

Ninety-fourth Annual Meeting

University of North Carolina at Wilmington

Wilmington, NC

Thursday—Saturday, 12-14 March 2015

http://sections.maa.org/southeastern/maase/conference2015/

Abstracts for all Talks

CP1.1	Mathematicians or Poets Yes.	
Josie Ryan	Lander University	Sean Barnette, Lander
		University
A discussion of the creation and i teach them that math, history, ph historically been as isolated from	mplementation of a course given to hilosophy, theology, poetry, law and one another as they are now. We v	honors students- designed to dother areas of study have not vant to show math students that

writing and self expression are important and show humane students that the concepts and thought processes inherent in mathematics are not alien to their interests. The course looks at the works and interests of Augustine, Descartes, Khayyam, Leibniz, and others.

CP1.2	Unrealistic Word Problems, and Other Stupid Math Jokes, or: Take	
	my Dept ChairPlease	
Leigh Atkinson	UNC Asheville	

On exams and in lectures, humor can be used to emphasize what is important, to make what is important memorable, to lighten the mood of a classroom, and to make mathematics seem more human than Vulcan.

The presenter has tried for 25 years to be funny in class, with what success the audience for this talk will be able to judge; he will present examples of what has seemed to work, on the board and on exams, along with some thoughts on the limitations of humor as an aid to math education.

CP1.3	Finding Math in Ormskirk?	
Douglas Daniel	Presbyterian College	

As part of the general education curriculum at Presbyterian College many of our students use short term study abroad opportunities to fulfil requirements. For many years, I wished to be part of these study trips. Without many math majors I wondered how I might accomplish this. Many, if not most, math study abroad trips seem to primarily cover the historical aspects of math, but I wanted something a bit more. In this talk, I will discuss how the program was developed, how I attracted students and how I taught a course that attracted math majors and non-majors alike that went beyond the usually math history trip. I will also present some of the comments of the students assessing the course and their experiences, as well.

CP1.4	Probability and strategy in the context of games of chance and	
	popular culture	
Stacey Ernstberger	LaGrange College	
At LaGrange College, opportunities are given to develop month-long atypical courses in non-major-		
related topics. In this context, a class was developed which deals with the probabilities and strategies		
in classic game shows, casino games, and in other forms of entertainment. This talk is a discussion of		
the applications and structure of this entertainment-based mathematics course for non-mathematics		
majors.		

CP2.1	Ideal free distributions in structured habitats	
Rychtar	UNCG	
The important biological problem	of how groups of animals allocate	themselves between different
habitats has been modeled extens	sively in the past. Such habitat seled	ction models have usually
involved infinite well-mixed popu	lations. In particular, the ideal free	distribution (IFD) model is well-
developed. Here we generalize (and solve) a habitat selection game for a finite structured population.		
We show that habitat selection in such a structured population can have multiple stable distributions		
(in contrast to the equivalent IFD model that is practically unique). We also define and study a		
``predator dilution game" where unlike in the habitat selection game, individuals prefer to aggregate		
(to avoid being caught by predato	ors due to the dilution effect) and sh	now that this model has a unique
solution when movement is unres	stricted.	

CP2.2	Improved full-Newton-step interior-point methods for LO and LCP	
Mustafa Ozen	Georgia Southern University	
An improved version of an infeasi	ble full Newton-step interior-point	method for linear
optimization(LO) is considered. In the earlier version, each iteration consisted of one infeasibility step		
and a few centering steps while in this version each iteration consists of only an infeasibility step. This		
improvement has been achieved by a much tighter estimate of the proximity measure after an		
infeasibility step. However, the best iteration bounds known for these types of methods are still		
achieved. Next, a preliminary work on generalizations of the improved method to linear		
complementarity problems is con	sidered.	

CP2.3	Incorporating Cancer Stem Cells into a Hormone Therapy Model for	
	Breast Cancer	
Zachary Abernathy	Winthrop University	
Despite improvements in cancer t	herapy and treatments, tumor recu	irrence is a common event in
cancer patients. One explanation of recurrence is that cancer therapy focuses on treatment of tumor		
cells and does not eradicate cancer stem cells (CSCs). CSCs are postulated to behave similarly to		
normal stem cells in that their role is to maintain homeostasis. That is, when the population of tumor		
cells is reduced or depleted by treatment, CSCs will repopulate the tumor, causing recurrence. In this		
talk, we shall consider a hormone therapy model for estrogen-receptive breast cancer in which the		
behaviors of tumor cells and CSCs are separately considered. A stability analysis will reveal conditions		
on the effectiveness of a receptor	-blocking drug that determine whe	ther treatment fails, cures the
cancer completely, or reduces the	e final tumor size.	

CP2.4	Using Item Response Theory (IRT) Model to evaluate the Military traumatic brain injuries (TBI) and post-traumatic stress disorder (PTSD)	
Cuixian Chen	University of North Carolina Wilmington	Yishi Wang, University of North Carolina Wilmington Antonio Puente, University of North Carolina Wilmington
Brain health of military service members and aging veterans has been considered as a signature issue (The Congressional Budget Office, 2012). During the wars of Iraq and Afghanistan, there are an increasing number of military service members who were injured by improvised explosive devices such as mortar fire and rocket-propelled grenades. As a result, there is a surge of traumatic brain injuries (TBI) and post-traumatic stress disorder (PTSD) (Friedl, 2014). Therefore it is extremely		

important and urgent to develop a neuropsychological battery to provide an accurate, efficient and quick assessment of trauma-related diagnose for this military population. In our preliminary study, we will apply the Item Response Theory (IRT) Model to the existing military dataset to evaluate the TBI/PTSD. One of the key components of this study is to calibrate test items to access TBI / PTSD. It aims to decrease patients' burden and increase measurement precision.

CP2.5	A lunatic trick for the moon's cycle	
Andrew Simoson	King University	
What is the natural period for the moon? Since the 5th century {\sc bc}, man has known that every		
$n = 19$ years, the moon almost repeats itself. We show that 19 is the {\em second} best integer		
choice for n . Our answer involves a little trigonometry, the standard deviation, the Farey series, and		
Kepler's laws of motion.		

CP3.1	Spherical Turkeys and Vibrating Balloons	
Russel Herman	UNC Wilmington	None
We describe interesting examples that can be simulated using solutions of linear partial differential		

equations. How long should one cook a turkey? What happens when a spherical balloon is set into motion by an impulse? These simple examples highlight long known methods for solving standard partial differential equations in higher dimensions.

CP3.2	Convolution and Nonhomogeneou	is Equations
Curtis Herink	Mercer University	

Let f_n denote the n-th Fibonacci number. we begin with the observation that a particular solution of the nonhomogeneous linear difference equation $x_n = x_{n-1} + x_{n-2} + f_n$ is the convolution of the sequence of Fibonacci numbers with itself. This motivates an exploration of when convolution can be used to give particular solutions of nonhomogeneous linear difference equations. Then, because there is an analogy between difference equations and differential equation, we ask the same thing about nonhomogeneous differential equations.

СР3.3	Stability and bifurcation results for positive solutions for classes of semilinear elliptic boundary value problems with nonlinear boundary conditions	
Jerome Goddard II	Auburn University Montgomery	R. Shivaji, University of North
		Carolina Greensboro
In this talk, we will investigate the stability properties of positive steady state solutions of semilinear		
initial-boundary value problems with nonlinear boundary conditions. In particular, we will employ a		
Principle of Linearized Stability for this class of problems to prove sufficient conditions for stability		
and instability of positive steady state solutions. These results shed some light on the combined		
effects of the reaction term and the boundary nonlinearity on stability properties. If time permits, we		
will also provide complete bifurcation curves in the case of dimension one.		

CP3.4	Spacewalks and amusement rides: Illustrations of symmetry, geometric phase and holonomy		
Jeff Lawson	Western Carolina University	Matt Rave, Western Carolina	
		University	
Geometric phase in a dynamical s	Geometric phase in a dynamical system can be visualized as the interplay between two competing		
frequencies in a closed orbit which go in and out of "synch". In a simple mechanical system with			
rotational symmetry the computa	symmetry the computation of geometric phase is distilled down to integrating a one-form		
obtained from a single conservation law. This emphasizes that geometric phase can be computed			
with only a minimum of dynamic information. Through examples whose configuration spaces are tori,			
we illustrate that in many instances geometric phase can be computed through kinematics alone,			
using a single constraint. We conclude by showing that the requisite one-form can be interpreted as			
the holonomy of a connection on	the torus.		

CP4.1	Listening Closely to Abstract Algebra	
Vicky Klima	Appalachian State University	
This talk explores the importance of symmetry in music theory giving several examples of how		

This talk explores the importance of symmetry in music theory giving several examples of how connections to music theory can be used to illuminate basic concepts taught in an introductory abstract algebra course. We will use the cyclic group with 12 elements as our musical model and study key structure through isomorphisms, chord structure through Cayley diagrams, and twelve-tone rows through coset constructions.

CP4.2	Veronese Embeddings of Quadrangles in Characteristic 2	
Ogul Arslan	Coastal Carolina University Peter Sin, University of Florida	
Over an algebraically closed field of characteristic 2, we show that a certain projection of P9 to P8		
induces an isomorphism of algebraic varieties from the quadratic Veronese embedding of P3 to the		
standard embedding of the orthogonal Grassmanian of lines of a quadric in P4.		

CP4.3	Number of points completely determining an algebraic plane curve		
Jeremiah Bartz	Francis Marion University		
Lines, parabolas, ellipses, and hyperbolas are well-known examples of algebraic plane curves. A line is			
completely determined by two dis	tely determined by two distinct points. A parabola is completely determined by three points in		
general position. In this talk, we will explore the relationship of how many points in general position			
completely determine a particular algebraic plane curve including when the curve is a hyperbola or			
an ellipse.			

