccines and the consequences of low vaccination rates.			

CP5.4	Saturday	A Comparative Analysis of Turkish Textbooks through Shape
	11:00:00 AM	Thinking Perspective
Halil Tasova		University of Georgia

Moore and Thompson (2015) introduced a construct called shape thinking in two forms-static and emergent-that characterizes individuals' ways of thinking for graphs. Static shape thinking refers to thinking of a graph as an object in and of itself (i.e., a piece-as-wire in terms of features of its shape). In contrast, emergent shape thinking refers to imagining a graph as a locus or an in-progress trace representing two quantities' values simultaneously in the respective coordinate system. We have found shape thinking to be useful construct in investigating curriculum materials in order to hypothesize students' opportunities to learn functions and their graphs. In this presentation, we present results from our investigating two Turkish mathematics textbooks (i.e., Pasifik and Milli Egitim Bakaligi [MEB] publishing house) that have been most widely used in grade 9. We specifically focus on the topics of linear functions and slope. We present three main different features in these textbooks. Firstly, MEB allocates a specific section for description of the graph of a function, emphasizing that a function's graph consists of infinitely many pairs of points relating x- and y-values correspondingly. Pasifik does not include such a section. Secondly, Pasifik introduces a method in which students are expected to learn properties of the slope by looking at the direction of line (e.g., upward from left to right means positive slope). MEB, however, conveys positive or negative slope as a measure of how xvalues increase or decrease with variations in y-values without emphasizing the visual steepness of those lines. Thirdly, while Pasifik provides a method for calculating the slope of the object of the line provided two points, MEB emphasizes that the calculation involves changes in x- and y-values by indicating the amount of change in one quantity's values with respect to amount of change in another quantity's values. Yet, we note that in the worked and practice examples, both textbooks provide questions that do not emphasize thinking of graphs emergently. Collectively, we illustrate that Pasifik conveys intended meanings associated with static shape thinking whereas MEB conveys some meanings associated with emergent shape thinking. Against the backdrop of these differences, we discuss instructional implications and future directions.

UT8.3	Saturday	A Rational Fibonacci to the n Identity	
	10:40:00 AM		
Luke Tiscareno		The Citadel	
The Fibonacci sequ	uence is a recursiv	ve sequence with the values of 1, 1, 2, 3, 5, 8,, which has many	
interesting proper	interesting properties. Working with Fibonacci and Lucas sequences, my collaborator Marcus Harbol		
and I solved severa	and I solved several open problems. Those problems where submitted for consideration to be		
published in the jo	published in the journal Fibonacci Quarterly. We began working on an open problem from Fibonacci		
Quarterly. The pro	Quarterly. The problem is an identity involving a quotient of sums of n-power of Fibonacci numbers.		
In solving this problem, we found some additional open problems and their solutions using limits that			
gave rise to the Go	gave rise to the Golden Ratio.		
In this presentatio	In this presentation, I will discuss the detailed solutions of the above-mentioned problems and I will		

also highlight some properties of the Fibonacci and Lucas numbers.

СР7.3	Saturday	Math Placement at Western Carolina University	
	10:40:00 AM		
John Wagaman	John Wagaman Western Carolina University		
to math placement only, but we have r place incoming stu	 As recently as frecently adopted dents who are tag 	the recent changes made at Western Carolina University in regard three years ago, incoming students were placed using SAT/ACT a model which uses both SAT/ACT score and high school GPA to king their first college mathematics course. We will discuss other ections of our placement strategy.	

CP6.2	Saturday	Ascending Subgraph Decompositions of Tournaments Minus an	
	11:00:00 AM	(Almost) Perfect Matching	
Brian Wagner		University of Tennessee at Martin	
A digraph <i>D</i> with $\binom{n+1}{2} + k$ arcs $(0 \le k \le n)$ has an ascending subgraph decomposition (ASD) if			
there exists a partition of the arc set of D into n sets of size $1, 2, 3,, n-1, n+k$ such that the digraphs D ₁ ,			
D_2 ,, D_{n-1} , D_n induced by the <i>n</i> sets of arcs in the partition have the property that for all <i>i=1,2,3,, n</i> -			
1, D _i is isomorphic	1, D_i is isomorphic to a subgraph of D_{i+1} . We will discuss the problem of finding an ASD for		
tournaments minus an (almost) perfect matching.			

