

Ninety-fourth Annual Meeting

University of North Carolina at Wilmington

Wilmington, NC

Thursday—Saturday, 12—14 March 2015

http://sections.maa.org/southeastern/maase/conference2015/

Undergraduate Poster Session Abstracts

UP.1	Motif-based clustering of directed networks		
Thomas Reith	Davidson College	Laurie J. Heyer, Davidson	
		College	
The study of networks has been	ome increasingly relevant in a va	riety of scientific fields,	
including biology, sociology, a	, and computing. It has been shown that many real networks		
divide naturally into clusters, o	or communities, of related vertices. A large amount of research		
has focused on the detection of	of such clusters in undirected networks; their detection in directed		
networks, however, is a less well-studied problem. Here we introduce a novel clustering			
algorithm for directed graphs b	graphs based on the concept of network motifs—recurrent, statistically		
significant subgraphs found at	thigher frequencies in real networks than ones that are randomly		
generated.			

UP.2	Derived Sequences	
Sarah Myers	Berry College Adam Cronan-Berry College	
Given a function d from the natural numbers to the positive integers such that $d(1) = 0$, $d(x) = 0$		
1 when x is prime, and $d(x) = a \cdot d(b) + b \cdot d(a)$ if $x = ab$ is composite, we determine methods for		
calculating $d(x)$ based on the prime factorization of x and look at the behavior of the function		
as it is iterated. Then we extend d to be defined on other sets of numbers including the integers		
and the rationals. We notice when determining methods of calculating $d(x)$ that d acts as a		
numerical derivative, so we consider the existence of a numerical antiderivative.		

UP.3	An Introduction to Phylogenetics and Tree Space	
Amber Holmes	LaGrange College	Mercedes Coleman - Lamar
		University
		Cody FitzGerald - University
		of New Hampshire
		Emily Smith - Kenyon
		University
As part of the North Carolina State University Research Experience for Undergraduates		

program in the Department of Mathematics, we explored a variety of means in tree space. Tree space is a subset of Euclidean space in which every point represents a tree. In this space, there exist numerous metrics, each of which lead to a different notion of a mean tree. We have implemented the algorithm for the (1,1), (2,2) and $(1,\infty)$ -mean in MATLAB. \\indent The (1,1)-mean is a weighted majority rule consensus tree, the (2,2) mean is generated using Sturm's algorithm. Unlike the (1,1) and (2,2)-mean, the $(1,\infty)$ mean is not as well studied. The $(1,\infty)$ -mean algorithm we propose incorporates traversing the L_2 geodesic using the L_1 midpoint as a mechanism for obtaining the mean tree's orthant. Once the orthant has been found, the mean tree can be optimized using linear programming.

UP.4	Power-Conserving Selective-Range Multilateration for		
	Wireless Sensor Network Localization		
Graham Gordon	Auburn University		
The Network Localization Prob	olem (NLP) is the problem of det	ermining the positions of all	
sensors in a wireless sensor net	work (WSN) given (i) the position	ons of only some of the sensors	
and (ii) the distance between or	nly some of the pairs of sensors.	WSNs can be viewed as	
graphs, with vertices acting as sensors and edges acting as communications. Using results			
from Random Graph Theory, E	n Random Graph Theory, Eren et al. showed that there exists a sufficient uniform		
communication radius for all se	ensors to guarantee a solution to t	the NLP. Using multilateration	
to successively determine the second	ensor positions motivates the Dis	screte Vertex Ordering	
Problem (DVOP). Solving the	DVOP produces a solution to the	NLP. We investigate a	
sufficient bound on the number	of neighboring sensors each sen	sor communicates with to	
guarantee a solution to the DV	OP. Numerical evidence suggests	s the bound depends only on	
the dimension of the space in w	which the sensors are embedded.	-	

	low altitude	
Xinyue Dai	Sewanee: the University of	Dr Catherine Cavagnaro,
	the south	Math and Cs Department,
		Sewanee: the university of
		the south

Engine failure in a single aircraft at a low altitude right after takeoff demands immediate reaction. The FAA recommend procedure pilot to land straight ahead, but it not work effectively when the failure altitude is 300-1000 feet. The purpose of this study is evaluate the possibility and feasibility of turning back after engine failure during the takeoff phase of flight in a single engine aircraft by building analytical model with Mathematica. Then, matching the result to the analytical result done by Rogers at 1994. By examining the influence of engine failure altitude, wind direction and velocity, and bank angle on the required runway length of single aircraft, the model shows that the optimum flight turning angle is 45° bank angle at constant velocity during the turn.

