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Abstract

William Kingdon Clifford’s FTA proof (i.e. a real polynomial factors into linear and quadratic terms) appearing only as an abstract
has been overlooked among all FTA proofs as the only one accessible to college algebra students. We provide a manuscript for his
abstract showing the quadratic factorization of even polynomials in quartic, sextic, octic, and decic cases; so, by extension any even
degree polynomial. All that is needed from college algebra is 1. simple determinant evaluation and manipulation used to 2. eliminate a
variable, say x, from two polynomial equations that leads directly to ”Professor Sylvester’s Dialytic Method’s” determinant, 3. quadratic
synthetic division, and 4. the intermediate value theorem. Forget geometry, inequalities, square roots, imaginaries, calculus, discriminants,
symmetric functions, greatest common divisors, splitting fields, etc.

1 Clifford’s Abstract [3]

PROOF THAT EVERY RATIONAL EQUATION HAS A ROOT ∗

(Abstract)
The proof contained in the present communication depends on the determination of a quadratic factor of the rational integral expression

x2s + a1x
2s−1 + a2x

2s−2 + · · · + a2s

On dividing this expression by x2 + p1x + p2, we obtain by the ordinary rules a remainder of the form M2s−1x + N2s where M2s−1 and
N2s are functions of p1 and p2 whose weights are 2s− 1 and 2s respectively, and which may accordingly be written in the forms

M2s−1 = b2s−1 + p2b2s−3 + · · · · · · + ps−1
2 b1,

N2s = c2s + p2c2s−2 + · · · · · · + ps2,

where the b, c are an order in p1 indicated by their suffixes. On writing down (by Professor Sylvester’s Dialytic method) the result of
eliminating p2 between these equations, it is at once apparent that the resultant is of the order s(2s− 1) in p1. Thus the determination
of a quadratic factor of an expression is reduced to the solution of an equation of order s(2s− 1). But this degree is one more degree odd
than the original number 2s; that is to say, if the degree 2s is 2k multiplied by an odd number, then s(2s− 1) is 2k−1 multiplied by an
odd number. Hence by a repetition of this process we shall ultimately arrive at an equation of odd order, which, as is well known, must
have a real root. By then retracing our steps the existence of a quadratic factor of the original expression is demonstrated.

∗ [From Cambridge Philosophical Society Proceedings, II. 1876. Read Feb. 21, 1870,pp.156,157.]

2 Introduction

Today there are more than 200 proofs of the FTA. Piotr Blaszczcyk [2] cites two bibliographies, one [10] with nearly 100 proofs
up to 1907 and a second [9] with 97 between 1933 and 2009. What about the gap between 1907 and 1933? Wikipedia FTA
cites many proofs, some beyond 2009. Even though Clifford’s proof is cited in [10], no FTA paper cites it or recognizes its
elementary mathematics; so the belief that the proof of the FTA requires graduate mathematics is perpetuated.

When Clifford uses the term resultant, it means Sylvester determinant which evaluates as a polynomial. He doesn’t exhibit one
but according to [3] he acknowledged a similar FTA proof [8] that does. His sentence On writing down (by Professor Sylvester’s
Dialytic method) the result of eliminating p2 between these equations, it is at once apparent that the resultant is of the order
s(2s−1) in p1 implies Clifford is saying “trust my spade work using these concepts; otherwise, since I’ve given you their names,
go verify them for yourself”. That is what this paper does and more; namely, also eliminating p1 between these equations, it
is at once apparent that the resultant is of the order s(2s − 1) in p2. The two eliminations are not equivalent. Clifford’s can
be less than s(2s− 1) when p1 = 0 while p2 can’t equal 0 and be a quadratic. Thus the determination of a quadratic factor of
an expression is reduced to the solution of an equation of order s(2s− 1).

Clifford’s observation of increasing polynomial degree to arrive at an odd degree also appears in Gauss’s (1815) second of four
proofs [6] and [11], praised as ingenious and entirely algebraic. We find it incomplete and unclear. It’s a mystery how to
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interpret Gauss’s treatment of polynomial discriminants, symmetric functions, and the greatest common denominator of an
even polynomial and its derivative to find the number of factors, 6 and 15 for the simplest case of a quartic. Somehow the
discriminant of a quartic leads to sixth degree polynomial which in turn’s discriminant leads to a fifteenth degree polynomial
whose factors all have non-zero discriminants. Contrast this to Clifford’s most difficult concept of a Sylvester determinant
using properties of determinants from a text such as Smith, K., Boyle, P. ”College Algebra”, ed. 4, Brooks/Cole, Pacific Grove,
CA, (1989) 340-351 where coincidently, Clifford is featured on page 58 in a historical note. To aid in understanding our paper,
first master the simplest case, a quartic. Gauss is credited for the term FTA.

3 Eliminating x from Two Polynomial Equations yields a Sylvester Determi-
nant [4], [7]

3.1 Elimination of x from two linear equations

a0x + a1 = 0 (1)
b0x + b1 = 0 (2)

If the same value of x satisfies (1) and (2), then substituting x from (2) into (1) gives

a0(−b1/b0) + a1 = 0 or equivalently

∣∣∣∣ a0 a1
b0 b1

∣∣∣∣ = 0

Thus the two equations have a common root if the determinant is zero, and conversely [4]. The determinant is known as a
Sylvester determinant and its zero condition is the elimination of x ( via subtraction rather than substitution):

Multiply (2) by a0/b0 and subtract it from (1) getting

a1 − a0b1/b0 = 0 or equivalently∣∣∣∣ a0 a1
b0 b1

∣∣∣∣ = 0

3.2 Elimination of x from a quadratic equation and a linear equation

a0x
2 + a1x + a2 = 0 (3)

b0x + b1 = 0 (4)

Multiply (4) by a0/b0x and subtract it from (3) getting

(a1 − a0b1/b0)x + a2 = 0

which when combined with (4) is two linear equations:

(a1 − a0b1/b0)x + a2 = 0
b0x + b1 = 0

Apply Sylvester’s determinant for two linear equations to get∣∣∣∣ a1 − a0b1/b0 a2
b0 b1

∣∣∣∣ = 0

∣∣∣∣∣∣
a0 a1 a2
b0 b1 0
0 b0 b1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 a1 − a0b1/b0 a2
b0 b1 0
0 b0 b1

∣∣∣∣∣∣ = b0

∣∣∣∣ a1 − a0b1/b0 a2
b0 b1

∣∣∣∣
The Sylvester determinant for this case is the first one of three above. The second comes from the first by the determinant
rule multiplying a row by a constant and adding or subtracting it to another row leaves the determinant unchanged. The third
determinant comes from the second by determinant evaluation. It’s the same as the top determinant because b0 is not zero.
This proves the Sylvester determinant is zero. This explanation applies to subsequent eliminations.