UT1.1	Friday	Modeling Emergency Room Arrivals Using Non-Homogeneous	
	2:00:00 PM	Poisson Processes	
Rachel Wagner		Coastal Carolina University	
The purpose of thi	s research is to d	etermine a function that describes the rate at which people arrive	
in the emergency	room at a local ho	ospital. We assume that the rate of patient arrivals follows a	
repeating trend. T	he cyclic rate fund	ction has the form $\lambda(t)=e^{h_ heta(m,t)}$	
where $h_{\theta}(m,t)$ co	where $h_{\theta}(m,t)$ consists of two components. The components are a trigonometric component to		
capture the cyclic	capture the cyclic behavior. The second component is a polynomial of degree <i>m</i> which represents the		
general behavior of	general behavior over time. Additionally, θ is the vector consisting of all unknown parameters that		
will be estimated u	will be estimated using parameter estimation techniques. The data obtained includes arrival times		
from randomly selected days at the local hospital. The rate function will then be applied to the Non-			
Homogeneous Poisson Process in order to obtain the expected number of arrivals in a day or certain			
time interval and predict when the arrivals will occur. Such information is important for hospitals			
aiming to efficiently allocate resources.			

UT3.2	Friday	Mathematically Modeling Subdiffusive Protein Movement in Cells	
	2.20.00 DM		
	2:20:00 PM		
Stephanie Waldrep)	Birmingham Southern College	
FRAP is a microsco	py technique tha	t is used to determine the rate of diusion of	
molecules in cells.	molecules in cells. Because of the congested nature of cells, particles move at a slower rate than that		
modeled by the no	modeled by the normal diusion equation. Therefore, fractional calculus is required to modify the		
normal diusion equ	normal diusion equation to correctly model the movement of particles within cells. Physicists have		
found that the time	found that the time-fractional diusion equation, which is similar to the normal diusion		
equation but relies	equation but relies on a fractional derivative time component, better models diusion in more		
crowded systems such as cells. In this paper, we rearrange the time-fractional diusion equation using			
fractional calculus and then solve it using Fourier and Laplace transforms, their inverses, and specie			
functions.			

CP5.3	Saturday	Drawing Phase Plane Portraits on the Computer using Differential
	10:40:00 AM	Equations
Barrett Walls		Georgia State University
The phase plane for certain differential equations are parameter dependent. This leads to the		
investigation of the existence of limit cycles. These problems are not solvable analytically but with		
computers calculating the phase plane diagrams it becomes possible to see and understand these		
limit cycles. We present a good way of having student create their own diagrams using computers.		
Examples will include the Van der Pol equation, predator-prey models and others.		

UT6.6	Saturday	Solve B-1196 form The Fibonacci Quarterly
	11:40:00 AM	
Welfare Wang		The Citadel
I will discuss how I solved an open problem from the Fibonacci Quarterly. The problem that I solved is an identity involves Lucas and Fibonacci numbers. This problem was submitted for consideration.		

PUB.3	Friday	Refresh Algebra and Trigonometry Skills and Improve Conceptual
	3:00:00 PM	Understanding Through Visualization with WebAssign for
		Calculus
Ballard Ward		Cengage Learning
Although the concepts of Calculus have not changed since Newton, the technology available to assist in their teaching continuously evolves. View the unique tools that will help students refresh algebra and trigonometry skills, before interactive assets aid the learning of the critical concepts of the dynamic Calculus course.		

SS4.1	Saturday	Drawings of People "Doing Math": What We Can Learn
	10:00:00 AM	
Ben Westcoatt		Valdosta State University
held by people abo research to explore pictures, such as m math. The results o experiences. As res	As STEM disciplines become increasingly important in our society, understanding attitudes and beliefs held by people about mathematics grows in importance. In this talk, I will discuss my use of drawing research to explore beliefs people have about doing math. Pre-service teachers (PSTs) drew various pictures, such as mathematicians doing math, themselves doing math, and a general person doing math. The results of the analysis show that the PSTs' views of mathematics were limited by their experiences. As research indicates that teachers pass on their mathematical beliefs to students, this current analysis suggests that future students could possibly be dissuaded from following a	

UP1.18	Saturday	Efficacy of Epidemic Surveillance systems in Response to Water-
	10:45:00 AM	Based Bioterrorism
Caleb Andrew Will	iams	Rhodes College
Water supply and	distribution syste	ms have historically represented prime targets for terrorist
activity, both in the	e United States a	nd internationally among developed nations. A disruption is supply
or quality of water	systems could le	ad to serious medical, public health, and economic consequences.
Currently, the publ	lic is poorly prepa	ared to detect or defend themselves from water-related disease
resulting from inte	ntional contamin	ation. The purpose of this research is to address this critical
information gap, to	o present simulat	ions of what such an attack would look like both with and without
safe-guards, and to	prescribe which	prerequisites would need to be met to most effectively minimize
the damage of suc	h an attack. Mod	eling such an attack comprises a host of different parameters
including rate and efficacy of various biological agents to spread through a water supply and		
population, securit	y of infrastructur	e, and efficacy of disease control methods within the population
utilizing that water	r source. Using m	odel analysis, specifically agent-based modeling, I have simulated
such attacks for a r	range of paramet	er sets. As has been seen in outbreaks of similar pathogens, few
factors are more important in prevention and control of the agent throughout a population as t		ention and control of the agent throughout a population as the
efficacy of healthcare workers to identify and treat the disease. Examples of successful surveil		entify and treat the disease. Examples of successful surveillance
systems have combined the education o		ion of healthcare workers towards signs of a growing epidemic,
predetermined contingency plans for a myriad of issues in the process of containing the pathogen,		
and use of laboratory confirmation of pathogens.		

