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Abstract. We consider optimization problems for a class of convex functions on H ×H introduced

by Simon Fitzpatrick, where H is a real Hilbert space. We show that we can transform the minimization

problem for a Fitzpatrick function on H × H into a simpler minimization problem on H by using the

monotone operator created from the convex functional, introduced also by Fitzpatrick. We also present

an iterative procedure for the solution. Finally, we give a new example of a Fitzpatrick function related

to Lyapunov functions.

Keywords: Maximal monotone operator, lower semicontinuous convex maps, differential inclusions,

optimization problems.
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1 Introduction

Simon Fitzpatrick developed in [1] the representation of monotone operators on a normed space E in

terms of the subdifferentials of convex functions on E×E∗, which has led to definition of the Fitzpatrick

functions (see the Definition 3.1 in Section 3).

Seminal ideas are often triggered by amazing insights. The Fitzpatrick functions represent an example

of such idea. During the last two decades several mathematicians have published deep results considering

the Fitzpatrick functions and their properties. The functions have played pivotal roles in advancing our

understanding of maximal monotone operators and convex functions in three directions. Firstly, some

results and connections have been found between Fitzpatrick functions and other results in the theory of

monotone operators and convex analysis. Secondly, several deep results on maximal monotone operators

have recently found simpler proofs using the Fitzpatrick functions. Thirdly, as demonstrated in this

paper, the Fitzpatrick functions have interesting properties in optimization problems.

Penot [2] introduced new representations for maximal monotone operators and related them to previ-

ous representations given by Kraus, Fitzpatrick, Martinez-Legas, and Théra. He showed the usefulness of

such representations for the study of compositions and sums of maximal monotone operators, highlight-

ing the relevance of convex analysis for the study of monotonicity. Simons and Zalinescu [3] showed how

the versions of the Fenchel duality theorem due to Rockafellar and Attouch-Brezis can be applied to the

Fitzpatrick function determined by a maximal monotone multifunction to obtain a number of results on
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maximal monotonicity, including sufficient conditions for the sum of maximal monotone multifunctions

on a reflexive Banach space to be a maximal monotone, unifying several results of the Attouch-Brezis

type that have been obtained in recent years. Bartz et al. [4] studied a sequence of Fitzpatrick func-

tions associated with a monotone operator. The first term of their sequence concides with the original

Fitzparick function, and the other terms turn out to be useful for the identification and characterization

of cyclic monotonicity properties. Borwein and Dutta [5] studied maximal monotone inclusions from the

properties of gap functions. They proposed a natural gap function for an arbitrary maximal monotone

inclusion, and showed how naturally this gap function arises from the Fitzpatrick function.

In the present paper, we consider optimization problems for the Fitzpatrick functions, utilizing specific

properties such as maximal monotonicity, convexity and lower-semicontinuity. We generalize and unify

preliminary results annouced mainly without proofs at two conferences. The paper also contains new

material connecting Lyapunov functions with Fitzpatrick functions. Finally, we present new numerical

results, which introduce simplified algorithms for this type of problems. The optimization of Fitzpatrick

functions is motivated by considerations which can be best understood after presentation of the main

results, and consequently they are deferred to concluding comments at the end of the paper. Concluding

remarks present the main topics of the paper with possible future developments and applications.
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2 Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉, and let the norm of H × H be ‖(x, u)‖ :=

√
‖x‖2 + ‖u‖2, (x, u) ∈ H ×H. We assume that the convex functions are proper.

We recall that a mapping T of H into subsets of H is a monotone operator provided for each u ∈ Tx

and v ∈ Ty the following inequality holds:

〈u− v, x− y〉 ≥ 0.

If T is monotone and the graph of T is not properly contained in the graph of a monotone operator

then T is said to be maximal monotone.

We remind also the next:

A vector g ∈ H is a subgradient of a function F : H → R if for all z ∈ DomF F (z) ≥ F (x) + 〈z − x, g〉.

The set of all subgradients of F at x is called the subdifferential of F at x and denoted by ∂F (x). The

subdifferential ∂F (x) is always a closed convex set, even if F is not convex. This follows from the fact

that it is an intersection of infinite set of half spaces:

∂F (x) :=
⋂

x∈DomF
{g|F (z) ≥ F (x) + 〈z − x, g〉}.

It is well known that: if F is a proper convex lower semicntinuous function, then ∂F : H =⇒ H is a

maximal monotone operator.
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3 Minimization Problems for a Class Convex Functions on H ×

H.

In this section we consider minimization problems for a class of convex functions on H ×H. We define

and study a monotone operator on H using a convex function on H ×H, presented in [1].

Definition 3.1 For each convex function f on H ×H let

Tfx := {u ∈ H|(u, x) ∈ ∂f(x, u)}

for each x ∈ H.

Fitzpatrick proved that Tf is a monotone operator (see [1] Proposition 2.2 ).

In this section we will consider next optimization problem

inf
(x,u)∈H×H

f(x, u) = f inf (1)

supposing its solution exists, i.e. we suppose that there exists at least one point (x∗, u∗) ∈ H × H for

which the solution of (1) exists.