Because this case was reduced to the two linear equations case, it means that the quadratic equation and linear equation have
a common root if and only if its Sylvester determinant is zero thereby propagating the common root property of zero Sylvester
determinants to subsequent cases.
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3.3 Elimination of x from two quadratic equations

a0x
2 + a1x + a2 = 0 (5)

b0x
2 + b1x + b2 = 0 (6)

Multiply (6) by a0/b0 and subtract it from (5) getting

(a1 − a0b1/b0)x + a2 − a0b2/b0 = 0

which when combined with (6) is a quadratic equation and a linear equation:

b0x
2 + b1x + b2 = 0

(a1 − a0b1/b0)x + a2 − a0b2/b0 = 0

Apply Sylvester’s determinant for a quadratic equation and a linear equation to get∣∣∣∣∣∣
b0 b1 b2

a1− a0b1/b0 a2− a0b2/b0 0
0 a1− a0b1/b0 a2− a0b2/b0

∣∣∣∣∣∣ = 0

∣∣∣∣∣∣∣∣
a0 a1 a2 0
0 a0 a1 a2
b0 b1 b2 0
0 b0 b1 b2

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣

0 a1 − a0b1/b0 a2−a0b2/b0 0
0 0 a1−a0b1/b0 a2− a0b2/b0
b0 b1 b2 0
0 b0 b1 b2

∣∣∣∣∣∣∣∣= b0

∣∣∣∣∣∣
a1− a0b1/b0 a2− a0b2/b0 0

0 a1− a0b1/b0 a2− a0b2/b0
b0 b1 b2

∣∣∣∣∣∣
3.4 Elimination of x from a cubic equation and a linear equation

a0x
3 + a1x

2 + a2x + a3 = 0 (7)
b0x + b1 = 0 (8)

Multiply (8) by a0/b0x
2 and subtract it from (7) getting

(a1 − a0b1/b0)x2 + a2x + a3 = 0

which when combined with (8) is a quadratic equation and a linear equation:

(a1 − a0b1/b0)x2 + a2x + a3 = 0
b0x + b1 = 0

Apply Sylvester’s determinant for a quadratic equation and a linear equation to get∣∣∣∣∣∣
a1− a0b1/b0 a2 a3

b0 b1 0
0 b0 b1

∣∣∣∣∣∣ = 0

∣∣∣∣∣∣∣∣
a0 a1 a2 a3
b0 b1 0 0
0 b0 b1 0
0 0 b0 b1

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣
0 a1− a0b1/b0 a2 a3
b0 b1 0 0
0 b0 b1 0
0 0 b0 b1

∣∣∣∣∣∣∣∣= b0

∣∣∣∣∣∣
a1− a0b1/b0 a2 a3

b1 b0 0
0 b0 b1

∣∣∣∣∣∣
3.5 Elimination of x from a cubic equation and a quadratic equation

a0x
3 + a1x

2 + a2x + a3 = 0 (9)
b0x

2 + b1x + b2 = 0 (10)

Multiply (10) by a0/b0x and subtract it from (9) getting

(a1 − a0b1/b0)x2 + (a2 − a0b2/b0)x + a3 − a0b3/b0 = 0

which when combined with (10) is two quadratic equations:

(a1 − a0b1/b0)x2 + (a2 − a0b2/b0)x + a3 = 0
b0x

2 + b1x + b2 = 0
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Apply Sylvester’s determinant for two quadratic equations to get∣∣∣∣∣∣∣∣
a1− a0b1/b0 a2− a0b2/b0 a3 0

0 a1− a0b1/b0 a2− a0b2/b0 a3
b0 b1 b2 0
0 b0 b1 b2

∣∣∣∣∣∣∣∣ = 0

∣∣∣∣∣∣∣∣∣∣
a0 a1 a2 a3 0
0 a0 a1 a2 a3
b0 b1 b2 0 0
0 b0 b1 b2 0
0 0 b0 b1 b2

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
0 a1 − a0b1/b0 a2 − a0b2/b0 a3 0
0 0 a1 − a0b1/b0 a2 − a0b2/b0 a3
b0 b1 b2 0 0
0 b0 b1 b2 0
0 0 b0 b1 b2

∣∣∣∣∣∣∣∣∣∣
=

b0

∣∣∣∣∣∣∣∣
a1− a0b1/b0 a2− a0b2/b0 a3 0

0 a1− a0b1/b0 a2− a0b2/b0 a3
b0 b1 b2 0
0 b0 b1 b2

∣∣∣∣∣∣∣∣
3.6 Elimination of x from two cubic equations

a0x
3 + a1x

2 + a2x + a3 = 0 (11)
b0x

3 + b2x
2 + b1x + b0 = 0 (12)

Multiply (12) by a0/b0 and subtract it from (11) getting

(a1 − a0b1/b0)x2 + (a2 − a0b2/b0)x + a3 − a0b3/b0 = 0

which when combined with (12) is a cubic equation and a quadratic equation:

b0x
3 + b1x

2 + b2x + b3 = 0
(a1 − a0b1/b0)x2 + (a2 − a0b2/b0)x + a3 − a0b3/b0 = 0

Apply Sylvester’s determinant for a cubic equation and a quadratic equation getting∣∣∣∣∣∣∣∣∣∣
a1− a0b1/b0 a2− a0b2/b0 a3 − a0b3/b0 0 0

0 a1− a0b1/b0 a2− a0b2/b0 a3 − a0b3/b0 0
0 0 a1− a0b1/b0 a2− a0b2/b0 a3 − a0b3/b0
b0 b1 b2 b3 0
0 b0 b1 b2 b3

∣∣∣∣∣∣∣∣∣∣
= 0

∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 a3 0 0
0 a0 a1 a2 a3 0
0 0 a0 a1 a2 a3
b0 b1 b2 b3 0 0
0 b0 b1 b2 b3 0
0 0 b0 b1 b2 b3

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

0 a1 − a0b1/b0 a2 − a0b2/b0 a3 − a0b3/b0 0 0
0 0 a1 − a0b1/b0 a2 − a0b2/b0 a3 − a0b3/b0 0
0 0 0 a1 − a0b1/b0 a2 − a0b2/b0 a3 − a0b3/b0
b0 b1 b2 b3 0 0
0 b0 b1 b2 b3 0
0 0 b0 b1 b2 b3

∣∣∣∣∣∣∣∣∣∣∣∣
=

b0

∣∣∣∣∣∣∣∣∣∣
a1 − a0b1/b0 a2 − a0b2/b0 a3 − a0b3/b0 0 0

0 a1 − a0b1/b0 a2 − a0b2/b0 a3 − a0b3/b0 0
0 0 a1 − a0b1/b0 a2 − a0b2/b0 a3 − a0b3/b0
b0 b1 b2 b3 0
0 b0 b1 b2 b3

