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Cryptography Today

Problem (Integer factorization - IF)

Given a composite number N, find two integers a and b such that ab = N.

Easy: N = 6 Difficult: N ≈ 22048 ≈ 3.23 · 10616

−→ RSA cryptosystem (70’s)

Problem (Discrete logarithm problem - DLP)

Given a cyclic groupG = 〈g〉 and an elementa ∈ G, finde ∈ N such thata = ge.

Easy: R>0 Difficult: |G| ≈ 22048 ≈ 3.23 · 10616

−→ Diffie-Hellman key exchange (70’s)
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Quantum computers and their threat

Theorem (Shor’s Algorithm - ’94)

There exists a polynomial-time quantum algorithm that breaks IF and DLP.

1

Remark
A full-scale quantum computer can break today’s public key crypto!!

1image credit: https://quantum-computing.ibm.com/composer/docs/iqx/guide/shors-algorithm
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Progress in quantum computing

2

Remark
Some experts predict 10-15 years, no one knows for sure.

2image credit: https://www.ibm.com/quantum/roadmap



Post-quantum Cryptography and the NIST competition

Definition (Post-Quantum Cryptography (PQC))

Classical cryptographic algorithms which are secure against attacks by both clas-
sical and quantum computers.

■ Dec 2, 2016: Call for proposal.
■ Nov 30, 2017: Deadline
■ 2018 - Round 1: 69 candidates
■ 2019 - Round 2: 26 candidates
■ 2020 - Round 3: 7 finalists and 8 alternates
■ 2022 - NIST selects 4 finalists and 4 candidates

■ NIST Call for Additional Digital Signatures

a

aimage credit: NIST

Goal: standards ready in about 1 year, complete compliance expected by 2035.
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Noisy-Channel Coding Theorem - Shannon 1948)

Over F2:
m = 1
e = 1
y = 0

Theorem (Noisy-Channel Coding Theorem - Shannon - 1948)

“In communication theory any channel, however affected by noise, possesses a
specific channel capacity - a rate of conveying information that can never be ex-
ceeded without error, but that can, in principle, always be attained with an arbi-
trarily small probability of error."

Solved: Turbo codes (LTE networks), Polar & spatially-coupled LDPC codes (5G networks)
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Error-Correcting codes

■ Fk
q
message space.

■ (Fn
q
,dH) is a metric space with the Hamming distance

dH(v,w) :=wt(w− v) = |supp(w− v)| = {i ∈ [n] | wi ̸= vi}.

■ enc : Fk
q
→ Fn

q
injective linear map.

■ C := enc(Fk
q
) ⊂ Fn

q
is a [n,k,d]q linear code if it is a k-dimensional vector space and

d(C) = min
c1,c2∈C, c1 ̸=c2

dH(c1,c2).

■ c = (c1, . . . ,cn) ∈ C is a codeword.
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Error-Correcting codes (cont’d)

Let C ⊆ Fn
q
be a linear code with minimum distance d.

π : Fn
q
→ C

y 7→ argmin{d(y,c) | c ∈ C}

dec := enc−1 ◦ π

dec is able to uniquely correct at least ⌊ d−12 ⌋ errors
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Error-Correcting codes (cont’d)

Let C ⊆ Fn
q
be a linear code.

■ A generator matrixG ∈ Fk×n
q

for C is a fullrank matrix such that

C = im(G) = {mG |m ∈ Fk
q
}.

■ A parity check matrix H ∈ Fn−k×n
q

for C is a fullrank matrix such that C = ker(Ht).

■ It holds that
GHt = 0.

■ Syndrome of y ∈ Fn
q
is sy := yHt ∈ Fn−k

q
.
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Example: repetition code

■ F2 message space

■ enc : F2→ F32 such that

enc(0) =
�

0 0 0
�

and enc(1) =
�

1 1 1
�

■ C is a [3,1,3] linear code that corrects 1 error.

■ G :=
�

1 1 1
�

and H :=

�

1 1 0
0 1 1

�
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The Syndrome Decoding Problem

Problem

For an [n,k] code C with parity-check matrix H ∈ F
(n−k)×n
q , a syndrome s ∈

Fn−k
q

, and some t ∈ N, find a vector e ∈ Fn
q
such that eHt = s andwt(e) = t.

Theorem (Berlekamp et al. 1978, and Barg 1997)

This problem is NP-complete.
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Difference Sets

Let Fq be the field with q elements, with q = pN a prime power.