CP4.4	Groups, Loops, and a Construction of Baer	
Lee Raney	University of North Alabama	
In a construction known as the "Baer Trick," a uniquely 2-divisible group (G, \cdot) is modified to induce a		
commutative loop $(G,+)$. It is known that if (G,\cdot) has nilpotence class at most 2, then $(G,+)$ is an		
abelian group. We discuss recent results, and we will provide at least a conjecture involving the		
structure of the nonassociative loop $(G,+)$ when (G,\cdot) has nilpotence class exactly 3.		

CP4.5	Bernoulli, Euler, and Induction Formulas	
David Turner	Faulkner University	
Students are often introduced to mathematical induction with expressions such as		
1+2++n=n(n+1)/2. Homework problems consist		
of proving such relationships by induction and sometimes also require the student to conjecture a		
formula for the sum before providing the		
induction proof. This talk will consider sums of the type where the general term is a polynomial or		
alternating polynomial. Formula generators for each type will be obtained.		

CP5.1	On Colored Packing Densities	
Matthew R. Just	Georgia Southern University	
Pattern packing concerns finding optimal permutations that contain the maximum number of a given		
pattern. Much work has been done on the study of packing layered patterns, and it has been shown		

that the packing density of a layered pattern is achieved by a layered permutation. We explore the consequences of colored permutations and patterns on packing densities. Through examining the novel concept of "colored blocks" within a pattern or permutation, we present analogous results on pattern packing in colored permutations.

Weighted trees and labeling		
Georgia Southern University	Mustafa Ozen, Georgia	
	Southern University	
ard a problem about finding positiv	e integer-weighted trees with n	
d distances between vertices are exactly the consecutive positive integers		
ion is motivated from Electrical Engineering and later became interesting		
nd mathematicians in addition to engineers. In this talk, we are going to give		
an introduction to Leech Tree. Then we examine variations of such "leech type" tree labeling		
questions including the Modular Leech Tree, near leech labeling and in particular, the leaf-Leech tree.		
ctures will be presented, analogous	to those established for the	
on joint work with Mustafa Ozen a	nd Hua Wang.	
	Weighted trees and labeling Georgia Southern University ard a problem about finding positiv nees between vertices are exactly the notivated from Electrical Engineerin maticians in addition to engineers. en we examine variations of such "I seech Tree, near leech labeling and ctures will be presented, analogous on joint work with Mustafa Ozen a	

CP5.3	Enigma: An Analysis and Maplet Simulator	
Rick Klima	Appalachian State University	
The Enigma was an electromecha	nical cryptographic machine used b	y Germany during World War II,
the cryptanalysis of which by the Allies is the basis for the recent Hollywood blockbuster The Imitation		
Game. In this talk, I will give an overview of the variable components of an Enigma, and demonstrate		
a simulator for the machine written as a Maplet, which is like a Java applet but uses (and requires) the		
mathematical software package and symbolic manipulator Maple. I will also give a brief analysis of		
the security of an Enigma, by using elementary combinatorics to show the number of possible		
configurations of the variable components of the machine.		

CP5.4	Categorical Combinatorics: Combining the Concrete and the		
	Conceptual		
Dr. Tien Chih	Newberry College		
The traditional view of Combinate	prics is that of a collection of seemi	ngly disparate problems. While	
much good mathematics has bee	n done to solve these problems, no	t as much has been done to build	
an over arching theory for Combi	natorics. Thus, even problems with	in the same branch of	
Combinatorics (e.g. Graph Theory	heory or Enumerative Combinatorics) are often viewed "discretely", and		
not part of a greater theory.			
In other branches of Mathematics, the use of Category Theory, and the perspective that it presents,			
did a lot to tie together the various concepts and problems of those fields. Thus mathematicians in			
those areas do much more work of	developing a richer theory, and solu	utions to the problems of those	
areas follow as a result. It is natur	al to believe then that bringing suc	h an approach to Combinatorics	
would expose both the connections between different branches of Combinatorics, as well as the			
solutions to some long standing problems.			
In this talk, we give a survey of some of the ways that Category Theory may be applied to			

Combinatorics.

CP5.5	What Must Go Down Will First Go Up: The Rises and Falls of Permutations	
William Griffiths	Kennesaw State University	Daniel Karasek, Kennesaw State
		University, Student
		(Undergraduate at time of
		research, currently graduate)
Permutation statistics are an interesting and accessible area of combinatorics. Two such statistics,		
the numbers of descents and inversions of a permutation, describe in some sense how many		
elements are larger than those to their right, descents looking only at the next entry while inversions		
to the end of the permutation. We have generalized this concept in a previous year, by allowing a		
'drop sequence' to control how far each entry of a permutation checks those following it. New		
progress and questions accessible	gress and questions accessible to undergraduates have arisen recently, including finally allowing	
an increase in the 'drop sequence	2.'	· - · -

CP6.1	Using Cognitive Wrappers in a Remedial Mathematics Classroom	
Lisa Carnell	High Point University	
Based on the work of Dr. Jose Bowen, cognitive wrappers focus on strengthening the metacognitive		
skills of students. In this talk I will a) describe the concept of cognitive wrappers, b) show examples of		
cognitive wrappers, c) describe how I used cognitive wrappers in a remedial mathematics classroom,		
and d) explain the potential benefits I believe students could gain from using cognitive wrappers.		

CP6.2	Creating a More Inquiry Based Linear Algebra Class		
Laurie Zack	High Point University		
Linear Algebra has traditionally be	Linear Algebra has traditionally been taught at High Point University in the standard lecture style		
format. In the Summer of 2014, I	format. In the Summer of 2014, I spent time working on creating a more hybridized course, using part		
flipped model techniques, part lecture style techniques, and part inquiry based/Moore Method			
techniques. This resulted in a course using these various methods to help promote student learning			
and engagement in not just the standard topics in Linear Algebra, but allowing for further exploration			
into other applications. This talk focuses on the course design, layout, activities, student responses,			
and instructor perspective to the course.			

СР6.3	Extended College Algebra: A Redesign of College Algebra	
James Matthew Dawson	Charleston Southern University	
College Algebra is often a struggle	for students. Particularly for stude	nts that come into the course
with a weak math background. Those students need extra attention, but the course often moves too		
quickly for them. Here at Charleston Southern University, we addressed that problem by redesigning		
and splitting our College Algebra offerings. We now run a 3 hour College Algebra and a 4 hour		
Extended College Algebra. I will discuss what changes we made in the redesign, how the Extended		
College Algebra course compares to the standard, and how the changes have affected student		
outcomes.		

CP6.4	The iPad as a Teaching Tool	
Denise Dawson	Charleston Southern University	
Integrating technology in the classroom can improve student learning, from actively engaging		
students, to having examples of real world connections at hand. I will discuss how I am currently using		
my iPad to supplement my lectures in College Algebra, Calculus, and Linear Algebra. I will review the		
apps I use regularly and some future plans to improve student engagement in class.		

CP6.5	Enabling Success in a General Education Mathematics Class	
Gregory Goeckel	Presbyterian College	
This talk will cover the teaching techniques and technologies that I have used to flip my mathematics		
classroom. I will share my discoveries, insights, and its impact on my students grades.		

CP6.6	Creating a Meaningful Undergraduate Research Project	
Brandon Samples	Georgia College & State	
	University	
Our majors participate in a year-lo	ong research project under the dire	ction of a faculty member, which
leads to a written report and a presentation at our annual capstone day. Aligning with our two		
mathematics major tracks, students choose to present research in the areas of pure and applied		
mathematics or mathematics education. Creating a challenging project suitable for the undergraduate		
background takes some careful planning on the part of the faculty mentor. In this talk, we will discuss		
some strategies for creating meaningful undergraduate research projects in either track as well as		
provide some examples of past projects.		

CP7.1	Rationally 4-periodic biquotients	
Jason DeVito	UTM	
A simply connected manifold M^n is called rationally 4-periodic if there is an element $e \in H^4(M; \Box)$		
with the property that cupping with e , $\cup e: H^k \to H^{k+4}$ is surjective if 0\leq k < n-4 and injective if		
$0 < k \leq n-4$. A biquotient is any manifold obtained as the quotient of a homogeneous space by a		
free isometric action. We classify all compact simply connected biquotients with rationally 4 -		
periodic cohomology ring. In particular we show there are only finitely many examples in each		
dimension.		

CP7.2	Introducing Galois theory in an introductory linear algebra course		
Chad Awtrey	Elon University		
The goal of this talk is to describe	The goal of this talk is to describe a computational and inquiry-based activity the speaker has used to		
introduce linear algebra students	its to the symmetries of roots of polynomials with rational coefficients.		
Included are discussions of the following: motivating examples, detailed aspects of the activity,			
implementation suggestions for Mathematica, and undergraduate research projects the speaker has			
mentored related to the topic.			

CP7.3	Limits of Golden Constructions	
Timothy E. Goldberg	Lenoir-Rhyne University	Leigha K. Myers, Lenoir-Rhyne
		University
A golden rectangle can be charact	terized by the fact that if you remov	ve a square from one end, the
remaining rectangle is similar to the original one. By iterating this process of removing a square, one		
obtains an infinite sequence of shrinking golden rectangles which converges to a point. One can		
construct other sequences of rectangles by starting from arbitrary, not necessarily golden, rectangles.		
In this presentation, we will demonstrate how to analyze the end behavior of these sequences using		
some tools from linear algebra. This presentation should be accessible to any students with a basic		
knowledge of matrices, vectors, and limits.		