UP.6	Optimization of Water Delivery for Optimal Fire Flow	
	Capabilities	
Ben Eavenson	Emmanuel College	Dr. Bruce E. Scranton,
		Emmanuel College
Depending on the size of a structure, fire involvement, and water availability, what means of		
water delivery would provide the most efficient means of continuous fire suppression? At		
what percentage of fire involvement should the incident commander recognize that amount of		
involvement exceeds the water availability? By integrating mathematical models for different		
aspects of the firefighting problem, we seek to answer both tactical problems and strategic		
infrastructure planning questions. This poster presents the problems, discusses key aspects of		
the solutions, obstacles encountered, and illustrates results		

UP.7	Combinatorics of Linked Systems of Quartet Trees	
Emili Moan	Winthrop University	Dr. Joseph Rusinko,
		Winthrop University
We apply classical quartet techniques to the problem of phylogenetic decisiveness and find a		
value k such that all collections of at least k quartets are decisive. Moreover, we prove that		
this bound is optimal and give a lower-bound on the probability that a collection of quartets is		
decisive.		

UP.8	A Hat Game	
Biraj Dahal	Coastal Carolina University	
We will define a particular hat game and provide optimal strategies for special cases.		

UP.9	Lunar Rhythms and the 17 Year Cicada
	· · · · · · · · · · · · · · · · · · ·

Shuler Hopkins	King University		
It is well known the the moon h	has a natural 19 year cycle. We al	lso know that the moon is	
receding from the earth current	receding from the earth currently at a rate of about 3 cm/year. By applying Kepler's law, we		
can estimate when the moon had a 17 year cycle. We then investigate whether the 17 year			
lunar cycle during this time had an influence in determining the life cycle of the 17 year			
cicada.			

UP.10	Mathematical Modeling of Crypt-Villus Cell Population	
	Dynamics in the Intestine	
Saif Alimohamed	me	
Crypt-villus cells are fast-divid	ing cells that are targets of chem-	otherapeutic agents. Crypt
cells differentiate into stem cell	ells differentiate into stem cells. Our goal was to model crypt and villus cell populations in	
the intestine under various cond	under various conditions. We formulated a one-crypt and one-villus compartment	
model. We also developed a me	model. We also developed a mechanical and chemical feedback model for two-crypt and two-	
villus compartments. Each of these models was characterized using phase-plane and steady		
state analysis. The one-crypt and one-villus compartment model was shown to undergo a Hopf		
Difurcation as the feedback term "m" became higher than $2p0/(2p0-1)$.		

UP.11	Forms of Carmichael Numbers	
Alex Boutwell	Wofford College	
Carmichael numbers are composite numbers which satisfy Fermat's Little Theorem:		
$a^n \equiv amodn$. In this paper we will show that certain factorizations of Carmichael numbers are		
not possible, thus narrowing down the potential forms that Carmichael numbers can take. In		
particular, after assuming a common conjecture about Fermat primes, we found that		
Carmichael numbers of the form $\lambda(m) = 2^k * P^2$ do not exist for P = 7, 43, 127, or 19661 and		
there are a limited number of such Carmichael numbers for $P = 3$ and 5.		

UP.12	Cliffhanger and the Price is Right	
Scott Scruggs	Francis Marion University	Jeremiah Bartz-Francis
		Marion University
"The Price is Right" has been one of the most popular game shows on television for over forty		
years with a plethora of games players compete in. However, can future players "hack" into		
some games to increase their profit? The CNN article "Win on 'The Price is Right'—with		
Math!" states that there exist optimal strategies for players to exploit. This looks at the game		
Cliffhanger and determines whether or not the claims made on this article are true.		

UP.13	Oscillatory Integrals of the First Kind	
Jurgen Xhafaj	Newberry College	
Oscillatory integrals in one form or another have been an essential part of harmonic analysis.		
In this poster we will investigate the asymptotic behavior of integrals of Laplace type.		

UP.14 <i>Questionnaire Refinment in Neuropsychological Assessments</i>		
	UP.14	Questionnaire Refinment in Neuropsychological Assessments

William Smith	UNCW Mathematics and	
	Statistics Department	

The 100 item Trauma Symptom Inventory (TSI) diagnoses and assesses the activity of posttraumatic stress disorder (PTSD) and other psychological disorders. Over the past few years the TSI has been administered to thousands of veterans and active marines stationed in Camp Lejeune, a base in Jacksonville, North Carolina, who were referred by military neurologists. In utilizing Item Response Theory (IRT) on these test results, multiple statistical analyses provided insight into the underlying characteristics of the TSI: item difficulty, item discrimination, and local dependency. The TSI is time consuming, therefore a shorter test with tailored assessments is needed. From the IRT model, the selected subset of items will provide an equally as informative test as the longer version, while still maximizing precision along all segments. According to psychologists, "poor effort" constitutes up to 50% of the difference in cognitive testing performance, which may stem from the length of the TSI.

UP.15	A Random Walk with the Dead	
Emily Deborde	Coastal Carolina University	
The Walking Dead is a television show broadcasted on the AMC Network that depicts the		
"eminent" zombie apocalypse. Data was collected from each episode to examine potential		
trends of the show over time. The variables observed were the number of zombies killed, the		
episode rating, and the number of viewers for each episode over the first four seasons. Time		
series plots were constructed for each of these variables and then evaluated to find if they		
exhibited stationary or non-stationary characteristics. Based on these characteristics,		
forecasting models were selected to make predictions for the fifth season of the show.		