∣∣∣∣∣∣∣∣∣∣
4 Definition of Sylvester Determinant

p(x) = a0x
m + a1x

m−1 + · · ·+ am
q(x) = b0x

n + b1x
n−1 + · · ·+ bn

The pattern from the examples shows that a Sylvester determinant has the number of shifted rows of the coefficients of the
polynomial of minimum degree is the degree of the polynomial of maximum degree plus the number of shifted rows of the
coefficients of the polynomial of maximum degree is the degree of the polynomial of minimum degree. Equivalently, a Sylvester’s
determinant has m+ n rows where min(m,n) is the number rows of shifted coefficients of the polynomial of degree max(m,n)
and the remaining rows are the shifted coefficients of the other polynomial. As stated above, a zero Sylvester determinant is
the condition for a common root and is said to be the elimination of x from the two equations.
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5 Quadratic Synthetic Division

We synthetically divide [1] a quartic, sextic, octic, and decic by the quadratic x2−ax−b getting remainder M(a, b)x+N(a, b) = 0.
Our −a and −b are Clifford’s p1 and p2. Like Clifford, we eliminate b getting a determinant in a at each step but also eliminate
a getting a determinant in b at each step. When studying expressions and equations, make sure dimensions are consistent. For
example, in our quadratic divisor x2−ax−b, a has dimension 1 and b dimension 2 and the coefficients 1,A,B,C,D of our quartic
have dimensions 0,1,2,3,4, respectively. Note that the determinant in b, is treated as if b is a single variable of degree 1 but of
dimension 2. Thus in expressions involving b, b’s dimension must be 2. For example, in the expression below for the elimination
of b in the quartic case: p(b) = (2a+A)b+ a3 +Aa2 +Ba+C each term has dimension 3 and q(b) = b2 + (a2 +Aa+B)b+D
has dimension 4.

The following tableaux below show quadratic synthetic division for quartic, sextic, octic, and decic expressions.

5.1 Quartic: (x4 + Ax3 +Bx2 + Cx+D)÷ (x2 − ax− b), D > 0

x4 x3 x2 x1 x0

1 A B C D
a aT1 aT2 aT3 aT4 = 0
b bT1 bT2 bT3

total 1 A + aT1 B + aT2 +bT1 C + aT3 + bT2 = 0 D + aT4 + bT3 = 0
= T1 = T2 = T3 = T4 = T5

If quadratic synthetic division seems puzzling, consider the following identity:

(T1x2 + T2x1 + T3x0 + T4x−1 + T5x−2)(x2 − ax− b) =

T1x4 +T2x3 +T3x2 +T4x1 +T5x0

−aT1x3 −aT2x2 −aT3x1 −aT4x0 −aT5x−1

−bT1x2 −bT2x1 −bT3x0 −bT4x−1 −bT5x−2 =
x4 +Ax3 +Bx2 +Cx1 Dx0 −(aT5 + bT4)x−1 −bT5x−2

The last line shows that the quadratic (x2 − ax − b) is a factor of the quartic if and only if T4=T5=0 verifying the tableau
quadratic synthetic division calculations. A similar result follows for the sextic, octic, and decic cases.

5.2 Sextic: (x6 + Ax5 +Bx4 + Cx3 +Dx2 + Ex+ F )÷ (x2 − ax− b), F > 0

The tableau below only gives the last two columns as its first five are exactly those of a quartic multiplied by x2 divided by a
quadratic; hence, one only needs to prefix the tableau below with the quartic tableau adjusted so its powers run from x6 to x2

and none of quartic total terms are set to zero.

x1 x0

E F
a aT5 aT6 = 0
b bT4 bT5

total E + aT5 + bT4 = 0 F + aT6 + bT5 = 0
= T6 = T7

5.3 Octic: (x8 + Ax7 +Bx6 + Cx5 +Dx4 + Ex3 + Fx2 +Gx+H)÷ (x2 − ax− b), H > 0

The tableau below give only the last two columns as its first seven are exactly those of a sextic multiplied by x2 divided by a
quadratic; hence, one only needs to prefix the tableau with the full sextic tableau adjusted so its powers run from x8 to x2 and
none of the sextic total terms are set to zero.

x1 x0

G H
a aT7 aT8 = 0
b bT6 bT7

total G + aT7 + bT6 = 0 H + aT8 + bT7 = 0
= T8 = T9
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5.4 Decic: (x10 + Ax9 +Bx8 + Cx7 +Dx6 + Ex5 + Fx4 +Gx3 +Hx2 + Ix+ J)

÷(x2 − ax− b), J > 0

The tableau below give only the last two columns as its first nine are exactly those of an octic multiplied by x2 divided by a
quadratic; hence, one only needs to prefix the tableau with the full octic tableau adjusted so its powers run from x10 to x2 and
none of the octic total terms are set to zero.

x1 x0

I J
a aT9 aT10 = 0
b bT8 bT9

total I + aT9 + bT8 = 0 J + aT10 + bT9 = 0
= T10 = T11

6 Sylvester Determinants

The Sylvester determinants below were computed from open source software wxMaxima, a Graphic User Interface to Maxima
5.44.0 derived from Massachusetts Institute Technology’s computer algebra system Macsyma. Specifically, we applied wxMax-
ima functions: matrix, determinant, expand, ratsimp, factor, solve. The degree of a Sylvester determinant can be reduced from
m + n to max(m,n) using the row rule for determinants. This was done in the octic and decic cases of eliminating a because
wxMaxima became overtaxed when the degree of a exceeded 9.