SS3.2	Friday	A Novice Attempt at IBL Real Analysis	
	2:40:00 PM		
Jessica Williams		Converse College	
Real Analysis is an	upper level cours	se often taken as an elective in the later stages of a student's	
undergraduate car	eer. At least one	semester of a Real Analysis course is typically offered as part of	
the undergraduate	the undergraduate mathematics curriculum at four-year institutions. Encouraged by research		
supporting the effectiveness of inquiry-based learning in undergraduate proof-based courses, a firs		uiry-based learning in undergraduate proof-based courses, a first	
attempt at employing IBL was made in an undergraduate real analysis course at a small college.			
Structure of the ov	Structure of the overall course, breakdowns of typical class periods, resources utilized, and		
modifications made will be discussed. Challenges and successes of teaching in an IBL fashion for the			
first time will be the focus, along with anecdotal evidence of changes in student's attitudes and		th anecdotal evidence of changes in student's attitudes and	
beliefs gathered from surveys and written assignments.			

UP1.19	Saturday	Exploring Symmetries with Complex-Valued Functions and Group
	10:45:00 AM	Theory
Kelsey Windham		Georgia College and State University
Symmetrical patter	rns are present ir	many areas such as: architecture, art, music, and mathematics.
The connection between math and art has been known for thousands of years. Using Fourier analysis, we construct wallpaper, color-reversing wallpaper and color-turning wallpaper functions to generate symmetry groups. In addition, we create unique visualizations of these functions with the help of the domain-coloring algorithm and a software.		

GS.1	Friday	A Traipse through the Mathematical Art Gallery
	1:45:00 PM	
Carolyn Yackel		Mercer University
During this talk, we will consider a number of pieces of mathematical art and think carefully about the questions mathematical artists must ask themselves when trying to create a piece of mathematical art. In doing so, we will investigate several artworks from a highly mathematical standpoint.		

SS1.3	Friday	Art with Truchet Tiles
	2:40:00 PM	
Carolyn Yackel		Mercer University
We discuss ideas and mathematics associated with using Truchet tiles and variants for making		associated with using Truchet tiles and variants for making
mathematical art.		

SS4.4	Saturday	Growth Mindset Interventions	
	11:00:00 AM		
Laurie Zack		High Point University	
In an effort to incre	In an effort to increase student interest, interaction, and depth of the pursuit of knowledge, our		
department created a set of growth mindset interventions. These interventions were intended to be			
done of the first day of class in order to set the stage for the semester. In this talk, I will discuss the			
interventions that were created, how they were implemented and talk about the outcomes that we			
are measuring.			

CP8.1	Saturday	Integer Complexity and P-Adic Expansions of Rational Numbers
	10:00:00 AM	
Joshua Zelinsky		Birmingham Southern College
Define \$ n \$ to	be the complexit	y of <i>n</i> , the smallest
number of 1's needed to write <i>n</i> using an arbitrary combination of addition and multiplication. John		
Selfridge showed that \$ n \geq 3\log_3 n\$ for		log_3 n\$ for
all <i>n</i> , and Guy noted the trivial upper bound that $ n \leq 3 \log_2 n$ for all <i>n</i> >1 by writing <i>n</i> in		er bound that \$ n \leq 3\log_2 n\$ for all <i>n</i> >1 by writing <i>n</i> in
base 2. An upper k	base 2. An upper bound for almost all <i>n</i> was provided by de Reyna and Jan Van de Lune. We discuss	
better upper bounds and how further improvements relate to understanding the <i>p</i> -adic expansions		
rational numbers of the form \$-1/m\$ for various <i>m</i> .		

UT9.2	Saturday
	10:20:00 AM
Eric Zhang	ang
The purpose of this	rpose of this talk is to introc
R(3, 3) = 6 and use induction to estimate R(3, 3,, 3). We will also discuss other Ramsey numbers	
and applications.	plications.
The purpose of this R(3, 3) = 6 and use	ang rpose of this talk is to introc = 6 and use induction to est

CP2.2	Friday	Randomized algorithm for estimating largest p elements in	
	2:20:00 PM	implicitly defined matrices	
Yilian Zhang		University of South Carolina at Aiken	
Finding largest element of a matrix is of importance in many practical applications. In many situation,			
it is very costly to compute the explicit form of the matrix. We propose an algorithm that computes a reliable estimate of the largest p elements of matrix A. The matrix A is only accessed through matrix-			
	matrix or matrix-vector multiplications. The algorithm is based on randomized algorithms and variant power iteration methods. Numerical experiments show the effectiveness of the algorithm.		