СР7.4	Completing the Card Game SET: T	o (points at) Infinity and Beyond	
Douglas Burkholder	Lenoir-Rhyne University		
The card game SET is a wonderful	"hands-on" example of finite affine	e geometry. This is useful for	
helping students understand poin	helping students understand points, lines, planes, hyperplanes and Euclid's Fifth Postulate in a finite		
geometry setting. Here we show a simple method for extending this to finite projective geometry by			
adding 40 additional cards to the deck. Although these new cards represent points at infinity, the			
modified game can be played without treating these new cards as special. In the geometry of the			
completed set of SET cards, Euclid's Fifth Postulate is now replaced with "no parallels." We also show			
a simple method for extending the SET game to model finite affine and finite projective geometries of			
order p for every prime p .			

CP7.5	Origami, Math, and Engineering	
Alan Russell	Elon University	
This talk shares the progress of a National Science Foundation grant entitled "Externally-triggered		

This talk shares the progress of a National Science Foundation grant entitled "Externally-triggered Origami of Responsive Polymer Sheets".

As the mathematics and origami consultant for the project, I will discuss how the design theory has grown mathematically in service of engineering.

Video examples will be shown as well as several mathematical insights into the nature of our folding process.

CP8.1	On the convergence and stability of Semi-Lagrangian methods for	
	time-dependent partial differential equations	
Daniel Guo	University of North Carolina	
	Wilmington	
Semi-Lagrangian methods were proposed to compute the numerical solutions of time-dependent		
partial differential equations. Those methods were based on Lagrangian trajectory or the integration		
from the departure points to the arrival points (regular nodes). The departure points were traced		
back from the arrival points along the trajectory of the path. The convergence and stability were		
investigated.		

CP8.2	Electric Car Numbers	
Rudy Beharrysingh	UNC-Asheville	
The latest advent of electric cars lends itself well to interesting classroom applications from liberal		
studies math to calculus. Topics such as range, charge time, costs to operate, energy consumption		
and emissions will be compared. The demands and infrastructure for this form of transportation will		
be examined and the calculus of the electric motor will be explored.		

CP8.3	Controlled Random Walks and Postural Stability Regions	
Erin McNelis	Western Carolina University	Martin Tanaka, Department of
		Engineering, Western Carolina
		University
		Andrew Tanaka, Department of
		Mathematics & Computer
		Science, Western Carolina
		University
Human postural stability is a major concern in injury prevention as human posture by nature is		

inherently unstable. Despite this, human postural sway demonstrates two regions of stability. For the past twenty years, researchers have believed that these regions exist as the result of both non-feedback dynamics as well as feedback loop controls. This research, a collaboration between engineering and mathematics faculty and a computer science student, was conducted to determine if applying a simple controller to a random walk alone would demonstrate two regions of stability. This talk will present the results of MATLAB simulations of random walks with varying levels of control, their associated stability regions, and our conclusions.

CP8.4	The Mathematics of Enemy-Prote	ctor
Adam Graham-Squire	High Point University	
Enemy-Protector is a noncompeti	tive camp game. It is played as fol	lows: in a group of people, each
player chooses one player to be t	heir enemy and a different player a	s their protector. When the
game starts, all players try to keep their protector between themselves and their enemy, and chaos		
ensues. We will describe some of the various behaviors that can occur in the game, as well as some		
preliminary efforts at modeling those behaviors. These efforts lead to numerous potential areas of		
recreational mathematics research related to Enemy-Protector. In particular, the mathematics of		
Enemy-Protector is a fruitful area for undergraduate research, since the topic is very easy to grasp,		
yet has many possibilities for interesting research projects.		

CP8.5	Migration, Deportation and the U.S. Population, a classic Linear	
	Algebra Problem	
Lothar A. Dohse	UNC Asheville	
In the present century industrial nations like the The United States and Germany process millions of		
immigrants each year. Understanding the effect of migration on the population structure of a country		
is essential part of good planning. The author will present a matrix modeling approach that can be		
used to analyze the present population trends. The resulting mathematical models may explain why a		
country like the U.S. ends up having 11 million undocumented residents.		

CP9.1	Illustrating the Gibbs Phenomenon	
lason Rusodimos	Georgia Perimeter College	Barrett Walls
		Georgia Perimeter College
Students in lower level calculus courses study Taylor series but rarely are exposed to other ways of		
expressing functions as infinite series. This talk is aimed at giving ways teachers can present an		
introduction to Fourier series to Calculus students. More precisely it is about the convergence of a		
Fourier series which leads to the Gibbs phenomenon.		

CP9.2	Some Average Calculus	
Chuck Groetsch	The Citadel	
Some problems arising from questions involving functional averages posed in various undergraduate		
analysis classes are discussed. The context includes ordinary average values of continuous functions		
and a generalized average suggested by mechanics of non-uniform bars. The analysis of the problems		
relies on a number of fundamental concepts in calculus.		

CP9.3	Attracting Students to Mathematical Biology: Three Simple Models
	Using Elementary Calculus
Charles Rains	Anderson University

Attracting Students to Mathematical Biology

Three Simple Models Using Elementary Calculus

Mathematical biology is flourishing as an interdisciplinary field of study. Ecology, cancer metastasis and treatment, pharmacokinetics, and epidemiology are just some of the areas of biology under intense study today by scientists cross-trained in both advanced mathematics and biology. Most incoming college students, however, see mathematics and biology as completely unrelated and have no idea of the mutually fertile interplay between the two disciplines. Early introduction into the students' mathematical curriculum of topics with a biological flavor might serve as a stimulus to those who possess both a mathematical and biological bent. Three examples of such topics that have been used successfully have been "The Mathematics of Coughing", "Gompertz Model of Tumor Growth", and "Drug Concentration in a Patient".

CP9.4	Roots of polynomials with Fibonacci number coefficients	
ron taylor	Berry College	Eric McDowell, Berry College
		Jill Cochran, Berry College
In this presentation we construct sequences of polynomials and Laurent polynomials whose coefficients are Fibonacci numbers. These sequences have properties similar to the classical Fibonacci numbers and arise from considering powers of the golden ratio φ . We show that each sequence has		
a subsequence whose roots converge to values related to $ arphi$.		

CP9.5	Teaching Calculus II with No-Cost-to-Students Course Materials		
Lake Ritter	Kennesaw State University		
Textbooks and required course m	aterials can easily add \$650 to \$110	00 per academic year to the	
already rising costs of tuition and	fees in many public colleges and ur	iversities. Increasingly students	
forego purchasing required mater	forego purchasing required materials. Lacking the course text can be a crippling disadvantage to a		
student in an already challenging course such as college Calculus. This talk is a preliminary			
presentation of a project using exclusively open access texts and tools in a Calculus II course at (the			
new) Kennesaw State University. I will discuss some of the available open access materials, and			
present the combined and customized e-text we have provided for the students in our pilot classes.			
The program to be presented is supported by the Affordable Learning Georgia initiative.			

	representations		
Julie Barnes	Western Carolina University		
In this talk we introduce two easy	to run, hands-on, group activities u	used to help students better	
understand graphical calculus con	cepts. The first activity has studen	ts evaluating limits from given	
graphs. Students often have trou	graphs. Students often have trouble focusing on the correct portion of the graph when asked to		
evaluate a limit. By using notecards and limit windows, students are able to demonstrate that they			
understand the notion of limit. In the second activity, students use Wikki Stix to graph functions that			
meet various conditions on the first and second derivative. By also graphing the derivative and			
second derivative on the same axes but in different colors, students are able to further explore the			
relationships between a function and its derivatives. For each activity, we will discuss the logistics of			
running the activity and the expected student outcomes.			

CP10.1	On the Sweepwidth of Orthogonal Polygons	
Dr. Tzvetalin S. Vassilev	Nipissing University	Dr. J. Mark Keil, University of
		Saskatchewan

We consider decontaminating the interior of a simple polygon in the plane by sweeping it with planar curves. This problem has attracted recent attention. It is the continuous two-dimensional analogue of the classical graph search games. It is also a generalization of some well-studied problems in computational geometry such as polygon searchability and elastic ringwidth, and is naturally related to a large class of problems known as art gallery problems. Practical applications include automated surveilance, scene discovery/recognition, etc.

Sweepwidth of a polygon is defined as the minimum over all decontamination sweeps of the maximum total length of the sweeping curves at any time during the sweep. Thus it represents a measure of efficiency of the decontaminating process. The problem of determining the sweepwidth of given polygon has interesting geometric and algorithmic aspects.

In their recent work, Karaivanov et al. showed that every decontamination sweep can be transformed into a canonical one that uses only either line segments with endpoints on the polygon boundary or pairs of line segments with one endpoint on the boundary each and shared endpoint in the interior of the polygon. This result helped them prove a number of properties of the sweepwidth. Second significant result from that work is an NP -hardness proof for the sweepwidth of orthogonal polygons by reduction from Partition. Further, they show polynomial time solvability of the problem for two specific classes of orthogonal polygons: comb polygons and a subclass of flag polygons.

Our work extends those results towards efficient algorithms on larger classes of orthogonal polygons. We show that one can determine the sweepwidth of a staircase polygon and a pyramid polygon in linear time with respect to the number of vertices of the polygon. Using similar ideas, we give a

linear time $2\sin\frac{3\pi}{8}$ -approximation algorithm for the problem on histogram polygons. To obtain these results, we prove additional properties of the optimal sweeps for these classes of polygons.

	Balanced Bipartite Graphs	
Brian Wagner	UT Martin	
A digraph D with $\binom{n+1}{2} + k$ are	es ($0 \leq k \leq n$) has an ascending sub	ograph decomposition (ASD) if
there exists a partition of the arc set of D into n sets of size $1, 2, 3,, n-1, n+k$ such that the		
digraphs $D_1, D_2, \dots, D_{n-1}, D_n$ induced by the n sets of arcs in the partition have the property that for		
all $i = 1, 2, 3,, n-1$, D_i is isomorphic to a subgraph of D_{i+1} . We will outline the proof that any		
orientation of a complete balanced bipartite graph has an ASD.		