6.1 Quartic Determinants

6.1.1 Elimination of b

p(b) = T4 = (2a + A)b + a3 + Aa2 + Ba + C = 0 (m = 1)
q(b) = D + bT3 = b2 + (a2 + Aa + B)b + D = 0 (n = 2)

b2 b1 b0∣∣∣∣∣∣
1 a2 + Aa + B D
2a + A a3 + Aa2 + Ba + C 0
0 2a + A a3 + Aa2 + Ba + C

∣∣∣∣∣∣ =

a6 + 3Aa5 + (3A2 + 2B)a4 + (A3 + 4AB)a3 + (2A2B + AC + B2 − 4D)a2 + A(AC + B2 − 4D)a + A(BC −AD)− C2 = 0

6.1.2 Elimination of a

p(a) = T4 = a3 + Aa2 + a(2b + B) + Ab + C = 0 (m = 3)
q(a) = D + bT3 = ba2 + Aba + b2 + Bb + D = 0 (n = 2)

a4 a3 a2 a1 a0∣∣∣∣∣∣∣∣∣∣
1 A 2b + B Ab + C 0
0 1 A 2b + B Ab + C
b Ab b2 + Bb + D 0 0
0 b Ab b2 + Bb + D 0
0 0 b Ab b2 + Bb + D

∣∣∣∣∣∣∣∣∣∣
=

b6 + Bb5 + (AC −D)b4 + ((A2 − 2B)D + C2)b3 + (AC −D)Db2 + BD2b + D3 = 0

6.2 Sextic Determinants

6.2.1 Elimination of b

p(b) = T6 = (3a + A)b2 + (4a3 + 3Aa2 + 2Ba + C)b + a5 + Aa4 + Ba3 + Ca2 + Da + E = 0 (m = 2)
q(b) = F + bT5 = b3 + (3a2 + 2Aa + B)b2 + (a4 + Aa3 + Ba2 + Ca + D)b + F = 0 (n = 3)

6



b4 b3 b2 b1 b0∣∣∣∣∣∣∣∣∣∣
1 3a2+2Aa+B a4+Aa3+Ba2+Ca+D F 0
0 1 3a2+2Aa+B a4+Aa3+Ba2+Ca+D F
3a+A 4a3+3Aa2+2Ba+C a5+Aa4+Ba3+Ca2+Da+E 0 0
0 3a+A 4a3+3Aa2+2Ba+C a5+Aa4+Ba3+Ca2+Da+E 0
0 0 3a+A 4a3+3Aa2+2Ba+C a5+Aa4+Ba3+Ca2+Da+E

∣∣∣∣∣∣∣∣∣∣
=

a15 + 5a14 + (10A2 + 4B)a13 + (10A3 + 16AB + 2C)a12+
(5A4 + 24A2B + 9AC − 2D)a11 + (A5 + 16A3B + 18AB2 + (15A2 + 6B)C − 4AD − 10E)a10 + · · ·

+(−27AF 2 + (−4AB2 − 9A2BC + 3AC2 + (7A3 + 18AB)D2 + 21AE2)F − (4A3 + 9AB − 6C)E2+
((AB2C + A2C2 + 3(A2B − C)E − 4AD3 − (AB2 −A2C)D2 − 2(ABC2 − C3))a2+
(−A2F 2 + (4A3 + 6AB − 9C)E + (4A2B + 3AC)D − (A2 − 3B)C2 − 4AB2C)F+

(−4AB2 − 4AC + B2 − 3D)E2 + (−ABC2 + 2AD2 + C3 −BCD)E + A2D3 + (−ABC + C2)D2)a−
A3F 2+((2A2B−3AC)E+A2CD−ABC2+C3)F−E3+(−AB2+2AD+BC)E2−(A2D2+(C2−ABC)D)E = 0

6.2.2 Elimination of a

p(a) = T6 = a5 + Aa4 + (4b + B)a3 + (3Ab + C)a2 + (3b2 + 2Bb + D)a + Ab2 + Cb + E = 0 (m = 5)
q(a) = F + bT5 = ba4 + Aba3 + (3b2 + Bb)a2 + (2Ab2 + Cb)a + b3 + Bb2 + Db + F = 0 (n = 4)

a8a7 a6 a5 a4 a3 a2 a1 a0∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 A 4b+B 3Ab+C 3b2+2Bb+D Ab2+Cb+E 0 0 0
0 1 A 4b+B 3Ab+C 3b2+2Bb+D Ab2+Cb+E 0 0
0 0 1 A 4b+B 3Ab+C 3b2+2Bb+D Ab2+Cb+E 0
0 0 0 1 A 4b+B 3Ab+C 3b2+2Bb+D Ab2+Cb+E
b Ab 3b2+Bb 2Ab2+Cb b3+Bb2+Db+F 0 0 0 0
0 b Ab 3b2+Bb 2Ab2+Cb b3+Bb2+Db+F 0 0 0
0 0 b Ab 3b2+Bb 2Ab2+Cb b3+Bb2+Db+F 0 0
0 0 0 b Ab 3b2+Bb 2Ab2+Cb b3+Bb2+Db+F 0
0 0 0 0 b Ab 3b2+Bb 2Ab2+Cb b3+Bb2+Db+F

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

b15 + Bb14 + (AC −D)b13 + (F −AE + (A2 − 2B)D + C2)b12+
((2B −A2)F + (C − 3AB + A3)E −D2 + ACD)b11 + · · ·

+(2(A2 −B)F 3 + ((3C − 2AB)E + 2D2 + (B2 − 2AC)D)F 2 + (AC − 4D)E2F + E4)b5+
((2D + AC −B2)F 3 + ((BC − 3AD)E − E2)F 2 + AE3F )b4+

(F 4 − (AE + 2BD − C3)F 3 + BE2F 2)b3 + (CEF 3 −BF 4)b2 + DF 4b + F 5 = 0

This proves that a quartic factors since it depends on factoring a sextic which factors because its Sylvester determinant has
odd degree 15.

6.3 Octic Determinants

6.3.1 Elimination of b

p(b)=T8= (4a+A)b3+(10a3+6Aa2+3Ba+C)b2+(6a5+5Aa4+4Ba3+3Ca2+2Da+E)b +
a7+Aa6+Ba5+Ca4 + Da3+Ea2+Fa+G=0 (m = 3)

q(b)=H+bT7= b4+(6a2+3Aa+B)b3+(5a4+4Aa3+3Ba2+2Ca+D)b2 +
(a6+Aa5+Ba4+Ca3+Da2+Ea+F )b+H=0 (n = 4)

b6 b5 b4 b3∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 6a2+3Aa+B 5a4+4Aa3+3Ba2+2Ca + D a6+Aa5+Ba4+Ca3+D2+Ea+F
0 1 6a2+3Aa+B 5a4+4Aa3+3Ba2+2Ca + D
0 0 1 6a2+3Aa+B
4a+A 10a3+6Aa2+3Ba+C 6a5+5Aa4+Ba3+Ca2+Da+E a7+Aa6+Ba5+Ca4+Da3+Ea2+Fa+G
0 4a+A 10a3+6Aa2+3Ba+C 6a5+5Aa4+Ba3+Ca2+Da+E
0 0 4a+A 10a3+6Aa2+3Ba+C
0 0 0 4a+A
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b2 b1 b0

H 0 0
a6+Aa5+Ba4+...+Ea+F H 0
5a4+4Aa3+3Ba2+2C+D a6+Aa5+Ba4+Ca3+D2+Ea+F H
0 0 0
a7+Aa6+Ba5+...+Ea2+Fa+G 0 0
6a5+5Aa4+Ba3+Ca2+Da+E a7+Aa6+Ba5+...+Ea2+Fa+G 0
10a3+6Aa2+3Ba+C 6a5+5Aa4+Ba3+Ca2+Da+E a7+Aa6+Ba5+...+Ea2+Fa+G

