

Code-based Cryptography: The Future of Security Against Quantum Threats

Felice Manganiello

#### Spring 2023 Section Meeting

April 29, 2023

Partially funded by NSF DMS grant nr. 1547399

# People Involved



Freeman Slaughter (Clemson University)

- Marco Baldi, Paolo Santini (Università Politecnica delle Marche)
- Alessandro Barenghi, Gerardo Pelosi (Politecnico di Milano)
- Sebastian Bitzer, Patrick Karl, Alessio Pavoni, Jonas Schupp, Antonia Wachter-Zeh, Violetta Weger (TUM)

#### Cryptography and Post-Quantum Cryptography

Coding Theory

Generic-Error Coding Theory

Zero-Knowledge Protocols

**Cryptography** is the practice and study of techniques for secure communication in the presence of adversarial behavior.





**Cryptography** is the practice and study of techniques for secure communication in the presence of adversarial behavior.



- Authenticated pages (https)
- Digital signatures
- Zero-Knowledge protocols
- blockchain and cryptocurrencies
- etc.



**Cryptography** is the practice and study of techniques for secure communication in the presence of adversarial behavior.



- Authenticated pages (https)
- Digital signatures
- Zero-Knowledge protocols
- blockchain and cryptocurrencies
- etc.



Number theory, commutative algebra, combinatorics, etc.

Cryptography Today

# $\stackrel{\circ}{\xrightarrow{}}_{\rightarrow}$ **Problem (Integer factorization - IF)** Given a composite number *N* find

Given a composite number N, find two integers a and b such that ab = N.

Easy: N = 6

Difficult:  $N \approx 2^{2048} \approx 3.23 \cdot 10^{616}$ 

 $\longrightarrow$  RSA cryptosystem (70's)

### Cryptography Today

Problem (Integer factorization - IF) Given a composite number N, find two integers a and b such that ab = N.

Easy: N = 6

Difficult:  $N \approx 2^{2048} \approx 3.23 \cdot 10^{616}$ 

 $\longrightarrow$  RSA cryptosystem (70's)

Problem (Discrete logarithm problem - DLP)Given a cyclic group  $G = \langle g \rangle$  and an element  $a \in G$ , find  $e \in \mathbb{N}$  such that  $a = g^e$ .

Easy:  $\mathbb{R}_{>0}$ 

Difficult:  $|G| \approx 2^{2048} \approx 3.23 \cdot 10^{616}$ 

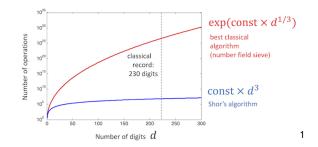
 $\rightarrow$  Diffie-Hellman key exchange (70's)

# Quantum computers and their threat

° ↓

#### Theorem (Shor's Algorithm - '94)

There exists a polynomial-time quantum algorithm that breaks IF and DLP.



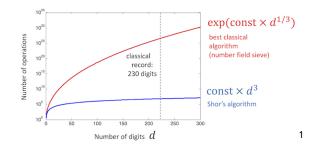
<sup>&</sup>lt;sup>1</sup>image credit: https://quantum-computing.ibm.com/composer/docs/iqx/guide/shors-algorithm

# Quantum computers and their threat

Å ₽

#### Theorem (Shor's Algorithm - '94)

There exists a polynomial-time quantum algorithm that breaks IF and DLP.



M

#### Remark

A full-scale quantum computer can break today's public key crypto!!

<sup>1</sup>image credit: https://quantum-computing.ibm.com/composer/docs/iqx/guide/shors-algorithm

# Progress in quantum computing





#### Remark

Some experts predict 10-15 years, no one knows for sure.

<sup>&</sup>lt;sup>2</sup>image credit: https://www.ibm.com/quantum/roadmap

# Post-quantum Cryptography and the NIST competition



#### Definition (Post-Quantum Cryptography (PQC))

Classical cryptographic algorithms which are secure against attacks by both classical and quantum computers.