CP10.3	Generalized Ramsey Theorems for r-Uniform Hypergraphs	
Mark Budden	Western Carolina University	Josh Hiller (University of Florida)
		Aaron Rapp (Western Carolina
		University)
Classical Ramsey theory for graphs contains several theorems that are based on constructive		
methods. Namely, one begins with an optimal coloring of the edges of some complete graph (whose		
existence is guaranteed by some known Ramsey number) and constructs an optimal coloring of a		
larger complete graph using multiple copies of the initial graph. In this talk, we will focus on proving		
analogues of some constructive theorems in Ramsey theory in the setting of r -uniform hypergraphs.		

CP10.4	On the Hamiltonian Number of a Planar Graph		
Thomas M. Lewis Furman University			
The Hamiltonian number of a connected graph is the length of a shortest, closed spanning walk in the graph. We will show how a simple modification of a result of Grinberg can shed some light on the Hamiltonian number of a planar graph.			

CP10.5	The number of possible baseball line scores with a 6-3 final score		
Brian M. O'Connor	Tennessee Tech University		
A line score in baseball is a two-line chart that displays each team's run totals by inning. An example			
of a line score is:			
STL CARDINALS 001 200 000 3			
SF GIANTS 002 000 013 6			
We will investigate how many distinct line scores there are for a given final score, for both nine-inning			
games and extra inning games. There will be door prizes!			

CP11.1	Problems made to ignite undergraduate research		
George Cazacu Georgia College			
This work is exploring ideas about creating and perfecting a classroom environment that facilitates			
undergraduate research. It presents a collection of mathematical problems and examples that are			
meant to attract and challenge students' mathematical thinking.			

CP11.2	Preparing Undergraduates for Industrial Careers		
Kristen Abernathy	Winthrop University		
We have heard for some time tha	t many industries seek to hire math	n majors, but how do we ensure	
our students are ready for such careers? The Preparation for Industrial Careers in the Mathematical			
Sciences (PIC Math) program offers faculty the opportunity to teach a course where students work on			
current problems from the industry. In this talk, I'll discuss my experience in offering a research			
course in which students work on current problems from the video game industry. I'll focus on the			
lessons learned from partnering with an industry to develop undergraduate research problems and			
share advice for faculty interested in starting such a course at their own institution.			

CP11.3	Building Capacity for a Re	Building Capacity for a Research Rich Curriculum in Mathematics at		
	Georgia College			
Darin Mohr	Georgia College	Ryan Brown, Georgia College		
		Marcela Chiorescu, Georgia		
		College		
The Department of Mathematics has recently revised its curriculum to make undergraduate research				
a prominent feature				
of the major. We require all undergraduate students to complete a year-long research project, submit				
a written report, and				
give a presentation at our department's annual capstone day. Before we could implement a robust				
research experience, we				
first had to build institutional capacity to support our students and faculty to ensure its sustainability.				
This presentation				
will describe the roadmap we developed, the lessons we learned and an outline of our plans moving				
forward as we	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
implement the next phase of our curriculum building				

		implement the r	iext phase o	f our curricul	um building.
--	--	-----------------	--------------	----------------	--------------

CP11.4	211.4 Do Inquiry-Based Methods Work with Developmental Math?		
J. Donato Fortin	Johnson & Wales University -		
	Charlotte		
Faculty are increasingly encountering topics that they can "no longer teach" to students in			
Developmental Mathematics. Topics include percentages, the point-slope formula, quadratic			
equations, and interpreting graphs. Failing with traditional approaches, the presenter has			
experimented the past years with problem- and inquiry-based approaches. The presenter has			
attempted problem-guided learning (PGL), inquiry-based learning (IBL), and, more recently, process			
oriented guided inquiry learning (POGIL). The early report is that POGIL is favored by developmental			
students, but other methods are useful. The presenter will share his experiences with inquiry			
methods and will report on student perspectives.			

P11.5 Developing Qualified Teaching Assistants for the Math Emporium			
Kathy Cousins-Cooper	North Carolina A&T State	Katrina Staley, North Carolina	
	University	A&T State University	
The Math Emporium method is an instructional method that requires students to work problems			
during class time using an online instructional delivery system. The idea behind this method is that			
students learn math by doing math. An important aspect of the Math Emporium method is that it allows for increased interaction between instructors and students. Therefore, training on how to work in the emporium is important. This talk focuses on developing qualified teaching assistants to work in the Math Emporium.			

CP11.6	How to Create User-Friendly, Flowing Syntax for the Mathematics		
	You Teach and Study		
Damon Scott	Francis Marion University		
Mathematicians generally adopt a	as syntax whatever was handed the	m by tradition, together with	
carefully choosing names for objects or operators they create themselves. Such syntax tends to be			
nested, with various syntactic elements nesting inside other elements. But in a wide variety of			
circumstances one may have syntax fall into structures where the elements flow one after another, as			
in a string structure. Such flowing syntactic systems are much more pliant and user-friendly than			
nested systems. We present two techniques for making syntax flow: "Finding the Function Space"			
and "The Russian Doll Maneuver". As time permits, the superiority of flowing structures over nested			
structures will also be presented.			

CP12.1	Another Approach to the Truncate	ed Pentagonal Theorem
Louis W. Kolitsch	The University of Tennessee at	
	Martin	
Recently, in three separate papers, Andrews and Merca, Yee, and Kolitsch and Burnette proved some results concerning the Truncated Pentagonal Number Theorem. In this talk a family of generating functions that keeps track of the number of different parts in a partition will be discussed. This family of generating functions can be used to get the earlier results on the Truncated Pentagonal Number Theorem as well as several other results.		

CP12.2	Augmented Happy Functions			
Breeanne Baker Swart	The Citadel Kristin Beck Saint Mary's			
		College of California		
	Susan Crook Loras College			
	Christina Eubanks-Turner			
		Loyola Marymount University		
		H. G. Grundman Bryn Mawr		
		College		
	May Mei Denison University Laurie Zack High Point			
	University			
Let S be a function which maps a positive integer to the sum of the squares of its digits. A positive				
integer a is considered happy if for some positive integer k , $S^k(a) = 1$. An augmented happy				
function, $S_{[c]}$, maps a positive integer to the sum of the squares of its digits and a non-negative				

integer c. A positive integer a is a \emph{fixed point} if $S_{[c]}(a) = a$. In this talk, we will discuss augmented happy functions and some properties of their fixed points.

CP12.3	Card Shuffles, Symmetric Groups,	and Landau's Function	
Brian Beasley	Presbyterian College		
Viewing a given shuffle of a deck of	of cards as a permutation, we know	r from group theory that	
repeatedly applying this same shuffle will eventually return the deck to its original order. But how			
many steps will that take? What type of shuffle will require the greatest number of applications			
before restoring the original deck? What is the probability that a shuffle chosen at random will			
achieve this maximum order? This talk will answer those questions in the specific case of a standard			
52-card deck. In addition, it will describe the history of the general case, starting with Edmund			
Landau's work in 1903 on the maximal order of an element in the symmetric group on n objects and			
highlighting recent progress in refining his results.			

CP12.4	GCD Properties of the Hosoya Polynomial Triangle.		
Antara Mukherjee	The Citadel	Rigoberto Florez (The Citadel),	
		Robinson Higuita (Universidad	
		de Antioquia,	
		Medellin, Colombia)	
In this talk we discuss the general	ized Fibonacci polynomials which is	a second order recurrence	
relation. The Hosoya triangle is a	triangular arrangement of numbers	s similar to Pascal's triangle	
where the entries are products of	s are products of Fibonacci numbers; we generalize this triangle to Hosoya		
polynomial triangle (entries are g	generalized Fibonacci polynomials). We show that some algebraic		
and geometric properties that occ	cur in the Pascal triangle also hold in	n this new triangle. For instance,	
we prove the Hoggatt-Hensell ide	ntity and Gould or GCD property in	the Hosoya polynomial triangle.	
In addition we explore the GCD properties in other geometric shapes that appear in the Hosoya			
polynomial triangle. We also discuss particular examples of Hosoya polynomial triangles and their			
properties. In particular we use C	nebyshev polynomials, Morgan-Voy	/ce polynomials, Jacobsthal	
polynomias and many more to co	nstruct these examples of Hosoya p	polynomial triangles and explore	
algebraic properties in those triar	gles as well.		

DDL.1	An Online, General Education Math/Finances/Spreadsheet Course	
	<i>v. 3.x</i>	
Jon Ernstberger	LaGrange College	
As part of the general education requirement for all students, LaGrange College regularly runs a		
mathematics-based finances course. Taught using spreadsheets, this course is an ideal online		
offering. Having been offered online each semester for the past two years and in its second		
significant revision, the course has drastically improved. This presentation will relate instructor		
responsibility, pedagogical changes to the course over all iterations, evidences of impacts on student		
learning, and difficulties that have naturally arisen.		

DDL.2	Using Mathematica as the primary technology in the calculus	
	sequence and in linear algebra	
Karen A. Yokley	Elon University	Crista Arangala
		Elon University
Although calculators are often used as the primary technology in calculus courses, typical graphing		
calculators do not have the sophistication of mathematical software nor are calculators used in		
academic research or industry. Teaching calculus and linear algebra in a computer lab requires an		
alteration of approach to content but can motivate abstract comprehension. This presentation will		
focus on topic-based classroom assignments and labs in Wolfram Mathematica created in order to		
foster student engagement, guide individual exploration, and increase the depth of conceptual		
understanding. Project ideas for further exploration that could lend itself to undergraduate research		
will also be discussed.		

