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— Problem (Discrete logarithm problem - DLP)
Given acyclicgroup G = (g) and anelement a € G, find e € N'suchthata = g€.

Easy: Rsq Difficult: |G| ~ 22048 ~ 3.23 . 10616

— Diffie-Hellman key exchange (70’s)



Quantum computers and their threat
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~= | Theorem (Shor’s Algorithm - '94)
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There exists a polynomial-time quantum algorithm that breaks IF and DLP.
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Timage credit: https://quantum-computing.ibm.com/composer/docs/igx/guide/shors-algorithm
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Number of digits d 1

Remark

A full-scale quantum computer can break today’s public key crypto!!

Timage credit: https://quantum-computing.ibm.com/composer/docs/igx/guide/shors-algorithm



Progress in quantum computing

Development Roadmap IBM Quantum

2019

Remark

Some experts predict 10-15 years, no one knows for sure.

2image credit: https://www.ibm.com/quantum/roadmap



Post-quantum Cryptography and the NIST competition

Definition (Post-Quantum Cryptography (PQC))

Classical cryptographic algorithms which are secure against attacks by both clas-
sical and quantum computers.

¢ 25 Countries (16 StatesinUS) 6 Continents
Dec 2, 2016: Call for proposal.
Nov 30, 2017: Deadline
2018 - Round 1: 69 candidates e
2019 - Round 2: 26 candidates :
2020 - Round 3: 7 finalists and 8 alternatess =
2022 - NIST selects 4 finalists and 4 candidates -

i 4

9image credit: NIST
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Definition (Post-Quantum Cryptography (PQC))

Classical cryptographic algorithms which are secure against attacks by both clas-
sical and quantum computers.

¢ 25 Countries (16 StatesinUS) 6 Continents
Dec 2, 2016: Call for proposal.
Nov 30, 2017: Deadline . . —
2018 - Round 1: 69 candidates ”
2019 - Round 2: 26 candidates
2020 - Round 3: 7 finalists and 8 alternatess =
2022 - NIST selects 4 finalists and 4 candidates - oy

NIST Call for Additional Digital Signatures
9image credit: NIST
Goal: standards ready in about 1 year, complete compliance expected by 2035.
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Coding Theory
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FX message space.
([Fg, dn) is a metric space with the Hamming distance

du(v, w) :=wt(w—v) = |supp(w—vV)| = {ie€[n]|w;# vi}.
enc: [Fg — Fg injective linear map.

C:= enc([FZ) C [F?q7 is a [n, k, dq linear code if it is a kK-dimensional vector space and

diC) = min du(ci, C2).
C1,02€C, C1#C3

c=(c1,...,Cn) €Cisacodeword.



Error-Correcting codes (cont'd)
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Error-Correcting codes (cont'd)

LetC C [Fg be a linear code with minimum distance d.

°
/ m:F"—-¢C
q

1{ y —argmin{d(y,c)|ceC}
dl]

dec:=enclom

dec is able to uniquely correct at least [ J errors
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Error-Correcting codes (cont'd)

LetC C [Fg be a linear code.
A generator matrix G € [Fg"” for C is a fullrank matrix such that
C=im(G)={mG|me [Fg}.
A parity check matrix H € [Fg_kx” for C is a fullrank matrix such that C = ker(H?).
It holds that

GH! = 0.

H - —k
Syndrome of y € [Fg issy, :=yH'e [Fg .
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Example: repetition code

[F> message space

enc: > — [Fg such that

enc(0)=(0 0 0) and enc(l)=(1 1 1)

Cisal3, 1, 3] linear code that corrects 1 error.

110
G::(l 1 1)andH::(O 1 1).



The Syndrome Decoding Problem

E Problem
; q q (n—k)xn
For an [n, k] code C with parity-check matrix H € [ , asyndrome s €
ﬂfg_k, and some t € N, find a vector e € I]:g such that eH! = s and wt(e) = t.
E Theorem (Berlekamp et al. 1978, and Barg 1997)
This problem is NP-complete.