- Dec 2, 2016: Call for proposal.
- Nov 30, 2017: Deadline
- 2018 Round 1: 69 candidates
- 2019 Round 2: 26 candidates
- 2020 Round 3: 7 finalists and 8 alternates
- 2022 NIST selects 4 finalists and 4 candidates



<sup>a</sup>image credit: NIST

# Post-quantum Cryptography and the NIST competition



#### Definition (Post-Quantum Cryptography (PQC))

Classical cryptographic algorithms which are secure against attacks by both classical and quantum computers.

- Dec 2, 2016: Call for proposal.
- Nov 30, 2017: Deadline
- 2018 Round 1: 69 candidates
- 2019 Round 2: 26 candidates
- 2020 Round 3: 7 finalists and 8 alternates
- 2022 NIST selects 4 finalists and 4 candidates
- NIST Call for Additional Digital Signatures



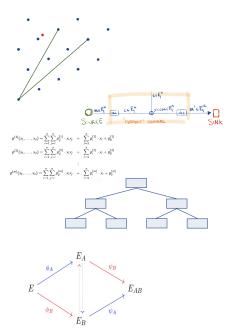
<sup>a</sup>image credit: NIST

Goal: standards ready in about 1 year, complete compliance expected by 2035.

# Post-Quantum Cryptography

Active research on:

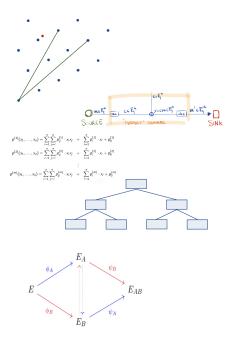
- Lattice-based
- Code-based
- Multivariate
- Hash/Symmetric key-based signatures
- Isogeny-based



# Post-Quantum Cryptography

Active research on:

- Lattice-based
- Code-based
- Multivariate
- Hash/Symmetric key-based signatures
- Isogeny-based

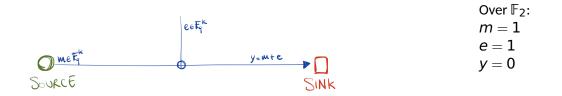


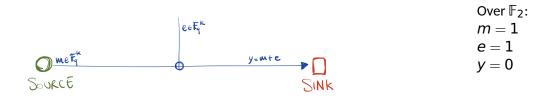
Cryptography and Post-Quantum Cryptography

#### **Coding Theory**

Generic-Error Coding Theory

Zero-Knowledge Protocols

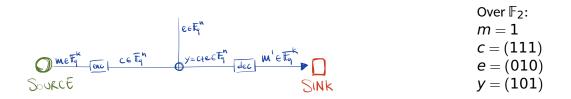




#### Theorem (Noisy-Channel Coding Theorem - Shannon - 1948)

"In communication theory any channel, however affected by noise, possesses a specific channel capacity - a rate of conveying information that can never be exceeded without error, but that can, in principle, always be attained with an arbitrarily small probability of error."

Solved: Turbo codes (LTE networks), Polar & spatially-coupled LDPC codes (5G networks)

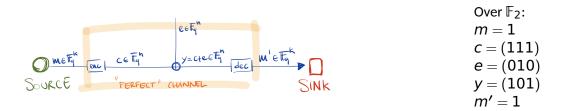


#### ₽ ₽

# Theorem (Noisy-Channel Coding Theorem - Shannon - 1948)

"In communication theory any channel, however affected by noise, possesses a specific channel capacity - a rate of conveying information that can never be exceeded without error, but that can, in principle, always be attained with an arbitrarily small probability of error."

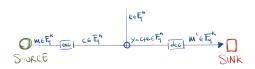
Solved: Turbo codes (LTE networks), Polar & spatially-coupled LDPC codes (5G networks)

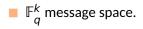


#### Theorem (Noisy-Channel Coding Theorem - Shannon - 1948)

"In communication theory any channel, however affected by noise, possesses a specific channel capacity - a rate of conveying information that can never be exceeded without error, but that can, in principle, always be attained with an arbitrarily small probability of error."