	-	
DDL.3	Statistically Significant Attempts at Students' Understanding	
Rodica Cazacu	Georgia College	George Cazacu, Georgia College
While teaching the introductory s	tatistics course, even though most	of our students are not
mathematics majors, we try to emphasize why they need statistics at a level higher than just		
manipulating data. During the years we were teaching statistics courses we tried different approaches		
on the subject and while some did not give the expected results, some became valuable tools for		
learning, exploring, and assessing students' understanding. This presentation will show how some of		
these methods were implemented in the online statistics courses that we developed recently and		
how we use them as assessment	tools along with other more dedica	ted online instruments.

DDL.4	Reflections on the Implementation of the Mathematics Emporium as a Model for Teaching First Year Algebra and Trigonometry Courses	
Nicholas Luke	North Carolina A&T State University	
In the fall semester of 2012, the Department of Mathematics at North Carolina A&T State University		

began to teach its lower level algebra and trigonometry sequence employing the Math Emporium model of instruction. In the Math Emporium, students learn mathematical concepts by completing interactive computer-based modules in lieu of a traditional lecture. The Math Emporium model of instructional delivery includes methods to encourage and require students' participation in the classroom such as self-paced instruction, peer tutoring, and immediate feedback. This presentation will examine the experiences in the development and implementation of the Math Emporium. Perceived benefits and pitfalls of the Math Emporium will be shared. Effects of the implementation of the Math Emporium in regards to the classroom environment and students' performance in these classes will also be presented.

DC 4		
DS.1	An introduction to the p-adic absolute value	
Ellen Eischen	University of North Carolina at	
	Chapel Hill	
Everyone encounters the usual at	osolute value while growing up. In t	this talk, we introduce a different
absolute value, the p-adic absolut	te value, which measures divisibility	y by a prime number p. We will

introduce its basic properties and then discuss some surprising consequences in geometry. The talk will include some facts that those who have studied algebra, number theory, or topology will appreciate, but to understand most of the talk, students will just need a general curiosity about math

DS.2	Knots, and how to use cloud computing to tabulate them	
Jason Parsley	Wake Forest University	
In this interactive talk we will intr	oduce the mathematical theory of	knots. Suppose we wanted to
begin making a table of all the possible knots and links. Topologists have been attempting this for		
over a century. We will discuss the history of these efforts, including the errors made along the way.		
Finally, we will close by discussing the COLD (Census Of Link Diagrams) project, which uses distributed		
computing to tabulate all possible	e diagrams of links. [COLD is a joint	project of the speaker along with
Jason Cantarella (UGA), Harrison	Chapman (UGA), and Matt Mastin (WFU).]

GS1.1	A Glimpse into the World of Geom	netric Modeling
Yuliya Babenko	Kennesaw State University	
Mathematicians, computer scient	ists, scientists, and engineers all wo	ork with curves and surfaces,
which arise from a finite amount	of data points. Different goals and c	different tools available in the
fields lead to different approaches to the same subject, which often lead to new methods and		
discoveries. For instance, how do mathematicians typically represent curves and surfaces? On the		
other hand, how do computer scientists naturally represent curves and surfaces? Or, how do		
scientists need to represent curves and surfaces? What about engineers? In this talk we will		
introduce some basic ideas (inter	polation and approximation) as wel	l as sophisticated tools of
geometric modeling (Bezier curve	s and B-splines), and discuss their t	heoretical advantages

/disadvanatges as well as powerful algorithms.

GS2.1	The Tropical Mathematics of Evolution	
Joseph Rusinko	Winthrop University	
We explore tropical mathematics (arithmetic without the unnecessary burden of subtraction) and its		
applications to evolutionary biology. Hedgehog's gone rogue and the ghosts of student research past,		
present and future will be highlighted.		

GS2.2	MAA 100/MAASE 93	
Virginia Watson	Kennesaw State University	
The MAA turns 100 this year and the Southeastern Section turns 93. Come celebrate the milestones		
in the history of the Southeastern Section from its beginnings in 1922 to the current day.		

GS3.1	The Lion and the Path	
Linda Braddy	MAA	
ТВА		

GT.1	Applications of Holder's Inequality to a Fibonacci Problem	
Rachel Graves	The Citadel	
In this talk, I will explain how I applied Holder's inequality, which is a well-known inequality in		
functional Analysis, to solve an open problem that was published in the May 2014 edition of the		
Fibonacci Quarterly. I will also give a brief history of Fibonacci and Fibonacci numbers.		

GT.2	Application of the Reduced Basis Method to the Forward Problem	
	of Hyperspectral Diffuse Optical T	omography
Rachel Grotheer	Clemson University	
Diffuse Optical Tomography (DOT), which uses a low-energy light soι	urce in the visible to near infrared
range, has become a popular alter	rnative in medical imaging to tradit	ional imaging techniques such as
x-ray or computed tomography (C	T), because it is non-ionizing and co	ost effective. In recent years,
researchers have sought to apply	hyperspectral imaging, the use of h	nundreds of optical wavelengths
in the imaging process, to DOT in	order to improve the resolution of	the image by adding new
information.		
We develop a reduced basis meth	od approach to solve the forward p	problem in hyperspectral DOT
(hyDOT). The forward problem in	hyDOT is to determine the measur	ements on the boundary of the
medium, given a light source on the boundary and the values of the optical parameters, such as the		
absorption and scattering coefficients. Our work on the forward problem is motivated by the image		
reconstruction problem in hyDOT	which is computationally expensive	e because any inversion
algorithm requires solving the for	ward problem hundreds if not thou	isands of times. Recently, the
Reduced Basis Method (RBM) has	been proposed for parameter dep	endent PDEs with significant
success in developing faster algorithm	ithms particularly for models involv	ving parameter dependent elliptic
PDEs. The RBM involves finding an initial finite element approximation of a parameterized form of the		
PDE, from which a set of basis functions is derived. A linear combination of these basis functions then		
forms a reduced basis approximation of the solution. We show how the RBM greatly improves the		
computational burden of the forw	of the forward problem and thus, improves the efficiency of the inverse	
problem.		

GT.3	Reverse mathematics and marriag	ge problems	
Noah A. Hughes	Appalachian State University		
The program of reverse mathema	tics deals with calibrating the logica	al strength of mathematical	
theorems. We analyze several the	orems regarding marriage problem	ns via the techniques of reverse	
mathematics. A marriage problem	M consists of a set of boys B , a	set of girls G and a relation R ,	
a subset of $B \times G$, where $(b,g) \in$	a subset of $B imes G$, where $(b, g) \in R$ means ``boy b knows girl g .'' A solution of the marriage		
problem is an injection f mapping B into G , such that for every b in B , $(b, f(b))$ is in R . Using			
the standard anthropocentric terr	minology, we see that f assigns a	unique spouse to each boy from	
among his acquaintances. In this t	alk, we will discuss the program of	reverse mathematics, review	
past results regarding marriage pr	oblems, share recently completed	work concerning the necessary	
and sufficient conditions for a ma	rriage problem to have a unique so	lution, as well as show how each	
of these theorems fit within the fr	amework of reverse mathematics.		

GT.4	Ideal Factorizatins	
Ashley Lawson	Tennessee Technological	
	University	
This talk will discuss indivisible ideals and indivisible ideal factorization properties. A ideal I is		
indivisible ideal of R if $I = JK$ where J,K are ideals of R then either $J = R$ or $K = R$ and a ring R		
said to satisfies the indivisible ideal factorization property (or IIF) if nonzero every ideal of R can be		
written as a product of indivisible ideals. In particular, every Noetherian domain satisfies IIF		

HOM.1	Anything Besides Zero?	
Paul L Baker	Catawba College	
The Khmer (Cambodian) Empire lasted more than a thousand years. The Khmers were the first		
recorded users of the number zero in 683 A.D. (605 Saka). We will consider a number of possible		
factors why no other mathematical advancements originated within the Khmer Empire.		

HOM.2	Finding Zero	
Dr. John Zerger	Catawba College	Dr. Paul Baker, faculty member
		at Catawba College
This session will review the recently published book "Finding Zero" by Amir D. Aczel. The research		
behind the book has created a definitive work on the origin of the number zero.		

HOM.3	Islamic Complex of Mathematics, Architecture and Art	
AbdelNaser Al-Hasan	Newberry College	
In this short talk, my aim is to revi	ew some important results of the c	ongoing research on the
connections of mathematics, architecture and art in the Islamic heritage. One important result is the		
complex geometrical tiling patterns called "girih" that was widely used to decorate Islamic mosques		
and buildings. These patterns were discovered in 1973 by the British mathematical physicist Roger		
Penrose. In 1984, they were found in metal alloys called quasi-crystals that seemed to break the		
geometric rules of atomic packing. Did Muslim mathematicians understood such complex		
mathematical concept 500 years prior to its discovery by the Western world?		

HOM.4	Ibn Al-Haytham and Wilson's Theorem		
Nathaniel Collier	Newberry College		
Abu Ali Al-Hasan ibn Al-Hasan ibn	Al-Haytham, frequently referred to	as Ibn Al-Haytham, known	
variously in Renaissance Europe a	s Alhazen, latinized from his first na	ame, and The Physicist, not only	
introduced the world to the first u	o the first understanding of scientific experimentation, but also, as part of the		
Golden Age of Islamic scholars, fu	furthered our mathematical knowledge with his study of systems of		
congruences. Nevertheless, the w	gruences. Nevertheless, the western world has only recently rediscovered his work and its		
profound importance for the development of mathematical and scientific thought.			
It is the aim of this study to establish, briefly, the connection between the Chinese Remainder			
Theorem and Wilson's Theorem in	eorem and Wilson's Theorem in al-Haytham's work, to attribute Wilson's Theorem properly to al-		
Haytham, and ultimately to explo	re the necessity of his work in the d	levelopment of number theory.	