Theorem 3.1 Let f and Tf be as in Definition 3.1 and let function f(x, u) is defined, proper, convex,

and lower semicontinuous and Tf is maximal monotone.

Then differential inclusions

ẋ ∈ −Tf (x(t)), x(0) = x0 (2)
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and

(ẋ, u̇) ∈ −∂f(x(t), u(t)), (x(0), u(0)) = (x0, u0) (3)

have unique solutions and x(·) and (x(·), u(·)) respectively and they coincide when (x, u) ∈ G(Tf )

Proof. Because the function f is real valued, proper, lower semicontinuous, and convex on H ×H, then

∂f will be maximal monotone (see [8] Ch. 6, S. 7, Prop. 6). Since Tf is maximal monotone and ∂f is

maximal monotone there exist unique solutions of differential inclusions (2) and (3), which follows from

[8] (Ch. 6, S. 8, Theorem 1). We use the uniqueness of the solutions of (2) and (3) and the definitions of

f and Tf .

It follows then that the solutions x(.) of differential inclusion (2) and (x(.), u(.)) of differential inclusion

(3) coincide for every t ∈ [0,∞) when (x(t), u(t)) ∈ G(Tf ) where Tf satisfies Definition 3.1.

�

In the rest of the section we consider a class of differential inclusions involving the subdifferential of

the Fitzpatrick functions in which every solution of the differential inclusion can be extended up to the

solution set.

Let

Xf := {(x, u) ∈ H×H|f(x, u)=f inf}, the solution set of the optimization problem (1) and

Xfε := {(x, u) ∈ H ×H|min
(y,v)
‖(x, u)− (y, v)‖ < ε is an ε-neighborhood of Xf .
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Lemma 3.1 Consider the differential inclusion

(ẋ, u̇) ∈ (Φ(x, u)), (x(0), u(0)) = (x0, u0), t ≥ 0, (4)

where Φ : H×H =⇒ R is maximal monotone multi-valued map and therefore upper semicontinuous, and

for each (x, u) ∈ H×H, Φ(x, u) is bounded, closed, and convex set, ‖Φ(x, u)‖ = sup(w,z)∈Φ(x,u) ‖(w, z)‖ ≤

1 + ‖(x, u)‖.

Let θ(x, u) : H × H =⇒ R+ be strictly positive and bounded function 0 < δ ≤ θ(x, u) ≤ M < ∞

for which θ(x(t), u(t)) is measurable for every absolutely continuous function (x(t), u(t))|R =⇒ H ×H.

Denote τ(t) =
∫ t

0
θ(x(s), u(s))ds and t(τ) its inverse function. We consider also the following differential

inclusion:

(ż, ẇ) ∈ θ(z, w)(Φ(z, w)), (z(0), w(0)) = (x0, u0), t ≥ 0 (5)

If (x(t), u(t)) is a solution of inclusion (4) then the function (z(t), w(t)) = (x(τ(t)), u(τ(t)) almost

everywhere satisfies inclusion (5) i.e., the set of trajectories of differential inclusions (4) and (5) coincide

as curves in the phase space H ×H.

Proof. Note that, according to Deimling [9], there exists a solution of inclusion (4) if Φ maps bounded sets

into bounded sets and satisfies some additional conditions of compactness. τ(t) is absolutely continuous

function for which, under 0 < δ ≤ θ(x, u), there exists an inverse function t(τ). Let (x(t), u(t)) be a

solution of (4). The function

τ(t) =

∫ t

0

θ(x(s), u(s))ds
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is absolutely continuous, and by 0 < δ ≤ θ(x, u) ≤ M < ∞, it satisfies the Lipschitz condition with a

constant M . Almost everywhere in t, for its derivative we have

τ̇(t) = θ(x(t), u(t)) ≥ δ > 0.

Thus, the function τ(t) has an inverse function t(τ) for which

0 <
1

M
≤ ṫ(τ) =

1

θ(x(t), u(t))
≤ 1

δ
<∞.

Obviously, t(τ) is an absolutely continuous function. Now, almost everywhere in t we can write

d(x(τ(t), u(τ(t)))

dt
∈ θ(x(τ(t)), u(τ(t)))Φ(x(τ(t), u(τ(t))),

d(z(t(τ)), w(t(τ)))

dτ
∈ 1

θ(z(t(τ)), w(t(τ)))
θ(z(t(τ)), w(t(τ)))Φ(z(t(τ)), w(t(τ)))

= Φ(z(t(τ)), w(t(τ)))

Thus, the positive multiplier θ(z, w) only transforms the time. �

We prove in the next theorem that if the optimization problem (1) has a solution, and therefore the

correspondent differential inclusion (3) has a solution, then the solution of a modification of differential

inclusion (3), satisfying Lemma 3.1, can be extended to the solution set Xf of (3), respectively of (1), in

a finite time.

Recall that the metric projection of the point x in a Hilbert space H on a subset S is defined with

PrSx, i.e.

PrSx := {y ∈ S| ‖x− y‖ = min
z∈S
‖x− z‖}.
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The metric projection on a closed and convex subset of a Hilbert space exists and is unique.