Solved: Turbo codes (LTE networks), Polar & spatially-coupled LDPC codes (5G networks)







\$\mathbb{F}\_q^k\$ message space.
 \$(\mathbb{F}\_{q'}^n, d\_H)\$ is a metric space with the Hamming distance

$$d_{H}(v, w) := wt(w - v) = |supp(w - v)| = \{i \in [n] \mid w_{i} \neq v_{i}\}.$$



\$\mathbb{F}\_q^k\$ message space.
\$(\mathbb{F}\_q^n, d\_H)\$ is a metric space with the Hamming distance
\$d\_H(v, w) := wt(w - v) = |supp(w - v)| = {i \in [n] | w\_i \neq v\_i}.\$

enc:  $\mathbb{F}_q^k \to \mathbb{F}_q^n$  injective linear map.



\$\mathbb{F}\_q^k\$ message space.
 \$(\mathbb{F}\_q^n, d\_H)\$ is a metric space with the Hamming distance

$$d_H(v, w) := wt(w - v) = |supp(w - v)| = \{i \in [n] \mid w_i \neq v_i\}.$$

enc: F<sup>k</sup><sub>q</sub> → F<sup>n</sup><sub>q</sub> injective linear map.
 C := enc(F<sup>k</sup><sub>q</sub>) ⊂ F<sup>n</sup><sub>q</sub> is a [n, k, d]<sub>q</sub> linear code if it is a k-dimensional vector space and
 d(C) = min c<sub>1</sub>, c<sub>2</sub> ∈C, c<sub>1</sub> ≠ c<sub>2</sub> d<sub>H</sub>(c<sub>1</sub>, c<sub>2</sub>).



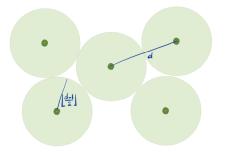
\$\mathbb{F}\_q^k\$ message space.
 \$(\mathbb{F}\_q^n, d\_H)\$ is a metric space with the Hamming distance

$$d_H(v, w) := wt(w - v) = |supp(w - v)| = \{i \in [n] \mid w_i \neq v_i\}.$$

enc: F<sup>k</sup><sub>q</sub> → F<sup>n</sup><sub>q</sub> injective linear map.
 C := enc(F<sup>k</sup><sub>q</sub>) ⊂ F<sup>n</sup><sub>q</sub> is a [n, k, d]<sub>q</sub> linear code if it is a k-dimensional vector space and
 d(C) = min<sub>c1,c2∈C</sub>, c<sub>1</sub>≠c<sub>2</sub> d<sub>H</sub>(c<sub>1</sub>, c<sub>2</sub>).

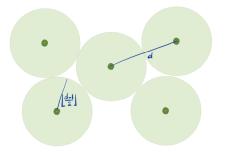
 $c = (c_1, \ldots, c_n) \in \mathcal{C} \text{ is a codeword.}$ 

Let  $\mathcal{C} \subseteq \mathbb{F}_q^n$  be a linear code with minimum distance d.



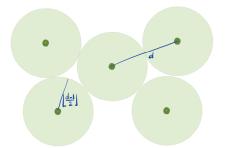
$$\pi: \mathbb{F}_q^n \to \mathcal{C}$$
$$y \mapsto \operatorname{argmin} \{ d(y, c) \mid c \in \mathcal{C} \}$$

Let  $\mathcal{C} \subseteq \mathbb{F}_q^n$  be a linear code with minimum distance d.



$$\pi: \mathbb{F}_q^n \to \mathcal{C}$$
$$y \mapsto \operatorname{argmin} \{ d(y, c) \mid c \in \mathcal{C} \}$$
$$\operatorname{dec} := \operatorname{enc}^{-1} \circ \pi$$

Let  $\mathcal{C} \subseteq \mathbb{F}_q^n$  be a linear code with minimum distance d.



$$\pi: \mathbb{F}_q^n \to \mathcal{C}$$
$$y \mapsto \operatorname{argmin} \{ d(y, c) \mid c \in \mathcal{C} \}$$
$$\operatorname{dec} := \operatorname{enc}^{-1} \circ \pi$$

dec is able to uniquely correct at least  $\lfloor \frac{d-1}{2} \rfloor$  errors

Let  $\mathcal{C} \subseteq \mathbb{F}_q^n$  be a linear code.

