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1. Introduction

We consider minimization problems for a class of convex functions on H ×H, where H is a real Hilbert

space. We define and study a monotone operator on H using a convex function on H ×H, presented in

[2].

Definition 1.1.(see [2]) For each convex function f on H×H we define the operator
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Tfx := {u∈H|(u, x)∈∂f(x, u)} for each x∈H.

Fitzpatrick proved that Tf is a monotone operator (see [2] Proposition 2.2 ).

We consider next optimization problem

inf
(x,u)∈H×H

f(x, u) = f inf (1)

supposing its solution exists, i.e. we suppose that there exists at least one point (x∗, u∗) ∈ H × H for

which the solution of (1) exists. Therefore we can solve (1) by finding the zero(s) of Tfx.

2. Application

By using the above and the convexity we create a simplified algorithm for solving unconstrained convex

smooth minimization problems by reducing the number of independent variables. We present two itera-

tive procedures of one independent variable for solving convex minimization problems of two independent

variables. We show with a comparative study that the new iterative procedures solve the convex mini-

mization problems faster with the same precision than the existing procedures.

3. Comparison algorithms

We compare the results of our algorithm with the results of four other algorithms. Two of them are well-

known variants of Newton method from MATLAB Optimization Tool: FMINUNC and FMINSEARCH.

The third one is The Proximal-point algorithm presented by Bauschke and Combetts (see Theorem 23.41

from [1]). Similar algorithm is presented also by Pavel an Raykov (see [3]). The fourth one is The Regu-

larized Minimization Algorithm introduced also by Bauschke and Combetts (see Theorem 27.23 from [1]).

2



We present in short the last two algorithms and the statements of the theorems of their covergence here.

We introduce next Theorem 3.1 (Theorem 23.41 from [1]) proving the convergence of the Proximal-point

algorithm.

Theorem 3.1. ( Theorem 23.41 (Proximal-point algorithm) from [1]) Let A : H → 2H be a maximally

monotone operator such that zerA 6= ∅, let (γ)n∈N be a sequence in R++ such that Σn∈Nγ
2
n = +∞, and

let x0 ∈ H. Set (∀n ∈ N)xn+1JγnAxn Then the following hold: (i) (xn)n∈N converges weakly to a point

in zerA.

(ii) Suppose that A is uniformly monotone on every bounded subset of H. Then (xn)n∈N coverges strongly

to the unique point in zerA.

In the above theorem JγnA is the resolvent of A: JγnA = (Id+ γnA)−1. For the proof see [1].

Method of Regularization of Minimization Problems (see [1])

Let f ∈ Γ0(H) and suppose that Argmin f 6= ∅, i.e., the minimization problem min
x∈H

f(x) has at least one

solution. In order to obtain a specific minimizer, one can introduce, for every ε ∈]0, 1[, the regularized

problem min
x∈H

f(x)+ εg(x), where g ∈ Γ0(H). The objective is to choose the regularization function g

such that the last minimization problem admits a unique solution xε and such that the net (xε)ε∈]0,1[

converges to a specific point of Argmin f . We choose g=(1/2)‖·‖2(Tykhonov Regu larization framework.)

In this case the regularized is equivalent to find xε ∈ H such that 0 ∈ ∂f(xε) + εxε. If we denote by x0

the minimum norm minimizer of f , Theorem 23.44(i) ([1]) proves that xε → x0 as ε ↓ 0.

The next Theorem 3.2 (Theorem 27.23 from [1]) explores the asymptotic behavior of the curve (xε)ε∈]0,1[
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for more general choices of the regularization function g.

Theorem 3.2. (Theorem 27.23 from [1]) Let f and g be in Γ0(H). Suppose that Argmin f∩ dom g 6= ∅

and that g coercive and strictly convex. Then g admits a unique minimizer x0 over Argminf and, for

every ε ∈]0, 1[, the regularized problem min
x∈H

f(x)+εg(x) admits a unique solution xε. Moreover, following

hold:

(i) (xε) ⇀ x0 as ε ↓ 0. (ii) g(xε)→ g(x0) as ε ↓ 0 .

(iii) Suppose that g is uniformly convex on every closed ball in H. Then (xε)→ x0 as ε ↓ 0.

For the proof see [1].

4. Examples

We present now next two examples:

Example 1. Let us solve the unconstrained convex optimization problem : min fp(x, y), where

fp(x, y) = 4(x + p)2 + 4y2 − 4(x + p)y − 12y, p is a parameter of disturbances. The partial derivatives

should be equal to zero at the min fp(x, y) :

fpx(x, y) = 8(x+ p)− 4y = 0 and fpy (x, y) = 8y − 4(x+ p)− 12 = 0.