PST.1	A Seminar on Preparing Graduate Students to Teach College	
	Mathematics	
Sarah Schott	Duke University	
Preparing graduate students to teach undergraduates is an ongoing process. For graduate students in		

the Mathematics department at Duke University, this process begins even before their studies commence and continues well after they've taught their first class. A major component of this training is Math 771, a required seminar for all first year graduate students. This semester-long seminar involves two 75 minute meetings each week and covers a myriad of topics and situations that instructors may face in the classroom. Topics include lesson planning, overview of the content in calculus courses, writing effective tests, and grading. Graduate students are matched with current instructors in order to observe teaching practices, and prepare and present lectures to their peers. I will discuss in more detail the content and organization of this course.

PST.2	A framework for a graduate student teacher mentoring program		
Emily Braley	Duke University		
In the Mathematics Department a	t Duke, preparation of graduate stu	udent teachers is considered an	
ongoing process that starts when	a first year graduate student arrive	s and ends when a graduate	
student leaves Duke to pursue the	student leaves Duke to pursue their career. Graduate students begin their involvement in the		
program before the start of their first semester at Duke by attending meetings in a teacher-training			
week. First year graduate students attend a teacher-training course in their first semester, observe			
classes, practice teaching, and wo	classes, practice teaching, and work as TA's. Once graduate students are ready to teach their own		
classes, they work closely with a c	ourse coordinator who provides gu	idance, feedback, and direction	
throughout the graduate student'	s first teaching experience. I will di	scuss the structure of the	
program and how it continues to	provide guidance and feedback afte	er a graduate student's first year.	

PST.3	Teaching Preparation for Graduate Students at NCSU	
Brenda Burns-Williams	North Carolina State University	
All graduate students who will have teaching duties in the mathematics department at NCSU are		
required to take 2 introduction to teaching workshops during their first year. I will discuss the		
professional development opportunities that we provide to them during these workshops.		

PST.4	Graduate Student Teaching Training at Clemson	
Meredith Burr	Clemson University	
The Department of Mathematical Sciences at Clemson University has recently begun formal TA		
training for its graduate students. I will discuss our previous and current efforts in providing TA		
training, as well as the expectations and outcomes so far of the current TA professional development		
course.		

PST.5	A Community of Practice for Preparting Graduate Students to	
	Teach Undergraduate Mathemati	ics in the second s
Jack Bookman	Duke University	
Most college teachers have very I	ery little preparation for teaching, often just a few hours of "training" in	
the week before classes begin. Th	ses begin. The purpose of this talk is to describe a project, funded by the National	
Science Foundation to create an i	undation to create an infrastructure, housed and supported by the MAA, to enhance the	
mathematics community's ability to provide high quality, teaching-related PD to graduate students.		
Project activities will include the creation of a community of practice and an online resource library to		
help mathematics departments st	art and strengthen programs to pro	epare graduate students to teach
undergraduate mathematics.		

PUB.1	Mastery Learning: Anytime, Anywhere	
Jennifer Kolb	Hawkes Learning	
Hawkes Learning believes in offering affordable and accessible materials. Their comprehensive		
learning system is built and based on the principle of mastery learning to ensure that each student		
develops a solid foundation and deep understanding of the curriculum. This competency-based		
approach adapts to each student's individual needs and has a proven track record of increasing		
student success. Learn about the new tablet-friendly platform that requires no installation or plug-ins.		
All attendees will be entered to win a \$50 Amazon.com giftcard!		

RME.1	A demonstration of a lesson in a randomization-based curriculum	
Tonya Adkins	Johnson & Wales University -	
	Charlotte	
For this topic, I would be happy to do a special session. If it doesn't fit, then a contributed talk will do.		
Thank you.		
In this session, the presenter will share a sample lesson from a randomization-based statistics		

In this session, the presenter will share a sample lesson from a randomization-based statistcs curriculum, which was learned at an MAA-PREP course in June 2014 presented by Nathan Tintle, et. al. The demonstration is intended to spark an interest in using randomization investigations, to encourage others to attend the same PREP workshop this summer, and to widen the faculty community implementing this pedagogy.

RME.2	Inquiry-Based Learning on the Way to Calculus	
John C. Mayer	University of Alabama at	William O. Bond, Alabama
	Birmingham	School of Fine Arts,
		Birmingham, AL

Studies that we did at UAB in 2010, 2011, and 2013 point, in different ways, to the potential for IBL class meetings in pre-calculus courses to improve the chances of students to perform satisfactorily in Calculus I. The studies in 2010-11 were quasi-experimental studies of incorporating IBL/Group Learning sessions in Basic Algebra (a remedial course), reported at the Conferences on Research in Undergraduate Mathematics Education the subsequent years. The 2010-11 studies led to a change in how we teach Basic Algebra from 2012 onward. The 2013 study was a statistical study of success of students in Calculus I in the period 2006-2012 based upon the first mathematics course taken at UAB. The 2013 study pin-pointed where we could get the most ``bang for the buck'' in subsequent student success in Calculus, if we made an appropriate change in instruction. Of course, the study does not imply what type of change is appropriate. I will outline a two-pronged approach (one quasi-experimental, one statistical) to help resolve this issue.

RME.3	Measuring the Conceptual Teaching in Undergraduate	
	Mathematics	
Jim Gleason	The University of Alabama	
Many state and national organizations that focus on mathematics teaching and learning, including the		
MAA, have put forth recommendations regarding teaching mathematics for conceptual		
understanding. To date, there are few valid and reliable instruments designed to measure the extent		
to which a classroom matches up with these recommendations for the purposes of evaluation and/or		
research. In this talk, we will give an overview of the observation protocols currently available in this		
area and introduce the Mathematics Classroom Observation Protocol for Practices (MCOP 2).		

RME.4	The Reflexive Step: How Students Understand Verified	
	Trigonometric Identities	
Ben Wescoatt	Valdosta State University	
This study explored college students' actions and conceptual understanding while verifying		
trigonometric identities. During semi-structured clinical interview in which students verified		
identities, many students concluded their written verification with a reflexive equality, i.e.,		
sin(x)=sin(x). A possible meaning held by the students for this reflexive step will be discussed.		

UT1.1	Sums of Fibonacci Numbers		
Nicole Fox	Georgia Southern University		
Sums of Fibonacci numbers			
By Nicole Fox			
Georgia Southern University			
Abstract			
There are well known results for t	the sum of the first n Fibonacci numbers, for the sum of the first n		
Fibonacci numbers with even sub	scripts, and for the sum of the first n Fibonacci numbers with odd		
Subscripts. For instance $E1 \pm E2 \pm E3 \pm E4 \pm$	$\pm En = En \pm 2 = 1$		
and $F_2 + F_4 + F_6 + F_8 + F_2 = -2$	$F^{2}n + 1 - 1$		
We investigate similar sums with	subscripts from an arithmetic progression		
For example $F0 + F3 + F6 + F9 +$	+ F3n = 1/2 (F3n + 2 - 1)		
and $F1 + F4 + F7 + F10 + + F3n +$	+1 = F3n + 3		
We also investigate similar sums i	involving Lucas numbers. For instance.		
Lk			
k= 0			
nΣ			
= Ln +2. –1,			
€			
L4 i+2			
i= 0			
nΣ			
= F4 n +4 and (-1)iL2i+1	= F4 n +4 and (-1)iL2i+1		
i= 0			
nΣ			
= (–1)n F2n +2.			
The ultimate goal would be to know the value of sums such as			
Fai+b			
i= 0			
nΣ			
and (-1)iFai+b			
i= 0			
nΣ			

UT1.2	Counting Roots and Galois Groups	
Nicole Soltz	Elon University	Dr. Chad Awtrey - Mathematics
		Department at Elon University
Let $f(x)$ be an irreducible polynomial over a field F with roots a , b , and c (in some algebraic		
closure), and let $K = F(a)$ be the extension obtained by adjoining one root of f to F . We present		
two methods for determining the Galois group of $f(x)$. One involves answering the question: is		
$(a-b)(a-c)(b-c) \in F$? The other involves answering the question: how many roots of f are in		
K? We end by discussing an application to computing Galois groups of degree 15 polynomials defined over an extension of the p -adic numbers.		

UT1.3	The Path Between the Points: Interpolation and Splines	
Jeffrey Fisher	Lenoir-Rhyne University	
This paper examines polynomial interpolation and spline interpolation using mathematics and SAGE.		
Using graphs and code from SAGE, functions are compared to ascertain the optimal interpolation		
function. Polynomial interpolations are discussed as a base for understanding interpolation through a		
proof and examples. Splines are introduced to formulate an accurate and smooth function for		
interpolating points on a plane. Finally, the applicability of splines to fonts is examined by using a		
letter drawn with a spline function.		

UT1.4	Augmented Happy Functions of Variable Power	
Marcus Harbol	The Citadel	Dr. Breeanne Swart
The presentation investigates Aug	gmented Happy Functions of Varia	ble Power, defined as
$T_{[c,q]}\left(\sum_{i=0}^{n} a_{i} 10^{i}\right) = \sum_{i=0}^{n} a_{i}^{q} + c \text{, } 0 \le a_{i} \le 9 \text{ with } c,q \in \text{Mathds}Z^{+} \text{. This function takes the digits of a}$		
positive integer, raises each digit to the power $\it q$, sums the results, and adds a constant, $\it c$, to the		
sum. In particular, the iterative properties of this function are investigated for a range of values of c and q .		