• A generator matrix  $G \in \mathbb{F}_q^{k \times n}$  for C is a fullrank matrix such that  $C = \operatorname{im}(G) = \{ mG \mid m \in \mathbb{F}_q^k \}.$ 

Let  $\mathcal{C} \subseteq \mathbb{F}_q^n$  be a linear code.

• A generator matrix  $G \in \mathbb{F}_q^{k \times n}$  for C is a fullrank matrix such that  $C = \operatorname{im}(G) = \{ mG \mid m \in \mathbb{F}_q^k \}.$ 

A parity check matrix  $H \in \mathbb{F}_q^{n-k \times n}$  for  $\mathcal{C}$  is a fullrank matrix such that  $\mathcal{C} = \ker(H^t)$ .

Let  $\mathcal{C} \subseteq \mathbb{F}_q^n$  be a linear code.

A generator matrix 
$$G \in \mathbb{F}_q^{k \times n}$$
 for  $C$  is a fullrank matrix such that  
$$C = \operatorname{im}(G) = \{ mG \mid m \in \mathbb{F}_q^k \}.$$

A parity check matrix  $H \in \mathbb{F}_q^{n-k \times n}$  for  $\mathcal{C}$  is a fullrank matrix such that  $\mathcal{C} = \ker(H^t)$ .

It holds that

$$GH^t = 0.$$

Let  $\mathcal{C} \subseteq \mathbb{F}_q^n$  be a linear code.

A generator matrix 
$$G \in \mathbb{F}_q^{k \times n}$$
 for  $\mathcal{C}$  is a fullrank matrix such that  
$$\mathcal{C} = \operatorname{im}(G) = \{ mG \mid m \in \mathbb{F}_q^k \}.$$

A parity check matrix  $H \in \mathbb{F}_q^{n-k \times n}$  for  $\mathcal{C}$  is a fullrank matrix such that  $\mathcal{C} = \ker(H^t)$ .

It holds that

$$GH^t = 0.$$

Syndrome of 
$$y \in \mathbb{F}_q^n$$
 is  $s_y := yH^t \in \mathbb{F}_q^{n-k}$ .

# Example: repetition code

F<sub>2</sub> message space

• enc:  $\mathbb{F}_2 \to \mathbb{F}_2^3$  such that enc(0) =  $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$  and enc(1) =  $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ 

# Example: repetition code

F<sub>2</sub> message space

enc: 
$$\mathbb{F}_2 \rightarrow \mathbb{F}_2^3$$
 such that  
enc(0) =  $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$  and enc(1) =  $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ 

#### $\square$ C is a [3, 1, 3] linear code that corrects 1 error.

# Example: repetition code

F<sub>2</sub> message space

enc: 
$$\mathbb{F}_2 \rightarrow \mathbb{F}_2^3$$
 such that  
enc(0) =  $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$  and enc(1) =  $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ 

#### $\square$ C is a [3, 1, 3] linear code that corrects 1 error.

$$G := \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \text{ and } H := \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

Problem For an [n, k] code C with parity-check matrix  $H \in \mathbb{F}_q^{(n-k) \times n}$ , a syndrome  $s \in \mathbb{F}_q^{n-k}$ , and some  $t \in \mathbb{N}$ , find a vector  $e \in \mathbb{F}_q^n$  such that  $eH^t = s$  and wt(e) = t.



Theorem (Berlekamp et al. 1978, and Barg 1997) This problem is NP-complete.

Cryptography and Post-Quantum Cryptography

Coding Theory

**Generic-Error Coding Theory** 

Zero-Knowledge Protocols

Let  $\mathbb{F}_q$  be the field with q elements, with  $q = p^N$  a prime power.

Let  $\mathbb{F}_q$  be the field with q elements, with  $q = p^N$  a prime power. For a k-element set  $E \subseteq \mathbb{F}_q^n$ , let  $\langle E \rangle_{\mathbb{F}_p}$  be the span of E over  $\mathbb{F}_p$ :

$$\langle E \rangle_{\mathbb{F}_p} = \lambda_1 e_1 + \lambda_2 e_2 + \ldots + \lambda_k e_k$$
 for  $\lambda_i \in \mathbb{F}_p$ ,  $e_i \in E$ .