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

a28 + 7Aa27 + (21A2 + 6B)a26 + (35A2 + 36AB + 4C)a25 + (35A4 + 90A2B + 15B2 + 25AC)a24+
(21A5 + 120A3B + 75AB2 + (65A2 + 20B)C + 4AD − 8E)a23 + · · ·+ (...)a+

A4H3 + ((4A2C − 3A3B)G−A3CF + 2A2E2 + (−2A3D − 4AC2 + 3A2BC)E + A2C2D + C4 −ABC3)H2+
((4AE − 3A2D + 2C2 − 5ABC + 3A2B2)G2 + ((−5A2E + 3A3D + AC2 −A2BC)F + (AB − 4C)E2+

((4AC + A2B)D + 3BC2 − 3AB2)E − 2A2CD2 + (2ABC2 − 2C3)D)G + A3EF 2+
((3AC − 2A2B)E2 + (−A2CD − C3 + ABC2)E)F + E4 + (−2AD −BC + AB2)E3+

(A2D2 + (C2 −ABC)D)E2)H + G4 + (−3AF −BE + (3AB − 2C)D + B2C −AB3)G3 + (3A2F 2+
((3C −AB)E + (AC − 3A2B)D − 2BC2 + 2AB2C)F + DE2 + ((AB2 −BC)D − 2AD2)E + A2D3+

(C2 −ABC)D2)G2 + (−A3F 3 + ((2A2B − 3AC)E + A2CD + C3 −ABC2)F 2+
(−E3 + (2AD + BC −AB2)E2 + ((ABC − C2)D −A2D2)E)F )G = 0

6.3.2 Elimination of a

p(a) =T8= a7+Aa6+(6b+B)a5+(5Ab+C)a4+(10b2+4Bb+D)a3+
(6Ab2+3Cb+E)a2 + (4b3+3Bb2+2Db+F )a+Ab3+Cb2+Eb+G=0 (m = 7)

q(a) =H+bT7= ba6+Aba5+(5b2+Bb)a4+(4Ab2+Cb)a3+
(6b3+3Bb2+Db)a2+(3Ab3+2Cb2+Eb)a+b4+Bb3+Db2+Fb+H=0 (n = 6)

a12a11a10 a9 a8 a7 a6 a5∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 A 6b+B 5Ab+C 10b2+4Bb+D 6Ab2+3Cb+E 4b3+3Bb2+2Db+F Ab3+Cb2+Eb+G
0 1 A 6b+B 5Ab+C 10b2+4Bb+D 6Ab2+3Cb+E 4b3+3Bb2+2Db+F
0 0 1 A 6b+B 5Ab+C 10b2+4Bb+D 6Ab2+3Cb+E
0 0 0 1 A 6b + B 5Ab + C 10b2+4Bb+D
0 0 0 0 1 A 6b+B 5Ab+C
0 0 0 0 0 1 A 6b+B
b Ab 5b2+Bb 4Ab2+Cb 6b3+3Bb2+Db 3Ab3+2Cb2+Eb b4+Bb3+Fb+H 0
0 b Ab 5b2+Bb 4Ab2+Cb 6b3+3Bb2+Db 3Ab3+2Cb2+Eb b4+Bb3+Fb+H
0 0 b Ab 5b2+Bb 4Ab2+Cb 6b3+3Bb2+Db 3Ab3+2Cb2+Eb
0 0 0 b Ab 5b2+Bb 4Ab2+Cb 6b3+3Bb2+Db
0 0 0 0 b Ab 5b2+Bb 4Ab2+Cb
0 0 0 0 0 b Ab 5b2+Bb
0 0 0 0 0 0 b Ab

a4 a3 a2 a1 a0
0 0 0 0 0
Ab3+Cb2+Eb+G 0 0 0 0
4b3+3Bb2+2Db+F Ab3+Cb2+Eb+G 0 0 0
6Ab2+3Cb+E 4b3+3Bb2+2Db+F Ab3+Cb2+Eb+G 0 0
10b2+4Bb+D 6Ab2+3Cb+E 4b3+3Bb2+2Db+F Ab3+Cb2+Eb+G 0
5Ab+C 10b2+4Bb+D 6Ab2+3Cb+E 4b3+3Bb2+2Db+F Ab3+Cb2+Eb+G
0 0 0 0 0
0 0 0 0 0
b4+Bb3+Fb+H 0 0 0 0
3Ab3+2Cb2+Eb b4+Bb3+Fb+H 0 0 0
6b3+3Bb2+Db 3Ab3+2Cb2+Eb b4+Bb3+Fb+H 0 0
4Ab2+Cb 6b3+3Bb2+Db 3Ab3+2Cb2+Eb b4+Bb3+Fb+H 0
5b2+Bb 4Ab2+Cb 6b3+3Bb2+Db 3Ab3+2Cb2+Eb b4+Bb3+Fb+H

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

−5b4 +H −5Ab4− Gb −16b5−5Bb4+Fb2 −11Ab5−5Cb4−Eb3+Gb2 −8b6−6Bb5−4Db4−2Fb3 −2Ab6−2Cb5−2Eb4−2Gb3 0
0 −5b4+H −5Ab4− Gb −16b5−5Bb4+Fb2 −11Ab5−5Cb4−Eb3+Gb2 −8b6−6Bb5−4Db4−2Fb3 −2Ab6−2Cb5−2Eb4−2Gb3

2b3 2Ab3 7b4+2Bb3+H 5Ab4+2Cb3−Gb 4b5+3Bb4+2Db3+Fb2 Ab5+Cb4+Eb3+Gb2 0
0 2b3 2Ab3 7b4+2Bb3+H 5Ab4+2Cb3−Gb 4b5+3Bb4+2Db3+Fb2 Ab5+Cb4+Eb3+Gb2

−b2 −Ab2 −4b3−Bb2 −3Ab3−Cb2 −3b4−2Bb3−Db2+H −Ab4−Cb3−Eb2−Gb 0
0 −b2 −Ab2 −4b3−Bb2 −3Ab3−Cb2 −3b4−2Bb3−Db2+H −Ab4−Cb3−Eb2−Gb
b Ab 5b2+Bb 4Ab2+Cb 6b3+3Bb2+Db 3Ab3+2Cb2+Eb b4+Bb3+Db2+Fb+H

∣∣∣∣∣∣∣∣∣∣
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b28 + Bb27 + (AC −D)b26 + (F −AE + (A2 − 2B)D + C2)b25+
(−H + AG + (2B −A2)F + (C − 3AB + A3)E −D2 + ACD)b24+