We have to find the conditions for the parameter of distubances such that to have a monotone convergence

algorithm. Because both partial derivatives should be equal to zero at the solution point, then we have

yp = 2(x+ p) and yp =
x+ p+ 3

2
(2)

They are monotone, because fp(x, y) is convex. These two lines intersect at different solution points for
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a given value of the parameter p and we use a sequence {pk} to create an iterative procedure depending

only on xpk and the parameter of disturbances pk+1 on each step. As the solution is a unique one when

p = 0 we can find sufficient conditions for the parameter of disturbances p to ensure convergence. We

create an iterative procedute for xpk+1
for finding the minimum of fp(x, y) :

xpk+1
= xpk −

9
4 (xpk + pk+1 − 1)2

9
2 (xpk + pk+1 − 1)

= xpk −
xpk + pk+1 − 1

2

To ensure convergence we have to have max ‖(xpk , ypk) − (xpk+1
, ypk+1

)‖ < εk, where the sequence {εk}

is convergent to zero, i.e. the lim infk→∞ εk = 0+, εk > 0 for every positive integer k. Because

max |xpk−xpk+1
|≤max ‖(xpk , ypk)−(xpk+1

, ypk+1
)‖<εk, means that |xpk−xpk+1

| = |xpk−1+pk+1| < 2εk.

We receive |xpk−1+pk+1| ≤ |xpk−1|+|pk+1| < 2ε1k where the sequence {ε1k} is also convergent to zero, i.e.

the lim infk→∞ ε1k = 0+, ε1k ≥ εk > 0 for every positive integer k, such that when |xpk − 1|+ |pk+1| < 2ε1k

then |xpk − 1 + pk+1| < 2εk, or 0 ≤ |pk+1| < 2ε1k − |xpk − 1|, or |xpk − 1| − 2ε1k ≤ pk+1 ≤ 2ε1k − |xpk − 1|.

From equations (2) it follows that when pk approaches 0 and xpk approaches x∗ = 1 then ypk approaches

y∗ = 2. We can simplify the iterative procedure by presenting the disturbances on each step k for any

xk ∈ {xpk} with addition a one parameter pk+1: xpk+1
= xk− xk−1

2 +pk+1. To have for any xk+1 ∈ {xpk+1
}

lim
k→∞

|xk−xk+1| → 0 pk+1 should satisfy next inequalities: −
∣∣∣xk−1

2

∣∣∣ < pk+1 <
∣∣∣xk−1

2

∣∣∣ for every xk ∈ {xpk}.

Example 2. We consider the following unconstrained convex optimization problem in which the surface

is flatter close to the solution point: min fp(x, y), where

fp(x, y) = (x+ p)6 + e(x+p) + (x+ p)2 + 2(x+ p)y + y2 + y4, p is again a parameter of disturbances.
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The partial derivatives should be equal to zero at the min fp(x, y):

fpx(x, y) = 6(x+ p)5 + e(x+p) + 2(x+ p) + 2y = 0 and fpy (x, y) = 4y3 + 2y + 2(x+ p) = 0.

Because both partial derivatives should be equal to zero at the solution point, then we have

yp = −6(x+ p)5 + e(x+p) + 2(x+ p)

2
and yp =

(6(x+ p)5 + e(x+p)

4

)1/3
(3)

These two lines intersect at different solution points for a given value of the parameter p and we use

a sequence {pk}, (|pk| ↓ 0) to create an iterative procedure depending only on xpk and the parameter

of disturbances pk+1 on each step. As the solution is a unique one when p = 0 we can find sufficient

conditions for the parameter of disturbances p to ensure convergence. We create an iterative procedute

forxpk+1
for finding the minimum of fp(x, y): Let

Apk+1
=
(

6(xpk
+pk+1)

5+e
(xpk

+pk+1)

4

)1/3
, Bpk+1

=
6(xpk

+pk+1)
5+2(xpk

+pk+1)+e
(xpk

+pk+1)

2 ,

Fpk+1
=
{
Apk+1

+Bpk+1

}2

, Gpk+1
= 2
{
Apk+1

+Bpk+1

}
, and

Hpk+1
=
{(

1
12

)[
4

6(xpk
+pk+1)5+e

(xpk
+pk+1)

]2/3
(30(xpk+pk+1)4+e(xpk

+pk+1))+0.5(30(xpk+pk+1)4+e(xpk
+pk+1)+2)