Let  $\mathbb{F}_q$  be the field with q elements, with  $q = p^N$  a prime power. For a k-element set  $E \subseteq \mathbb{F}_q^n$ , let  $\langle E \rangle_{\mathbb{F}_p}$  be the span of E over  $\mathbb{F}_p$ :

$$\langle E \rangle_{\mathbb{F}_p} = \lambda_1 e_1 + \lambda_2 e_2 + \ldots + \lambda_k e_k$$
 for  $\lambda_i \in \mathbb{F}_p$ ,  $e_i \in E$ .

For any set E, the set difference of E is

$$\Delta E = \{ e_1 - e_2 \mid e_1, e_2 \in E \}.$$

Let  $\mathbb{F}_a$  be the field with q elements, with  $q = p^N$  a prime power. For a *k*-element set  $E \subseteq \mathbb{F}_{q}^{n}$ , let  $\langle E \rangle_{\mathbb{F}_{p}}$  be the span of *E* over  $\mathbb{F}_{p}$ :

$$\langle E \rangle_{\mathbb{F}_p} = \lambda_1 e_1 + \lambda_2 e_2 + \ldots + \lambda_k e_k$$
 for  $\lambda_i \in \mathbb{F}_p$ ,  $e_i \in E$ .

For any set *E*, the set difference of *E* is

$$\Delta E = \{ e_1 - e_2 \mid e_1, e_2 \in E \}.$$

Theorem (M.,Slaugther 2023) For a set  $E \subseteq \mathbb{F}_q^n$ , the chain  $E \subseteq \Delta E \subseteq \Delta^2 E \subseteq \ldots$  stabilizes. That is, there exists some  $k \in \mathbb{N}$  such that  $\Delta^k E = \Delta^{k+1} E$ . In this case,  $\Delta^k E = \langle E \rangle_{\mathbb{F}_p}$ .

Let  $\mathbb{F}_a$  be the field with q elements, with  $q = p^N$  a prime power. For a *k*-element set  $E \subseteq \mathbb{F}_{q}^{n}$ , let  $\langle E \rangle_{\mathbb{F}_{p}}$  be the span of *E* over  $\mathbb{F}_{p}$ :

$$\langle E \rangle_{\mathbb{F}_p} = \lambda_1 e_1 + \lambda_2 e_2 + \ldots + \lambda_k e_k$$
 for  $\lambda_i \in \mathbb{F}_p$ ,  $e_i \in E$ .

For any set *E*, the set difference of *E* is

$$\Delta E = \{ e_1 - e_2 \mid e_1, e_2 \in E \}.$$

Theorem (M.,Slaugther 2023) For a set  $E \subseteq \mathbb{F}_q^n$ , the chain  $E \subseteq \Delta E \subseteq \Delta^2 E \subseteq \ldots$  stabilizes. That is, there exists some  $k \in \mathbb{N}$  such that  $\Delta^k E = \Delta^{k+1} E$ . In this case,  $\Delta^k E = \langle E \rangle_{\mathbb{F}_p}$ .

For a set *E*, the  $\Delta$ -closure of *E* is  $\overline{E}^{\Delta} = \lim_{k \to \infty} \Delta^k E$ . We say that *E* is  $\Delta$ -closed if  $E = \overline{E}^{\Delta}$ .



### Definition

An error set  $E \subseteq \mathbb{F}_q^n$  is detectable by some code  $\mathcal{C} \subseteq \mathbb{F}_q^n$  if  $E \cap \mathcal{C} = \{0\}$ . Similarly, this set of errors E is correctable by  $\mathcal{C}$  if  $\Delta E \cap \mathcal{C} = \{0\}$ .

### ß

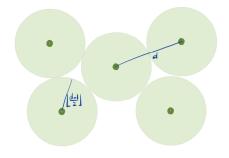
### Definition

An error set  $E \subseteq \mathbb{F}_q^n$  is detectable by some code  $\mathcal{C} \subseteq \mathbb{F}_q^n$  if  $E \cap \mathcal{C} = \{0\}$ . Similarly, this set of errors E is correctable by  $\mathcal{C}$  if  $\Delta E \cap \mathcal{C} = \{0\}$ .