For a k-element set E ⊆ Fn
q
, let 〈E〉Fp be the span of E over Fp:

〈E〉Fp = λ1e1 + λ2e2 + ...+ λkek for λi ∈ Fp,ei ∈ E.

For any set E, the set difference of E is

∆E = {e1 − e2 | e1,e2 ∈ E}.

Theorem (M.,Slaugther 2023)

For a set E ⊆ Fn
q
, the chain E ⊆ ∆E ⊆ ∆2E ⊆ ... stabilizes. That is, there exists

some k ∈ N such that∆kE = ∆k+1E. In this case,∆kE = 〈E〉Fp .

Definition
For a set E, the∆-closure of E is E

∆

= limk→∞∆kE. We say that E is∆-closed
if E = E

∆

.



Difference Sets

Let Fq be the field with q elements, with q = pN a prime power.

For a k-element set E ⊆ Fn
q
, let 〈E〉Fp be the span of E over Fp:

〈E〉Fp = λ1e1 + λ2e2 + ...+ λkek for λi ∈ Fp,ei ∈ E.

For any set E, the set difference of E is

∆E = {e1 − e2 | e1,e2 ∈ E}.

Theorem (M.,Slaugther 2023)

For a set E ⊆ Fn
q
, the chain E ⊆ ∆E ⊆ ∆2E ⊆ ... stabilizes. That is, there exists

some k ∈ N such that∆kE = ∆k+1E. In this case,∆kE = 〈E〉Fp .

Definition
For a set E, the∆-closure of E is E

∆

= limk→∞∆kE. We say that E is∆-closed
if E = E

∆

.



Difference Sets

Let Fq be the field with q elements, with q = pN a prime power.

For a k-element set E ⊆ Fn
q
, let 〈E〉Fp be the span of E over Fp:

〈E〉Fp = λ1e1 + λ2e2 + ...+ λkek for λi ∈ Fp,ei ∈ E.

For any set E, the set difference of E is

∆E = {e1 − e2 | e1,e2 ∈ E}.

Theorem (M.,Slaugther 2023)

For a set E ⊆ Fn
q
, the chain E ⊆ ∆E ⊆ ∆2E ⊆ ... stabilizes. That is, there exists

some k ∈ N such that∆kE = ∆k+1E. In this case,∆kE = 〈E〉Fp .

Definition
For a set E, the∆-closure of E is E

∆

= limk→∞∆kE. We say that E is∆-closed
if E = E

∆

.



Difference Sets

Let Fq be the field with q elements, with q = pN a prime power.

For a k-element set E ⊆ Fn
q
, let 〈E〉Fp be the span of E over Fp:

〈E〉Fp = λ1e1 + λ2e2 + ...+ λkek for λi ∈ Fp,ei ∈ E.

For any set E, the set difference of E is

∆E = {e1 − e2 | e1,e2 ∈ E}.

Theorem (M.,Slaugther 2023)

For a set E ⊆ Fn
q
, the chain E ⊆ ∆E ⊆ ∆2E ⊆ ... stabilizes. That is, there exists

some k ∈ N such that∆kE = ∆k+1E. In this case,∆kE = 〈E〉Fp .

Definition
For a set E, the∆-closure of E is E

∆

= limk→∞∆kE. We say that E is∆-closed
if E = E

∆

.



Difference Sets

Let Fq be the field with q elements, with q = pN a prime power.

For a k-element set E ⊆ Fn
q
, let 〈E〉Fp be the span of E over Fp:

〈E〉Fp = λ1e1 + λ2e2 + ...+ λkek for λi ∈ Fp,ei ∈ E.

For any set E, the set difference of E is

∆E = {e1 − e2 | e1,e2 ∈ E}.

Theorem (M.,Slaugther 2023)

For a set E ⊆ Fn
q
, the chain E ⊆ ∆E ⊆ ∆2E ⊆ ... stabilizes. That is, there exists

some k ∈ N such that∆kE = ∆k+1E. In this case,∆kE = 〈E〉Fp .

Definition
For a set E, the∆-closure of E is E

∆

= limk→∞∆kE. We say that E is∆-closed
if E = E

∆

.



Generic Error Sets

Definition
An error set E ⊆ Fn

q
is detectable by some code C ⊆ Fn

q
if E∩C = {0}. Similarly,

this set of errors E is correctable by C if∆E ∩ C = {0}.

Example

In the case of Hamming balls, ∆Bt(0) ⊆
Bd−1(0), where t = ⌊ d−12 ⌋ . This means that
any error detectable under the set difference
definition is also detectable under the mini-
mum distance of a code.
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Detection and Correction

It follows that ∆-closed sets are maximal sets for which detectability corresponds to cor-
rectability.