UT1.5	The Hilbert series of polynomials i	nvariant under a circle action
Emily Cowie	Rhodes College	
Let G be a subgroup of $GL_n(\Box)$	isomorphic to the circle S^1 , then ,	$S_1^{}$ permutes the polynomials in
the ring \Box [x_1, \ldots, x_n]. Under this	group action, there is an invariant	polynomial ring, the set of
polynomials that are mapped to the polynomial that is invariant under information about the action; how of invariants of each degree. One n th coefficient is the dimension of Hilbert series for arbitrary weights coefficients of this series at $t = 1$	hemselves under the actions. It can this group action, and knowing all vever, it can be computationally ch technique is to compute the Hilber of invariants of degree n . This talk is a_1, \ldots, a_n , as well as the computa	the quite simple to produce a of the invariants provides a lot of allenging to "count" the number of series, the power series whose will discuss computations of the ation of the first few Laurent

UT2.1	A New Method for Musical Encryption	
Olivia Vanarthos	Appalachian State University	
In this talk, I will begin by giving a brief introduction to encryption and a survey of historical methods		
that use music to encrypt information. I will then present and demonstrate a new method for		
encryption that utilizes notes within a scale to cause musically-encrypted information to have a more		
pleasing and unique sound.		

UT2.2	How To Protect Gotham City Using Voronoi Diagrams	
Damien Wright	Coastal Carolina University	
Imagine Gotham City in which Batman and Robin parted ways and decided to fight crime separately.		
We can use Voronoi Diagrams to partition the city in a way that will create distinct regions in which		
Batman and Robin will be responsible for protecting. If we assume that Batman has more times the		
ability to protect Gotham than Robin(AKA Nightwing) does, we can use Weighted Voronoi Diagrams		
to partition the city.		

UT2.3	Distance-Two Domination on Grid Graphs	
Dante Durrman	Furman University	Jerez Chen, Furman University
A distance-two dominating set is a set of vertices in a graph such that every vertex not in the set is		
within distance two of at least one member of the set. We investigate the problem of finding a		
maximum minimal distance-2 dominating set on a grid graph. Our method uses tilings of an		
associated gameboard.		

UT2.4	Derivative Sian Patterns for Infinitely Differentiable Functions in	
	Three Dimensions	
Madeline Edwards	Elon University	

A derivative sign pattern is a sequence of positive and negative signs that represent the signs of a function and its derivatives over its domain. Special cases of the function's domain in one-dimensional analysis include the real numbers, where there are four possible sign patterns, and the unit interval, with infinitely many possible sign patterns. In the first case, a function that is infinitely differentiable will have a sign pattern that can be determined from the original function and the first derivative. Prof. Kenneth Schilling expanded from the one-dimensional case to the two-dimensional case for the entire plane. His specific cases included the positive real numbers, the positive real numbers restricted with the unit interval, and the first quadrant. Building on Schilling's Derivative Sign Pattern Theorem (DSP), the expansion to the three-dimensional case is analyzed. The specific case of interest in three-dimensions is ordered triples of real numbers. From Schilling's research of matrix possibilities in two-dimensions, analysis of what is possible in three-dimensions can be constructed. In the three-dimensional case, there is interesting geometry among the derivative sign patterns. From combinatorics of all possible cases of two dimensional possibilities into three dimensions, there are only eight possible DSP's in three dimensions; a total of 16 DSP's with their negations. Each possible DSP in three dimensions can be represented by $\pm e^{\pm x \pm y \pm z}$ where the only difference between any given DSP is the positive and negative coefficients.

UT2.5	Creating and Extending Fibonacci-Type Formulas by Counting Tiles	
Langston Williams	Lenoir-Rhyne University	
This research focuses on counting the number of ways $1 \times m$ blocks can tile an $m \times n$ size board. The		
case where $m=2$ is special in that it can be used to generate the Fibonacci sequence. The case		
where $m > 2$ can be used to generate Fibonacci-like sequences. By changing the way in which we		
decide to count these tilings we can produce a wide variety of Fibonacci and Fibonacci-like formulas.		
	· · ·	

UT2.6	Matroids 4 Macaulay2	
Ben May	High Point University	
The purpose of this research project was to study matroids in order to create a package for them in		
Macaulay2. Macaulay2 is a software system designed to aid mathematical research in algebraic		
geometry and commutative algebra. My work focused on approaching Matroids from a Linear		
Algebra perspective. The package's first function allows users to input a set of vectors and receive the		
associated matroid as output. Continued growth and implementation of a Matroid package for		
Macaulay2 should facilitate furthe	er research on Matroids.	

UT3.1	Various Properties of the Fibonacci Number Sequence	
Moriah Gibson	Georgia College and State	
	University	
The Fibonacci number sequence is famous for its connection to the Golden Ratio and its appearance		
within natural objects. However, there do exist Fibonacci-like sequences that share the same		
recursive definition as the Fibonacci sequence without possessing its same connection to the Golden		
Ratio. We will explain a method for constructing such Fibonacci-like sequences, and then examine the		
relationship between the Golden Ratio and the Fibonacci number sequence through the appearance		
of Fibonacci numbers within a sur	nflower.	

UT3.2	A Geometric Approach to Voting Theory	
Lee Fisher	Appalachian State University Dr.Vicky Klima was guiding	
		professor.
In this poster we highlight the connection between the way a voter's ranking of the candidates is scored, or weighted, and the outcome of an election, emphasizing that the selection of a weight system may strongly influence the outcome of an election. This observation is important from a practical standpoint in considering the objectivity of voting procedures. We then introduce and use geometric tools to analyze a new system that, while based on the idea of position weighted voting.		
does not require the vote counter to choose particular values for the weights.		

UT3.3	4x4 to 2x2	
Sierra Doherty	Coastal Carolina University	
Searching on the internet, it is easy to find algorithms for solving the 4x4 Rubik's Cube. The purpose of		
this talk is to demonstrate a way to solve the 4x4 Rubik's Cube, developed by the author, and		
compare it with a more well-known method. This new method may provide an easier solution to an		
otherwise complicated puzzle.		

UT3.4	Disney in a Day: TDTSP applied to theme parks	
Danny Rivers	Furman University	Rahul Isaac, Furman University
In the Traveling Salesman Probler	n (TSP), one seeks the shortest way	to visit a number of given
number of locations. We investigate a more complicated variant of the TSP, the Time-Dependent TSP		
(TDTSP), in which node or edge weights (travel or visit times) vary over time in a known fashion. In		
particular, we used Disney theme park attractions as our locations and tried to find a way to minimize		
the time required to visit each ride once (which maximizes your time to see them again). We created		
a genetic algorithm to find good s	olutions to the time-dependent pro	blem, and tested multiple
heuristics within this framework.		

UT3.5	Degree 6 Polynomials and Their Solvability by Radicals		
Peter Jakes	Elon University	Robin French, Elon University	
		Dr. Chad Awtrey, Elon	
		University	
		Dr. Alan Russell, Elon University	
For about 500 years, formulas have	ve existed to find exact solutions to	quadratic, cubic and quartic	
polynomials. However, it was pro	as proven later that not all solutions to quintic polynomials can be found		
exactly, or solved by radicals. As a	by radicals. As a result, a method was created in the 20th century using a property		
of each function called its Galois g	ch function called its Galois group in order to determine which degree five polynomials could be		
solved exactly and which could not. This project expands upon this discovery by exploring degree six			
polynomials. By using computer software, the Galois group of a degree six polynomial can be			
determined by only using two resolvent polynomials, improving upon prior methods. From this			
information, it can then be determined whether or not the polynomial is solvable by radicals. Further			
research can explore higher degre	egree polynomials as well as reducible polynomials, as the current		
method is only viable for irreducil	ble polynomials.		

UT3.6	The optimum turning angle after aircraft engine failure at a low altitude	
Xinyue Dai	Sewanee: the University of the	Dr. Catherine Cavagnaro, Math
	south	and Cs department, Sewanee:
		the university of the south
Engine failure in a single aircraft at a low altitude right after takeoff demands immediate reaction. The		
FAA recommend procedure pilot to land straight ahead, but it not work effectively when the failure		
altitude is 300-1000 feet. The purpose of this study is evaluate the possibility and feasibility of		
turning back after engine failure during the takeoff phase of flight in a single engine aircraft by		
building analytical model with Mathematica. Then, matching the result to the analytical result done		
by Rogers at 1994. By examining the influence of engine failure altitude, wind direction and velocity,		
and bank angle on the required runway length of single aircraft, the model shows that the optimum		
flight turning angle is 45° bank angle at constant velocity during the turn.		

UT4.1	The classification of SU(2)^2 biquotients of compact, simply-	
	connected rank 3 Lie groups.	
Robert DeYeso III	University of Tennessee at	Dr. Jason DeVito - coauthor
	Martin	
A biquotient is any manifold which is diffeomorphic to the quotient of a homogeneous space G/H		
by an effectively free isometric action. We provide a classification of $SU(2)^2$ biquotients of compact,		
simply-connected rank 3 Lie groups. We show most of these biquotients are distinct up to		
diffeomorphism by computing their respective cohomology rings and first few Pontryagin classes.		

UT4.2	Drawing numbers and listening to patterns	
Zo (Loren) Haynes	Georgia Southern University	
We present an interesting study of the patterns of number series. Using Triangular numbers as an		
example, we study their patterns through basic approaches analogous to that in digital topology.		
While employing elementary number theory to justify these patterns, we also make a connection to		
math music by interpreting the patterns in terms of notes.		