## Þ

### Example

In the case of Hamming balls,  $\Delta B_t(0) \subseteq B_{d-1}(0)$ , where  $t = \lfloor \frac{d-1}{2} \rfloor$ . This means that any error detectable under the set difference definition is also detectable under the minimum distance of a code.



It follows that  $\Delta$ -closed sets are maximal sets for which detectability corresponds to correctability.

### **Detection and Correction**

It follows that  $\Delta$ -closed sets are maximal sets for which detectability corresponds to correctability.

# Corollary

Given a code , a set E is detectable and correctable if and only if E is  $\Delta$ -closed, meaning that  $\overline{E}^{\Delta} = E$ .

### **Detection and Correction**

It follows that  $\Delta$ -closed sets are maximal sets for which detectability corresponds to correctability.

 $\stackrel{\circ}{\xrightarrow{}}$  Corollary Given a code , a set *E* is detectable and correctable if and only if *E* is  $\Delta$ -closed, meaning that  $\overline{E}^{\Delta} = E$ .

Proposition Let  $C \subseteq \mathbb{F}_q^n$  be a code with parity-check matrix  $H \in \mathbb{F}_q^{(n-k) \times n}$ . The set  $E \subseteq \mathbb{F}_q^n$  is correctable by C if and only if its syndromes are unique, meaning that for  $e, e' \in E$ ,

$$eH^t = e'H^t \iff e = e'.$$

### **Gilbert-Varshamov Bound**

, ↓ ↓ Theorem (M., Slaughter 2023)

There exists a code C correcting E once

 $|\Delta E| < q^{n-k}.$ 

### **Gilbert-Varshamov Bound**



### Theorem (M., Slaughter 2023)

```
There exists a code C correcting E once
```

$$|\Delta E| < q^{n-k}.$$

This recovers the standard Gilbert-Varshamov bound by taking  $E \subseteq B_t(0)$ :

**Theorem (Gilbert-Varshamov Bound)** Let *n, k,* and *d* be such that

$$\sum_{i=1}^{d-1} \binom{n}{i} (q-1)^i < q^{n-k}.$$

Then there exists C an [n, k] code C of minimum distance d.

### **GE-SDP**

¢ │ Ŷ

### Problem (SDP)

For an [n, k] code C with parity-check matrix  $H \in \mathbb{F}_q^{(n-k) \times n}$ , a syndrome  $s \in \mathbb{F}_q^{n-k}$ , and some  $t \in \mathbb{N}$ , find a vector  $e \in \mathbb{F}_q^n$  such that  $eH^t = s$  and wt(e) = t.

Problem (SDP) For an [n, k] code C with parity-check matrix  $H \in \mathbb{F}_q^{(n-k) \times n}$ , a syndrome  $s \in \mathbb{F}_q^{n-k}$ , and some  $t \in \mathbb{N}$ , find a vector  $e \in \mathbb{F}_q^n$  such that  $eH^t = s$  and wt(e) = t.

Problem (GE-SDP) For an [n, k] code C with parity-check matrix  $H \in \mathbb{F}_q^{(n-k) \times n}$ , a syndrome  $s \in \mathbb{F}_q^{n-k}$ , and some set  $E \subseteq \mathbb{F}_q^n$ , find a vector  $e \in E$  such that  $eH^t = s$ .

# Proposition (M., Slaughter 2023) The GE-SDP is NP-complete.

### Complexity of already known SPDs

| $SDP \ E = B_t(0) \ NP-complete^a$                          | Restricted SDP<br>$E = \{0, \pm 1\}^n$                           | Rank SDP<br>$E = B_t^R(0)$       |
|-------------------------------------------------------------|------------------------------------------------------------------|----------------------------------|
| <sup>a</sup> Berlekamp <i>et al.</i> 1978,<br>and Barg 1997 | NP-complete <sup>a</sup><br>———————————————————————————————————— | $\frac{L}{2} = \frac{D_t}{t}(0)$ |