((A2−2B)H+(−C+3AB−A3)G+(−2D+3AC+2B2−4A2B+A4)F+2E2+((A2−2B)C−2AD)E+BD2)b23+

· · ·+ (· · ·)b + (−H6 + (AG + 2BF + CE −D2)H5 + ((DE − 3CF )G−BG2)H4 + CGH3)b4+
(BH6 + (−CG− 2DF + E2)H + DG2H4)b3 + (EGH5 −DH6)b2 + FH6b + H7 = 0

6.4 Decic Determinants

6.4.1 Elimination of b

p(b)=T10= I + aT9 + bT8 = I + a(H + aT8 + bT7) + bT8 = I + aH + (a2 + b)T8 + abT7 =
(5a4 + A)b4 + (20a3+10Aa2+4Ba+C)b3+
(21a5+15Aa4+10Ba3+6Ca2+3Da+E)b2 +
(8a7 + 7a6 + 6Ba5 + 5Ca4 + 4Da3 + 3Ea2 + 2Ea2 + 2Fa + G)b+
a9+Aa8+Ba7+Ca6 + Da5+Ea4+Fa3+Ga2+ Ha + I =0 (m = 4)

q(b)=J+bT9= b5+(10a2+4Aa+B)b4+(15a4+10Aa3+6Ba2+3Ca+D)b3+
(7a6+6Aa5+5Ba4+4Ca3+3Da2+2Ea+F )b2+
a8+Aa7+Ba6+Ca5 + Da4+Ea3+Fa2+Ga+ H)b + J = 0 (n = 5)

D(a) is a degree 9 Sylvester determinant whose 9 columns may be imagined as labelled b8 · · · b0. It’s first 5 rows are the
successive coefficients of the powers of b from p(b) padded with zeros successively shifted. The remaining 4 rows are the
coefficients of the powers of b in q(b) padded with zeros successively shifted.

6.4.2 Elimination of a

p(a) =T10= a9+Aa8+(8b+B)a7+(7Ab+C)a6+(21b2+6Bb+D)a5+
(15Ab2+5Cb+E)a4 + (20b3+10Bb2+4Db+F )a3 + (10Ab3+6Cb2+3Eb+G)a2+
(5b4+4Bb3+3Db2+2Fb+H)a + Ab4 + Cb3 + Eb2 + Gb + I=0 (m = 9)

q(a) =J+bT9= ba8+Aba7+(7b2+Bb)a6+(6Ab2+Cb)a5+
(15b3+5Bb2+Db)a4+(10Ab3+4Cb2+Eb)a3+(10b4+6Bb3+3Db2+Fb)a2+
(4Ab4 + 3Cb3 + 2Eb2 + Gb)a+ b5 + Bb4 + Db3 + Fb2 + Hb + J = 0 (n = 8)

D(b) is a degree 17 Sylvester determinant whose 17 columns may be imagined as labelled a16 · · · a0. It’s first 8 rows are the
successive coefficients of the powers of a from p(a) padded with zeros successively shifted. The remaining 9 rows are the
coefficients of the powers of a in q(a) padded with zeros successively shifted.

7 Clifford’s Determinant Process

The key to understanding Clifford’s process is what one more degree odd means in his abstract which is here edited for
clarity with Clifford’s s replaced by n. “Thus the determination of a quadratic factor of an expression of degree 2n is reduced
to the solution of an equation of order n(2n− 1) (via Professor Sylvester’s Dialytic method)[sic]. But this number is one more
degree odd than the original number; that, is to say, if the number 2n is 2k multiplied by an odd number, say o, so 2n = 2ko,
then n(2n − 1) = 1

22ko(2ko − 1) = 2k−1o(2ko − 1)) = 2k−1 multiplied by an odd number (= o(2ko − 1))”; so a step of the
process moves from an equation of degree 2ko to one of degree 2k−1o(2ko − 1). This shows two things: both the degree and
odd number increase. The phrase one more degree odd means the number of odd factors has increased by one. Indeed, the
process stops in k steps at the final determinant of odd degree of k odd factors.

The following two tables of D(b)’s degrees help to see the process steps.

k 2k1 2k3 2k5 2k7 2k9 2k11 2k13
1 2→ 1 6→ 15 10→ 45 14→ 91 18→ 153 22→ 231 26→ 235
2 4→ 6 12→ 66 20→ 190 28→ 378 36→ 630 44→ 7946 52
3 8→ 28 24→ 276 40→ 780 56 72 88 104
4 16→ 120 48→ 1128 80 112 144 178 208
5 32→ 496 64 160 224 288 356 416

4→ 6→ 15
6→ 15
8→ 28→ 378→ 71253
10→ 45
12→ 66→ 2145
14→ 91
16→ 120→ 7140→ 25486230→ 12743115× 25486229
18→ 153
20→ 190→ 17955
22→ 231
24→ 276→ 37950→ 720082275
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8 Factoring Via Sylvester Determinants

Clifford’s FTA existence proof implies initial Sylvester determinants D(a) = 0 and D(b) = 0 have solutions giving factors but
this does not mean they will be easy to find. For example, D(b) = 0 for x8 + 1 is a cubic in a8 which does not have an obvious
algebraic solution at first inspection.

The determinants D(b)’s for the quartic, sextic, octic, and decic expressions have positive constant terms D3, F 5, H7, and J9,
respectively. This is not true for determinants D(a). For example, quartic D(a)’s constant equals zero if A = C = D = 1
and B = 2. It’s better to eliminate b than a because deg D(a) may be strictly less than deg D(b). Moreover, D(a)’s constant
maybe negative so the process stops by the intermediate value theorem. If the constant term A(BC − AD) − C2 of the
quartic Sylvester determinant is positive, the process continues. If the constant is zero, it might be that D(0) = 0; i.e. a
quadratic factor x2 − b occurs or not. For the example here, b = −1 because p(−b) = q(−b) = 0 and the quartic factors as
x4 + x3 + 2x2 + x + 1 = (x2 + 1)(x2 + x + 1). D(a) = 0 may have solutions for which D(b) 6= 0 and vice versa D(b) = 0 may
have solutions for which D(a) 6= 0. Only a and b pairs for which D(a)=D(b) = 0 simultaneously are valid.