}
Then xpk+1

=xpk−
Fpk+1

Gpk+1
Hpk+1

.To ensure convergence we should have max‖(xpk , ypk)−(xpk+1
, ypk+1

)‖<εk,

where the sequence {εk} is convergent to zero, i.e. the lim infk→∞ εk = 0+, εk > 0 for every positive

integer k. Because max |xpk− xpk+1
|≤ max ‖(xpk , ypk)−(xpk+1

,ypk+1
)‖<εk, means that

|xpk−xpk+1
| = Fpk+1

|Gpk+1
|Hpk+1

< εk, since Fpk+1
≥ 0 and Hpk+1

≥ 0 for every pk+1 satisfying the convergnce

conditions. Therefore we have to restrict pk+1 such that, when |pk+1| < ε1k+1, then
Fpk

|Gpk
|Hpk

< εk. Here

{ε1k} is a decreasing sequence with positive elemets that ensures these requirements. From equations (3)
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it follows that when pk approaches 0 and xpk approaches x∗ = −0.5493 then ypk approaches y∗ = 0.4107.

We can simplify the iterative procedure by presenting the disturbances on each step k for any xk ∈

{xpk} with addition a one parameter pk+1. We use the following simplified analogical notarions: Fk =

{(
6x5

k+e
xk

4

)1/3
+

6x5
k+2xk+e

xk

2

}2

, Gk = 2
{(

6x5
k+e

xk

4

)1/3
+

6x5
k+2xk+e

xk

2

}
, and

Hk =
{(

1
12

)[
4

6x5
k+e

xk

]2/3
(30x4k + exk) + 0.5(30x4k + exk + 2)

}
. Then we receive the iterative procedure:

xpk+1
= xk − Fk

GkHk
+ pk+1. To have for any xk ∈ {xpk} and xk+1 ∈ {xpk+1

} lim
k→∞

|xk − xk+1| → 0 where

|xk − xk+1| =
∣∣∣ Fk

|Gk|Hk
− pk+1

∣∣∣, pk+1 should satisfy next inequalities:

− Fk
|Gk|Hk

< pk+1 <
Fk

|Gk|Hk

5. Numerical Results

We present in this Section a comparative study of results with our algorithm with the results from four

other algorithms for Examples considered at the end of Section 5 using MATLAB. Our results are for

both Examples with initial point (x0, y0) = (5, 5) and with precision ε = 0.000001.

Numerical Results for Example 1.

a) Ther results with our algorithm are: x = 1.0000 and y = 2.0000 for time t = 1.8896× 10−4 sec.

b) The results with FMINUNC (MATLAB) are: x = 1.0000 and y = 2.0000 for time t = 0.0089 sec.

c) The results with FMINSEARCH (MATLAB) are: x = 1.0000 and y = 2.0000 for time t = 0.0025 sec.

d) The results with Proximal-point algorithm are: x=1.0000 and y=2.0000 for time t= 2.0426×10−3 sec.

e) The results with Regularization algorithm are: x = 1.0000 and y = 2.0000 for time t = 0.0143 sec.
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These results are summarized in the next Table 1.

Table 1.

Algorithm x - results y - results time

Our Algorithm 1.0000 2.0000 1.8896 ×10−4 sec.

FMINUNC 1.0000 2.0000 0.0089 sec.

FMINSEARCH 1.0000 2.0000 0.0026 sec.

Proximal-point 1.0000 2.0000 2.0426×10−3 sec.

Regularization 1.0000 2.0000 0.0143 sec.

The advantages of our algorithm and the Proximal-point algorithm are obvious. See next Figure 1.

f(x,y) = 4x2 + 4y2 − 4xy − 12y

Figure 1.
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Numerical Results for Example 2.

We compare our results with the results with the four other algorithms next:

a) The results with our algorithm are: x = −0.5493 and y = 0.4107 for time t = 3.6133× 10−4 sec.

b) The results with FMINUNC (MATLAB) are: x = −0.5487 and y = 0.4117 for time t = 0.0110 sec.

c) The results with FMINSEARCH (MATLAB) are: x=−0.5493 and y=0.4107 for time t=0.0034 sec.

d) The resultswith Proximal-point algorithm are: x=−0.5493andy=0.4107 for time t= 3.2726×10−3 sec.

e) The results with Regularization algorithm are: x=−0.5469 and y=0.4120 for time t=0.0175 sec.

These results are summarized in the next Table 2.

Table 2.

Algorithm x - results y - results time

Our Algorithm -0.5493 0.4107 3.6133 ×10−4 sec.

FMINUNC -0.5487 0.4117 0.0110 sec.

FMINSEARCH -0.5493 0.4107 0.0034 sec.

Proximal-point -0.5493 0.4107 3.2726×10−3 sec.

Regularization -0.5469 0.4120 0.0175 sec.

Theadvantagesofouralgorithm and of the Proximal-point algorithm are clear again. SeenextFigure2.
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f(x,y) = x6 + ex + x2 + 2xy + y2 + y4

Figure 2.
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