R-SDP(G)  $E = G^n$ NP-complete<sup>a</sup>

<sup>a</sup>Baldi et al. 2023

### Complexity of already known SPDs

| ${\sf SDP} \ {\sf E}={\sf B}_t(0) \ {\sf NP-complete}^a$ | Restricted SDP<br>$E = \{0, \pm 1\}^n$<br>NP-complete <sup>a</sup> | Rank SDP<br>$E = B_t^R(0)$ | R-SDP(G) $E=G^n$ NP-complete $^a$ |
|----------------------------------------------------------|--------------------------------------------------------------------|----------------------------|-----------------------------------|
| <sup>a</sup> Berlekamp <i>et al.</i><br>and Barg 1997    | . 1978,<br>                                                        | ?                          | <sup>a</sup> Baldi et al. 2023    |

**Theorem (M., Slaughter 2023)** Let  $\mathcal{C} \subseteq \mathbb{F}_q^n$  be a code and  $E \subseteq \mathbb{F}_q^n$  an error set such that  $\overline{E}^{\triangle} \cap \mathcal{C} = \{0\}$ . Then the GE-SDP can be solved in  $\mathcal{O}(n^3)$ .

If 
$$E = \{0, \pm 1\}^n$$
, then  $\overline{E}^{\triangle} = \mathbb{F}_p^n$ . In this case,
$$\frac{k}{n} \le \frac{N-1}{N}$$

meaning that the SDP might be easy for code with low rates.

Cryptography and Post-Quantum Cryptography

Coding Theory

Generic-Error Coding Theory

Zero-Knowledge Protocols

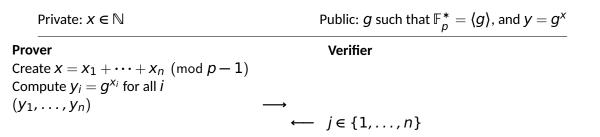
A ZKP is a method by which one party (the prover) can prove to another party (the verifier) that a given statement is true while the prover avoids conveying any additional information apart from the fact that the statement is indeed true.

A zero-knowledge proof must satisfy three properties:

- *Completeness*: an honest prover can convince a verifier.
- Soundness: a cheating prover can convince a verifier with a probability less than 1.
- Zero-Knowledge: the verifier learns nothing other than the statement's veracity.

| Private: $x \in \mathbb{N}$ | Public: $g$ such that $\mathbb{F}_{p}^{*}=\langle g angle$ , and $y=g^{x}$ |
|-----------------------------|----------------------------------------------------------------------------|
| Prover                      | Verifier                                                                   |

| Private: $x \in \mathbb{N}$                | Public: $g$ such that $\mathbb{F}_{p}^{*}=\langle g angle$ , and $y=g^{x}$ |
|--------------------------------------------|----------------------------------------------------------------------------|
| Prover                                     | Verifier                                                                   |
| Create $x = x_1 + \cdots + x_n \pmod{p-1}$ |                                                                            |
| Compute $y_i = g^{x_i}$ for all $i$        |                                                                            |
| $(y_1,\ldots,y_n)$                         | $\longrightarrow$                                                          |



| Private: $x \in \mathbb{N}$                | Public: $g$ such that $\mathbb{F}_p^*=\langle g angle$ , and $y=g^x$ |
|--------------------------------------------|----------------------------------------------------------------------|
| Prover                                     | Verifier                                                             |
| Create $x = x_1 + \cdots + x_n \pmod{p-1}$ |                                                                      |
| Compute $y_i = g^{x_i}$ for all $i$        |                                                                      |
| $(y_1,\ldots,y_n)$                         | $\longrightarrow$                                                    |
|                                            | $\leftarrow j \in \{1, \ldots, n\}$                                  |
| $(x_1,\ldots,x_n)$ except for $j$          | $\rightarrow$                                                        |