Corollary

Given a code , a set E is detectable and correctable if and only if E is ∆-closed,
meaning that E

∆

= E.

Proposition

Let C ⊆ Fn
q
be a code with parity-check matrix H ∈ F(n−k)×nq . The set E ⊆ Fn

q
is

correctable by C if and only if its syndromes are unique, meaning that for e,e′ ∈
E,

eHt = e′Ht ⇐⇒ e = e′.
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Gilbert-Varshamov Bound

Theorem (M., Slaughter 2023)

There exists a code C correcting E once

|∆E| < qn−k.

This recovers the standard Gilbert-Varshamov bound by taking E ⊆ Bt(0):

Theorem (Gilbert-Varshamov Bound)

Let n,k, and d be such that

d−1
∑

i=1

�

n

i

�

(q− 1)i < qn−k.

Then there exists C an [n,k] code C of minimum distance d.
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GE-SDP

Problem (SDP)

For an [n,k] code C with parity-check matrix H ∈ F
(n−k)×n
q , a syndrome s ∈

Fn−k
q

, and some t ∈ N, find a vector e ∈ Fn
q
such that eHt = s andwt(e) = t.
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The GE-SDP is NP-complete.
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Complexity of already known SPDs

SDP
E = Bt(0)
NP-completea

aBerlekamp et al. 1978,
and Barg 1997

Restricted SDP
E = {0,±1}n
NP-completea

aBaldi et al. 2020

Rank SDP
E = BR

t
(0)

?

R-SDP(G)
E = Gn

NP-completea

aBaldi et al. 2023

Theorem (M., Slaughter 2023)

Let C ⊆ Fn
q
be a code and E ⊆ Fn

q
an error set such that E

∆

∩ C = {0}. Then the
GE-SDP can be solved inO(n3).

If E = {0,±1}n, then E
∆

= Fn
p
. In this case,

k

n
≤
N− 1

N
,

meaning that the SDP might be easy for code with low rates.
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Zero-Knowledge Protocols (ZKP)

A ZKP is a method by which one party (the prover) can prove to another party (the verifier)
that a given statement is true while the prover avoids conveying any additional information
apart from the fact that the statement is indeed true.

A zero-knowledge proof must satisfy three properties:

■ Completeness: an honest prover can convince a verifier.

■ Soundness: a cheating prover can convince a verifier with a probability less than 1.

■ Zero-Knowledge: the verifier learns nothing other than the statement’s veracity.



Zero-knowledge protocol (ZKP) based on DLP

Private: x ∈ N Public: g such that F∗
p
= 〈g〉, and y = gx

Prover

Create x = x1 + · · ·+ xn (mod p− 1)
Compute yi = gxi for all i
(y1, . . . ,yn)

(x1, . . . ,xn) except for j

−→
←−

−→

Verifier

j ∈ {1, . . . ,n}

Checks yi = gxi for i ̸= j and
∏n

i=1 yi = y

Figure: Prover - Jess Figure: Verifier - Felice
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GE-CVE - a ZKP based on GE-SDP (M., Slaughter 2023)

Public data: q,n,k ∈ N,E ⊂ Fn
q
,H ∈ F(n−k)×n

q

Private Key: e ∈ E

Public Key: s = eHt ∈ Fn−k
q

PROVER VERIFIER

u←$ Fn
q
, M←$SE

Set c0 = Hash(M,uHt)

Set c1 = Hash(uM,eM) (c0,c1)

z z←$ F∗
q

Set y = (u+ ze)M y

b Choose b ∈ {0,1}

If b = 0, set f :=M

If b = 1, set f := eM f

If b = 0, accept if

c0 = Hash(f , (yf−1)Ht − zs).
If b = 1, accept if
f ∈ E and c1 = Hash(y − zf , f ).

3

3Adaptation of CVE by Cayrel, Veron, El Yousfi Alaoui 2010



GE-CVE - a ZKP based on GE-SDP (M., Slaughter 2023)

This is genuinely a zero-knowledge identification scheme:

■ Completeness: an honest prover can convince a verifier.

■ Soundness: a cheating prover can convince a verifierwith only a small probability
�

q
2(q−1)

�

.

■ Zero-Knowledge: the verifier learns nothing other than the statement’s veracity.



Future for GE-SDP

We plan on submitting on June 1, 2023 a digital signature scheme based on R-SDP(G)

Universities involved:
■ Clemson University
■ Università Politecnica delle Marche
■ Politecnico di Milano
■ Technical University of Munich

Thank you.
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