UT4.3	A new algorithm for Galois groups of quintic polynomials		
Robin French	Elon University	Dr. Chad Awtrey, Assistant	
		Professor of Mathematics, Elon	
		University	
Finding solutions of polynomial e	quations is a central problem in ma	thematics. Of particular	
importance is the ability to solve	a polynomial``by radicals''; i.e., usin	ng only the coefficients of the	
polynomial, the four basic arithm	etic operations (addition, subtraction	on, multiplication, division), and	
roots (square roots, cube roots, e	roots (square roots, cube roots, etc.). For example, the existence of the quadratic formula shows that		
all quadratic polynomials are solvable by radicals. In addition, degree three polynomials and degree			
four polynomials are also solvable by radicals, which was shown in the 16th century. However, the			
same is not true for all degree five polynomials. Therefore, we are left with the following question:			
how do we determine which degree five polynomials are solvable by radicals? To answer this			
question, we study an important object that is associated to every polynomial. This object, named			
after 19th century mathematician Evariste Galois, is known as the polynomial's Galois group. The			
characteristics of the Galois group encode arithmetic information regarding its corresponding			
polynomial, including whether or not the polynomial is solvable by radicals. In this talk, we will discuss			
a new algorithm for determining	the Galois group of a degree five po	olynomial.	

UT4.4	Constructions in Design Theory	
Leah Foster	LaGrange College	
A Steiner Triple System is defined as a set T of 3-element subsets, called triples, whose elements		
come from a set S in which each pair of elements in S occurs in exactly one triple in T. I will be		
discussing two different constructions of Steiner Triple Systems, the 2n+1 and 2n+7 Constructions. In		
addition to presenting the constructions, I will also prove the 2n+1 construction.		

UT4.5	A closed form for the sums of squares of consecutive Lucas	
	numbers	
Kaige Lindberg	The Citadel	
In this talk I will be talking about how I found the closed form for a finite sum of the square of two		
consecutive Lucas numbers. I will discuss the identities and techniques I used. I will additionally talk		
about the potential generalizations of this result to generalized Fibonacci numbers. The summation		
was an open problem in the Fibonacci Quarterly.		

UT4.6	Extending J. Chernik's Construction of Carmichael Numbers	
Tyler A. Woolley	Wofford	N/A
A Carmichael number is an integer n such that $a^n \equiv a \pmod{n}$ for all integers a. In this talk, we		
construct Carmichael numbers based on J. Chernik's work in which he noted that there exists a Carmichael number of the form $(6k+1)(12k+1)(18k+1)$ when each factor is prime. We take a		
similar construction of primes to those above and show that our newly constructed products satisfy Korselt's Criterion when they are extended indefinetly, which implies that the products are Carmichael numbers.		

UT5.1	Monochromatic-bichromatic Ramsey numbers for some small		
	cycles		
Michael Ngo	Clayton State University	Elliot Krop	
We call the minimum order of any	We call the minimum order of any complete graph so that for any coloring of the edges by k colors it		
is impossible to avoid a monochro	onochromatic or rainbow triangle, a Mixed Ramsey number. For any graph		
H with edges colored from the a	e above set of k colors, if we consider the condition of excluding H in		
the above definition, we produce a \emph{Mixed Pattern Ramsey number}, denoted $M_{_k}(H)$. We			
determine this function in terms of k for all colored 4 -cycles. We also find bounds for ${\it M}_{k}(H)$ when			
H is a monochromatic odd cycle. We state several open questions.			

UT5.2	Snakes on the Plane	
Jerez Chen	Furman University	Dante Durrman, Furman
		University
A depletion of a graph is a permutation of its vertex set such that each vertex in the list (except for the first) can find a neighbor in the list to its left. A depletion models the spread of a disease through a system of nodes and edges. A snake is a special type of maximal outerplanar graph. In this talk, we will commerciate the number of depletions of a cracke graph.		ch vertex in the list (except for the spread of a disease through Iterplanar graph. In this talk, we

UT5.3	Graph coloring, art gallery, and applications	
Yunwei Zhang	Georgia Southern University	
In this talk we survey results and tools in the application of graph coloring on the well known art		
gallery problem. We will explore the basic approaches such as triangulation and how to deal with		
"ears" in a structure. The slightly different Right-Angled Art Gallery problem will also be visited as an		
application of the aforementioned work. We also mention potential applications to other related		
questions.		

UT5.4	Using Wavelets for Image Noise Removal		
Maria Peter	Coastal Carolina University	Victor Harris (Undergraduate	
		Students & Partner)	
We see images every day and son	netimes they look distorted. Often t	times now, image sharing sites	
have many filters to "enhance" photos in various ways. So, we decided to engage in a project to			
create a program to test several c	te a program to test several different ways to remove noise from the images. Using this program,		
we were able to separate images' red, blue, and green channels and to test how denoising one			
impacts the image as a whole. The program was written in C# and allowed us to combine			
Mathematics with Computer Science. What we will be presenting is just a small part of a much larger			
ongoing research project.			

UT5.5	Machine Learning Techniques for Detecting Humans in Images	
Troy Kling	UNCW	Dr. Yishi Wang, UNCW
Statistical machine learning techn	iques play a very significant role in	computer vision and pattern
recognition. In this presentation,	techniques for feature extraction fr	rom images, including local n-ary
patterns and histograms of oriented gradients, are discussed. Dimensionality reduction techniques,		
such as principal component analysis and Fisher's linear discriminant analysis, are also introduced.		
Finally, support vector machines are reviewed as a popular approach for classification. These		
aforementioned techniques will be applied to a large scale problem involving detecting the presence		
of humans in images. The strengths of the feature extraction and dimensionality reduction methods		
will be discussed.		

UT6.1	Introduction to the Wave Equation: Derivations and Illustrations	
Amber Holmes	LaGrange College	
The derivation of the equation governing the vibrating string yields the one-dimensional		
homogeneous wave equation. Once the solution is derived, the partial differential equation is used to		
further discuss the normal modes of a vibrating string when initial spatial positions are altered.		

UT6.2	Ecological models with U-shaped density dependent dispersal		
Jordan Price	Auburn University Montgomery	Jordan Berry, Auburn University	
		Montgomery	
Dispersal of an animal population	is considered to be density depend	lent when dispersal decisions are	
made based on the presence of co	onspecifics. Recently, several ecolo	gists have noted density	
dependent dispersal in multiple s	pecies of animals from insects to bi	rds to bears. In fact, the	
relationship between population	lation density and dispersal has been shown (empirically) to be U-shaped.		
In this talk, we will model the effe	, we will model the effects of U-shaped density dependent dispersal on the patch-level		
dynamics of a population using one of the most versatile theoretical population frameworks, the			
reaction diffusion population model. In particular, we will explore the dynamics of a diffusive logistic			
population model on a one-dimer	nsional domain with nonlinear bour	ndary conditions modeling U-	
shaped density dependent disper	sal via study of the model's positive	e steady state solutions. We	
obtain results through use of the	quadrature method and Mathemat	ica computations and will briefly	
explore their biological implicatio	ns.		

UT6.3	Linear Sums of Binomial Coefficients	
Soowhan Yoon	Mercer University	
The Fibonacci sequence and Pascal's triangle are closely tied together because of the connection		
between the recursive property of the Fibonacci sequence and the combinatorial property of Pascal's		
triangle. Noticing the flexibility of Binet's formula that allows one to extend the sequence into a		
continuous function and extending the definition of the binomial coefficients to the complex		
numbers, one can make remarkable observations about the nature of the linear sums of binomial		
coefficients.		

UT6.4	Modeling of financial flow over time through recursive network construction	
Kayla Hagerty	Georgia Southern University	Jing Sun, Georgia Southern
The study of financial flows between different financial institutions has long been an interesting and important topic. In particular, the development of the U.S. economy in terms of both domestic and international trades, investments, donations, etc., form a complex system of financial flows whose stability and future direction have been controversial subjects of debate for a long time. In this talk we present a model based on flow network, which incorporates the change of flow over time, to provide an effective tool for such a study.		

UT6.5	The Cobb-Douglas Production Function: Analysis and Application of	
	the Model	
John Saeger	Coastal Carolina University	
Production Functions take factors of production and relate them to the output of production		
processes and are a fundamental concept associated with supply side economics. In mathematical		
terms, a production function is used to represent the limit of output obtainable from all possible sets		
of inputs or to specify minimum requirements necessary to produce a desired output. Analysis of		
production functions allows for the calculation of concepts such as the change in ratio of capital to		
labor over time and the value of long run economic equilibrium.		

UT6.6	Tracking Robots using Elementary Tactics from Computer Vision	
William Lewis	Furman University	Chase Fiedler, Furman
		University
We employ some simple methods from computer vision in order to create an indoor global		
positioning system for small scale autonomous vehicles.		

WS.1	Fifty Years of Geometric Programming	
Elmor Peterson	Systems Science Research and	
	Consulting	

WS.2	Teaching Numerical Analysis using	g the free software SAGE MATH
Razvan Mezei	Lenoir-Rhyne University	
In recent years, Python has gained a lot of popularity as being one of the easiest programming		
language to learn, and many universities are using it in their introductory programming courses.		
SageMath is a free open source Mathematical software that uses a Python-based syntax. In this		
workshop we will present how one can integrate it in teaching undergraduate Numerical Analysis		
courses. In particular, we will make use of the web-based version of SAGE Math, called SAGE Cell		
Server. This can be accessed from almost any computer or mobile device connected to the Internet,		
making it very convenient for in-class use, or at home. Other options of using SageMath are: the Sage		
Cloud, and the Sage Virtual Machi	ine. We will demonstrate:- ho	w one can use existing Sage
library functions to quickly introdu	uce the students to Numerical Anal	ysis topics, and then,- how
to implement specific algorithms to create our own functions and demonstrate understanding of the		
Numerical Analysis concepts.		

WS.3	Graduate Student Career Development Workshop	
Sarah Frick	Furman University	