| Private: $x \in \mathbb{N}$                | Public: $g$ such that $\mathbb{F}_{ ho}^{*}=\langle g angle$ , and $y=g^{x}$    |
|--------------------------------------------|---------------------------------------------------------------------------------|
| Prover                                     | Verifier                                                                        |
| Create $x = x_1 + \cdots + x_n \pmod{p-1}$ |                                                                                 |
| Compute $y_i = g^{x_i}$ for all $i$        |                                                                                 |
| $(y_1,\ldots,y_n)$                         | $\longrightarrow$                                                               |
|                                            | $\leftarrow j \in \{1, \ldots, n\}$                                             |
| $(x_1,\ldots,x_n)$ except for $j$          | $\longrightarrow$                                                               |
|                                            | Checks $m{y}_i = m{g}^{m{x}_i}$ for $i  eq j$ and $\prod_{i=1}^n m{y}_i = m{y}$ |

| Private: $x \in \mathbb{N}$                                                      | Public: $g$ such that $\mathbb{F}_{p}^{*}=\langle g angle$ , and $y=g^{x}$          |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Prover                                                                           | Verifier                                                                            |
| Create $x = x_1 + \dots + x_n \pmod{p-1}$<br>Compute $y_i = g^{x_i}$ for all $i$ |                                                                                     |
| $(y_1,\ldots,y_n)$                                                               | $\stackrel{\longrightarrow}{\longleftarrow} j \in \{1, \dots, n\}$                  |
| $(x_1,\ldots,x_n)$ except for $j$                                                | $\longrightarrow$ Checks $y_i = g^{x_i}$ for $i \neq j$ and $\prod_{i=1}^n y_i = y$ |
|                                                                                  |                                                                                     |



Figure: Prover - Jess



Figure: Verifier - Felice

### GE-CVE - a ZKP based on GE-SDP (M., Slaughter 2023)

Public data:  $q, n, k \in \mathbb{N}, E \subset \mathbb{F}_q^n, H \in \mathbb{F}_q^{(n-k) \times n}$ 

Private Key:  $e \in E$ 

Public Key:  $s = eH^t \in \mathbb{F}_a^{n-k}$ 

| PROVER                                                                 |                                                                                   | VERIFIER                                       |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------|
| $u \leftrightarrow \mathbb{F}_{q'}^n M \leftrightarrow \mathfrak{S}_E$ |                                                                                   |                                                |
| Set $C_0 = \text{Hash}(M, uH^t)$                                       |                                                                                   |                                                |
| $Set c_1 = Hash(\mathit{uM}, \mathit{eM})$                             | $\xrightarrow{(c_0, c_1)}$                                                        |                                                |
|                                                                        | <i>∠</i>                                                                          | $Z \leftarrow \mathbb{F}_q^*$                  |
| Set $y = (u + ze)M$                                                    | $\xrightarrow{ y }$                                                               |                                                |
|                                                                        | , b                                                                               | Choose $b \in \{0, 1\}$                        |
| If $b = 0$ , set $f := M$                                              |                                                                                   |                                                |
| If $b = 1$ , set $f := eM$                                             | $\stackrel{f}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!$ |                                                |
|                                                                        |                                                                                   | If $b = 0$ , accept if                         |
|                                                                        |                                                                                   | $c_0 = \text{Hash}(f, (yf^{-1})H^t - zs).$     |
|                                                                        |                                                                                   | If $b = 1$ , accept if                         |
|                                                                        |                                                                                   | $f \in E$ and $c_1 = \text{Hash}(y - zf, f)$ . |

3

<sup>3</sup>Adaptation of CVE by Cayrel, Veron, El Yousfi Alaoui 2010

This is genuinely a zero-knowledge identification scheme:

- Completeness: an honest prover can convince a verifier.
- Soundness: a cheating prover can convince a verifier with only a small probability  $\left(\frac{q}{2(a-1)}\right)$ .
- Zero-Knowledge: the verifier learns nothing other than the statement's veracity.

### Future for GE-SDP

We plan on submitting on June 1, 2023 a digital signature scheme based on R-SDP(G)

Universities involved:

- Clemson University
- Università Politecnica delle Marche
- Politecnico di Milano
- Technical University of Munich



### Future for GE-SDP

We plan on submitting on June 1, 2023 a digital signature scheme based on R-SDP(G)

Universities involved:

- Clemson University
- Università Politecnica delle Marche
- Politecnico di Milano
- Technical University of Munich



### Thank you.