Generic-Error Coding Theory



Difference Sets

Let g be the field with g elements, with g = pN a prime power.



Difference Sets

Let g be the field with g elements, with g = pN a prime power.
For a k-element set E C [Fg, let (E)¢, be the span of E over Fp:

(E)[Fp =A1€1+A282 +... + AkerforAj€lFp, € €EE.



Difference Sets

Let g be the field with g elements, with g = pN a prime power.
For a k-element set E C [Fg, let (E)¢, be the span of E over Fp:

(E)[Fp =A1€1+A282 +... + AkerforAj€lFp, € €EE.
For any set E, the set difference of E is

AE = {e;—ey|e1, e €E}.



Difference Sets

Let g be the field with g elements, with g = pN a prime power.
For a k-element set E C [Fg, let (E)¢, be the span of E over Fp:

(E)[Fp =A1€1+A282 +... + AkerforAj€lFp, € €EE.
For any set E, the set difference of E is

AE = {e;—ey|e1, e €E}.

E Theorem (M.,Slaugther 2023)
ForasetE C [FZ, the chain E C AE C AZE C ... stabilizes. That is, there exists

some k € N such that AKE = AK+1E_ In this case, AKE = (E)E,-



Difference Sets

Let g be the field with g elements, with g = pN a prime power.
For a k-element set E C [Fg, let (E)¢, be the span of E over Fp:

(E)[Fp =A1€1+A282 +... + AkerforAj€lFp, € €EE.
For any set E, the set difference of E is

AE = {e;—ey|e1, e €E}.

2= | Theorem (M.,Slaugther 2023)
ForasetE C [FZ, the chain E C AE C AZE C ... stabilizes. That is, there exists

some k € N such that AKE = AK+1E_ In this case, AKE = (E)E,-

Definition

For a set E, the A-closure of E is E' = limk—oo AKE. We say that E is A-closed
—A

fE=E .
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Generic Error Sets

Definition

An error set E C [Fg is detectable by some code C C [Fg ifENC = {0}. Similarly,
this set of errors E is correctable by Cif AENC = {0}.

ﬁ Example .

In the case of Hamming balls, ABt(0) C /

By—1(0), wheret = [%J. This means that

any error detectable under the set difference J{
definition is also detectable under the mini-

mum distance of a code.

[Nk

|n_
-
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Detection and Correction

It follows that A-closed sets are maximal sets for which detectability corresponds to cor-
rectability.

2= | Corollary
—o—
Given a code , a set E is detectable and correctable if and only if E is A-closed,
—A
meaningthat E = E.
2= | Proposition
—0—
n ; ] : (n—k)xn n
LetC C [Fq be a code with parity-check matrix H € [, .Theset E C [Fq is
correctable by C if and only if its syndromes are unique, meaning that for e, €’ €

Ey
eH! = e’H! < e=¢".
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Gilbert-Varshamov Bound

2= | Theorem (M., Slaughter 2023)

There exists a code C correcting E once

|AE| < g" K.
This recovers the standard Gilbert-Varshamov bound by taking E € Bt(0):

~ | Theorem (Gilbert-Varshamov Bound)

Let n, k, and d be such that

di (7)(61— 1) <q™*

i=1

Then there exists C an [n, k] code C of minimum distance d.



GE-SDP

-o—

— Problem (spp)

For an [n, k] code C with parity-check matrix H € ”:gn—k)xn’ a syndrome S €

[Fg_k, and some t € N, find a vector e € IFZ such that eH! = s and wt(e) = t.



GE-SDP

2= | Problem (spr)
—0—
. q q (n—k)xn
For an [n, k] code C with parity-check matrix H € I]:q , a syndrome S €
[Fg_k, and some t € N, find a vector e € IFZ such that eH! = s and wt(e) = t.
2> | Problem (GE-SDP)
—0—
0 o o (n—k)xn
For an [n, k] code C with parity-check matrix H € [ , a syndrome S €
[Fg_k, and some set E C [Fg, find a vector e € E such that eH! = s.
2= | Proposition (M., Slaughter 2023)
—o0—
The GE-SDP is NP-complete.