8.1 x4 + 1⇒ A = B = C = 0, D = 1

8.1.1 Elimination of b ∣∣∣∣∣ 1 a2 1
2a a3 0
0 2a a3

∣∣∣∣∣ = −a2(a4− 4) = 0 ⇒ a=0,±
√

2

for a=
√

2 p(b)=2ab+a3=0 =2
√

2b+2
√

2⇒ b=−1 ⇒ x2−ax−b=x2−
√

2x+1

for a=−
√

2 q(b)=b2+a2b+1=0 =b2+2b+1=(b+1)2 ⇒ b=−1 ⇒ x2−ax−b=x2+
√

2x+1

x4 + 1 = (x2 −
√

2x + 1)(x2 +
√

2x + 1)

8.1.2 Elimination of a ∣∣∣∣∣∣∣∣
1 0 2b 0 0
0 1 0 2b 0
b 0 b2 + 1 0 0
0 b 0 b2 + 1 0
0 0 b 0 b2 + 1

∣∣∣∣∣∣∣∣ = b6 − b4 − b2 + 1= (b2 − 1)2(b2 + 1) = 0 ⇒ b=±1

for b=−1 p(b)=a(2b+a2) = 0 =a(−2+a2)⇒ a=0,±
√

2 ⇒ x2−ax−b=x2−
√

2x+1

for b=−1 q(b)=b2+a2b+1=0 =1−a2+1=(2−a2)⇒ a=±
√

2 ⇒ x2−ax−b=x2+
√

2x+1

x4 + 1 = (x2 −
√

2x + 1)(x2 +
√

2x + 1)

8.2 x6 + 1⇒ A = B = C = D = E = 0, F = 1

8.2.1 Elimination of b ∣∣∣∣∣∣∣∣
1 3a2 a4 1 0
0 1 3a2 a4 1
3a 4a3 a5 0 0
0 3a 4a3 a5 0
0 0 3a 4a3 a5a

∣∣∣∣∣∣∣∣ = a15 − 26a12 − 27a3= a3(a6 + 1)(a6 − 27) = 0 ⇒ a=0,±
√

3

x6 + 1 = (x2 + 1)(x2 +
√

3x + 1)(x2 −
√

3x + 1)

8.2.2 Elimination of a∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 4b 0 3b2 0 0 0 0
0 1 0 4b 0 3b2 0 0 0
0 0 1 0 4b 0 3b2 0 0
0 0 0 1 0 4b 0 3b2 0
b 0 3b2 0 b3 + 1 0 0 0 0
0 b 0 3b2 0 b3 + 1 0 0 0
0 0 b 0 3b2 0 b3 + 1 0 0
0 0 0 b 0 3b2 0 b3 + 1 0
0 0 0 0 b 0 3b2 0 b3 + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= b15+ b12−2b9− 2b6+ b3+1= 0 ⇒ b= ±1

for b=−1 p(a) = a5−4a3+3a=a((a2−1)(a2−3)=0⇒a=0,±1,±
√

3
forb =−1 q(a)=−a4+3a2+−1+1=−a2(a2−3)=0⇒a=0,±

√
3

x6 + 1 = (x2 + 1)(x2 +
√

3x + 1)(x2 −
√

3x + 1)
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8.3 x8 + 1⇒ A = B = C = D = E = F = G = 0, H = 1

8.3.1 Elimination of b∣∣∣∣∣∣∣∣∣∣∣

1 a2 5a4 a6 1 0 0
0 1 a2 5a4 a6 1 0
0 0 1 a2 5a4 a6 1
4a 10a3 6a5 a7 0 0 0
0 4a 10a3 6a5 a7 0 0
0 0 4a 10a3 6a5 a7 0
0 0 0 4a 10a3 6a5 a7

∣∣∣∣∣∣∣∣∣∣∣
== a4((a8)3 − 120(a8)2 − 2160a8 + 256) = 0 ⇒ a=0, ????

The cubic in a8 doesn’t present an easily found analytic solution, but fortunately we can find it by recognizing that

x8 + 1 = (x2)4 + 1 = (x4 +
√

2x2 + 1)(x4 −
√

2x2 + 1)]

from 8.1 and now find the factors of the quartics
x4 +

√
2x2 + 1 and x4 −

√
2x2 + 1.

To this end we see x4 ±
√

2x2 + 1⇒ A = C = 0, B = ±
√

2, D = 1

8.3.1.1 Elimination of b∣∣∣∣∣ 1 a2 ±
√

2 1

2a a3 ±
√

2a 0

0 2a a3 ±
√

2a

∣∣∣∣∣ = a2(a2±
√

2)2 − 2a2((a2±
√

2)2 − 2) = −a2(a2±
√

2)2 + 4a2 =0

⇒ a = ±
√

2±
√

2

8.3.1.2 Elimination of a∣∣∣∣∣∣∣∣
1 0 2b±

√
2 0 0

0 1 0 2b±
√

2 0

b 0 b2 ±
√

2b + 1 0 0

0 b 0 b2 ±
√

2b + 1 0

0 0 b 0 b2 ±
√

2b + 1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 0 2b±

√
2 0 0

0 1 0 2b±
√

2 0
0 0 −b2 + 1 0 0
0 0 0 −b2 + 1 0

0 0 b 0 b2 ±
√

2b + 1

∣∣∣∣∣∣∣∣ =

(−b2 + 1)2(b2 ±
√

2 + 1) = (−b2 + 1)2((b±
√

2/2)2 + 1/2) = 0

for b = −1, p(a) = a3 + a(2b±
√

2a) = 0⇒ a2 = −2±
√

2⇒ a = ±
√

(2±
√

2)

for b = −1, q(a) = ba2 + b2 ±
√

2b + 1 = 0⇒ −a2 + 1±
√

2b + 1 = 0⇒ a = ±
√

(2±
√

2)

x8 + 1 = (x2 −
√

2 +
√

2x + 1)(x2 +
√

2 +
√

2x + 1)(x2 −
√

2−
√

2x + 1)(x2 +
√

2−
√

2x + 1)

so a = ±
√

2−
√

2,±
√

2 +
√

2 and the cubic has the solution a8 = (
√

2±
√

2)8 = 4(17± 12
√

2) resulting in

y3 − 120y2 − 2160y + 256 =

(y − 4(17 + 12
√

2))(y2 − 4(13− 12
√

2)y − (1088− 768
√

2)) =

(y − 4(17− 12
√

2))(y2 − 4(13 + 12
√

2)y − (1088 + 768
√

2)) =

(y + 16)(y − 4(17 + 12
√

2))(y − 4(17− 12
√

2)) = 0.

8.3.2 Elimination of a∣∣∣∣∣∣∣∣∣∣∣∣

1, 0, 6b, 0, 10b2, 0, b3, 0, 0, 0, 0, 0, 0
0, 1, 0, 6b, 0, 10b2, 0, b3, 0, 0, 0, 0, 0

etc.
0, 0, 0, 0, 0, 1, 0, 6b, 0, 10b2, 0, b3, 0
b, 0, 5b2, 0, 6b3, 0, b4 + 1, 0, 0, 0, 0, 0, 0
0, b, 0, 5b2, 0, 6b3, 0, b4 + 1, 0, 0, 0, 0, 0

etc.
0, 0, 0, 0, 0, 0, b, 0, 5b2, 0, 6b3, 0, b4 + 1

∣∣∣∣∣∣∣∣∣∣∣∣
= b28 − b24 − 3b20 + 3b16 + 3b12 − 3b8 − b4 + 1 =0 ⇒ b = ±1

for b =−1 q(a) = a6−5a4+6a2−2 = (a2−1)(a4− 4a2+2) = 0⇒ a4− 4a2+2 = (a2−2)2−2 = 0⇒ a = ±
√

2±
√

2 for b =−1 p(a) = a7−6a5+10a3−4a =

a(a6−6a4+10a2−4) = 0 because a(a6−6a4+10a2−4)− a3(a4− 4a2+2) = −2a(a4− 4a2+2) = 0 if a 6= 0 and a = ±
√

2±
√

2. Nota bene how easy is
the solution for a in this elimination.

8.4 x10 + 1⇒ A = B = C = D = E = F = G = H = I = 0, J = 1

8.4.1 Elimination of b

p(b) = b5 + 10a2b4 + 15a5b3 + 7a6b2 + a8 + 1 = 0
q(b) = 5ab4 + 20a3b3 + 21a5b2 + 8a7b + a9 = 0∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 10a2 15a4 7a6 a8 1 0 0 0
0 1 10a2 15a4 7a6 a8 1 0 0
0 0 1 10a2 15a4 7a6 a8 1 0
0 0 0 1 10a2 15a4 7a6 a8 1
5a 20a3 21a5 8a7 a9 0 0 0 0
0 5a 20a3 21a5 8a7 a9 0 0 0
0 0 5a 20a3 21a5 8a7 a9 0 0
0 0 0 5a 20a3 21a5 8a7 a9 0
0 0 0 0 5a 20a3 21a5 8a7 a9

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
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a5(a4 − 5a2 + 5)(a4 + 3a2 + 1)(a8 + 10a4 + 25a2 + 25)(a8 − 4a6 + 6a4 + a2 + 1)(a8 + a6 + 6a4 − 4a2 + 1)(a8 + 5a6 + 10a4 + 25) = 0

⇒ (a4 − 5a2 + 5) = ((a2)2 − 5a2 + 5) = ((a2 − 5/2)2 − 25/4 + 5) = ((a2 − 5/2)2 − 5/4) =

(a2 − 5/2−
√

5/2)(a2 − 5/2 +
√

5/2) = (a±

√
5−
√

5
√

2
)(a±

√
5 +
√

5
√

2
) = 0

for a = 0, p(b) = b5 + 1 = 0⇒ b = −1, b 6= 1

8.4.2 Elimination of a

p(a) = a9 + 8a7b + 21a5b2 + 20a3b3 + 5ab4 = 0
q(a) = a8b + 7a6b2 + 15a3 + 10a2b4 + b5 + 1 = 0∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1, 0, 8b, 0, 21b2, 0, 20b3, 0, 5b40, 0, 0, 0, 0, 0, 0, 0
0, 1, 0, 8b, 0, 21b2, 0, 20b3, 0, 5b40, 0, 0, 0, 0, 0, 0
0, 0, 1, 0, 8b, 0, 21b2, 0, 20b3, 0, 5b40, 0, 0, 0, 0, 0

etc.
0, 0, 0, 0, 0, 0, 0, 1, 0, 8b, 0, 21b2, 0, 20b3, 0, 5b4, 0
b, 0, 7b2, 0, 15b3, 0, 10b4, 0, b5 + 1, 0, 0, 0, 0, 0, 0, 0, 0
0, b, 0, 7b2, 0, 15b3, 0, 10b4, 0, b5 + 1, 0, 0, 0, 0, 0, 0, 0
0, 0, b, 0, 7b2, 0, 15b3, 0, 10b4, 0, b5 + 1, 0, 0, 0, 0, 0, 0

etc.
0, 0, 0, 0, 0, 0, 0, 0, b, 0, 7b2, 0, 15b3, 0, 10b4, 0, b5 + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

14b5 + 1, 0, 70b6, 0, 90b7, 0, 25b8, 0
0, 14b5 + 1, 0, 70b6, 0, 90b7, 0, 25b8

−5b4, 0, 1− 26b5, 0,−35b4, 0,−10b7, 0
0,−5b4, 0, 1− 26b5, 0,−35b4, 0,−10b7

2b3, 0, 11b4, 0, 16b5, 0, 5b6, 0
0, 2b3, 0, 11b4, 0, 16b5, 0, 5b6

−b2, 0,−6b3, 0,−10b4, 0, 1− 4b5, 0
0,−b2, 0,−6b3, 0,−10b4, 0, 1− 4b5

∣∣∣∣∣∣∣∣∣∣∣∣
(b5 + 1) =

(b40 − 4b30 + 6b20 − 4b10 + 1)(b5 + 1) =
(b− 1)4(b + 1)4(b4 − b3 + b2 − b + 1)4(b4 + b3 + b2 + b + 1)4(b5 + 1) =

(b40 − 1)(b5 + 1) = 0

⇒ b = −1, b 6= 1

⇒ x10 + 1 = (x2 + 1)(x2 −

√
5−
√

5
√

2
x + 1)(x2 +

√
5−
√

5
√

2
x + 1)(x2 −

√
5 +
√

5
√

2
x + 1)(x2 +

√
5 +
√

5
√

2
x + 1)

See x2 + 1 is a factor of x10 + 1 = x25 + 1. Standard synthetic division given by the following tableau, shows that the complementary factor is

x24 − x23 + x22 − x21 + 1.
1 0 0 0 0 1

−1 −1 1 −1 1 −1
1 −1 1 −1 1 0

If we’d known this before hand, we could have used a quartic Sylvester determinant on powers of x2 where A = C = −1 and B = D = 1 ultimately

arriving at the full five factor expression above. No doubt this is easier because the Sylvester determinant is degree 6 rather than 45. This happened

in factoring x8 + 1 where we traded degree 6 for 28.

9 Conclusion

In [5], we find: “The cover-up (of the FTA)[sic] had continued through college, and algebra’s superstar theorem was obscure
as ever.” and “Clearly a complete proof is beyond the reach of elementary mathematics.” Algebra teachers and text books
promote the FTA as easy to state and undoubted by examples but difficult to prove. We claim these comments are false so
every college algebra student deserves at least to hear of Clifford’s (of Clifford Algebra and Circle fame) FTA Proof.
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