Complexity of already known SPDs

SDP

Restricted SDP R-SDP(G)
E =B¢(0) E—{0,+1}" Rank SDP E-G"
_ a
NP-complete NP-complete? E= Bf(O) NP-complete?
R ’) —
9Berlekamp et al. 1978, aBaldi et al. 2020 9Baldi et al. 2023

and Barg 1997



Complexity of already known SPDs

Sbp Restricted SDP

E =B+(0) E={0,£1}" Rank SDP
_ a

M}Iete NP-complete? E= B’;(O)
9Berlekamp et al. 1978, ?

a -
and Barg 1997 Baldi et al. 2020

2~ | Theorem (M., Slaughter 2023)
—0—

LetC C IFZ be acodeand E C FZ an error set such that E- NC =

GE-SDP can be solved in O(n3).

If E={0,£1}", then E* = [Fg. In this case,

k N-—1

—_ 7

n N

meaning that the SDP might be easy for code with low rates.

R-SDP(G)
E=G"
NP-complete?

9Baldi et al. 2023

{0}. Then the
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Zero-Knowledge Protocols (ZKP)

A ZKP is a method by which one party (the prover) can prove to another party (the verifier)
that a given statement is true while the prover avoids conveying any additional information
apart from the fact that the statement is indeed true.

A zero-knowledge proof must satisfy three properties:

Completeness: an honest prover can convince a verifier.

Soundness: a cheating prover can convince a verifier with a probability less than 1.

Zero-Knowledge: the verifier learns nothing other than the statement’s veracity.
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Private: x € N Public: g such that [F; =(g),andy = g*¥

Prover Verifier
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Zero-knowledge protocol (ZKP) based on DLP

Private: x € N Public: g such that [F; =(g),andy = g*¥

Prover Verifier
Create X = X1 +++++ Xpn (mod p—1)
Compute y; = g*i for all i
(yl; sy Yn) -

«— jed{l,...,n}
(X1, --.,Xn) except for j —

Checks yj = g*i for i # j and l_[l(’:l yi=y

Figure: Prover - Jess Figure: Verifier - Felice



GE-CVE - a ZKP based on GE-SDP (M., Slaughter 2023)

Publicdata: g, n,k e N, E C th, He |F(qn—k)xn
Private Key: e € E
PublicKey: s = eH! € [Fg*“

PROVER VERIFIER

U s IFZ, M —s Gg
Set co = Hash(M, uH®)

Set c; = Hash(uM, eM) (€0, €1)

z—sF*
q

Sety = (u+ze)M Y

b Choose b € {0, 1}
Ifb=0, setf:=M
=1, setf:=eM f

Ifb =0, acceptif

co = Hash(f, (yf 1)H! — zs).
Ifb=1, acceptif

f € Eand ¢1 = Hash(y — zf, f).

3Adaptation of CVE by Cayrel, Veron, El Yousfi Alaoui 2010



GE-CVE - a ZKP based on GE-SDP (M., Slaughter 2023)

This is genuinely a zero-knowledge identification scheme:

Completeness: an honest prover can convince a verifier.
Soundness: a cheating prover can convince a verifier with only a small probability (ﬁ).

Zero-Knowledge: the verifier learns nothing other than the statement’s veracity.



Future for GE-SDP

We plan on submitting on June 1, 2023 a digital signature scheme based on R-SDP(G)

Universities involved:
Clemson University
Universita Politecnica delle Marche
Politecnico di Milano

Technical University of Munich
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We plan on submitting on June 1, 2023 a digital signature scheme based on R-SDP(G)

Universities involved:
Clemson University
Universita Politecnica delle Marche
Politecnico di Milano

Technical University of Munich

Thank you.
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