We denote here by m(0, ∂f(x, u)) the metric projection of the origin onto ∂f(x, u), that is,

m(0, ∂f(x, u)) = {(v, y) ∈ H ×H|‖(0, 0)− (y, v)‖ = min
(w,z)∈∂f(x,u)

‖(0, 0)− (w, z)‖}.

We assume that 0 is not an element of the subdifferential.

We use also the notation

D(0, ∂f(x, u)) = sup
(w,z)∈∂f(x,u)

‖(0, 0)− (w, z)‖.

In what follows when x and u depend on a parameter t(time), we will abbreviate the subdifferential in

the metric projection and in the definition of D by ∂f(t).

Theorem 3.2 Let us consider again the differential inclusion

(ẋ, u̇) ∈ −∂f(x(t), u(t)), (x(0), u(0)) = (x0, u0), (3)

where ∂f(x(.), u(.)) is a maximal monotone operator. Suppose the map f is proper, convex and lower

semicontinous, and maps (x, u) to a bounded, closed and convex set. For ε > 0 and (x0, u0) /∈ Xfε let

‖m(0, ∂f(x, u))‖ ≥ β > 0, (x, u) /∈ Xfε and let

Xf := {(x, u) ∈ H ×H|f(x, u) = f inf} =

{(z, w) ∈ H ×H|(0, 0) ∈ ∂f(z, w)}.

If the differential inclusion (3) has a solution and the solutions set is bounded for t ≥ 0, then every
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solution of

(ẋ, u̇) ∈ − ∂f(x(t), u(t))

‖m(0, ∂f(t))‖2
, (x(0), u(0)) = (x0, u0) (6)

can be extended up to the set Xf in a finite time T ≤ (f(x0, u0)− f) where f is a lower bound of f(x, u)

.

Proof. The function ‖m(0, ∂f(x, u))‖2 ≥ β2 > 0 is strictly positive and lower semicontinuous. Thus,

for every absolutely continuous (x(t), u(t)) the function ‖m(0, ∂f(x(t), u(t)))‖ is lower semicontinuous.

From Lemma 3.1 the sets of trajectories of differential inclusions (3) and (6) coincide as curves in H ×

H. Let (x(t), u(t)) be a solution of differential inclusion (6) and f is a lower bound of f(x, u). The

function (f(x, u)− f) is real valued, strictly positive, proper, lower semicontinuous and convex. Suppose

f(x(t), u(t)) is differentiable a.e. One writes

(f(x(0), u(0))− f)− (f(x(t), u(t))− f)

= f(x(0), u(0))− f(x(t), u(t))

= −
∫ t

0

(f(x(q), u(q)))′qdq

∈ −
∫ t

0

〈
∂f(x(q), u(q)), (u̇(q), ẋ(q))

〉
dq

⊂
∫ t

0

〈
∂f(x(q), u(q)),

∂f(x(q), u(q))

‖m(0, ∂f(q))‖2
〉
dq

⊂ t
[
1,

(D(0, ∂f(t)))2

‖m(0, ∂f(t))‖2
]
.

For every t we have 0 < f(x(t), u(t))−f ≤ f(x(0), u(0))−f− t. Thus in time T ≤ (f(x(0), u(0))−f),
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where f is a lower bound of f(x, u), the solution (x(t), u(t)) of (6), for (x(0), u(0)) = (x0, u0), has to

reach the set Xε in time T ≤ (f(x(0), u(0))− f , because the solutions set of inclusion (3) is bounded.

�

Let us we consider the following theorem.

Theorem 3.3 Consider the optimization problem

inf
(x,u)∈H×H

f(x, u) = f inf (1)

We suppose that f is proper, convex and lower semicontinuous, ∂f is maximal monotone, and denote

by:

Xf = {(x, u) ∈ H×H|f(x, u)=f inf}, the solution set of the optimization problem (1) and

Xfε = {(x, u) ∈ H ×H|min
(y,v)
‖(x, u)− (y, v)‖ < ε is an ε-neighborhood of Xf .

Let the solution set Xf be not empty and (x0, u0) /∈ Xfε . Let ‖∂f(x, u)‖ ≥ γ > 0, (x, u) /∈ Xfε .

Then:

1. The solution set Xf of (1) coincides with the set for which origin belongs to the subdifferential

∂f(x, u),

2. For every initial position (x0, u0) ∈ H × H and every solutions (x(t), u(t)) of the differential

inclusion

(ẋ, u̇) ∈ − ∂f(x(t), u(t))

‖m(0, ∂f(t))‖2
, (6)

(x(0), u(0)) = (x0, u0),
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where m(0, ∂f(t)) the metric projection of the origin onto the multivaued function ∂f(x, u), that is,

m(0, ∂f(t)) = {(v, y) ∈ E∗ × E|‖(0, 0)− (y, v)‖ = min
(w,z)∈∂f(x(t),u(t))

‖(0, 0)− (w, z)‖},

there exists a finite moment T ≤ f(x0, u0)−f , where f is a lower bound of f(x, u), for which (x(T ), u(T ))

solves the optimization problem (1).

Proof. By the Lemma 3.1, the differential inclusions (6) and

(ẋ, u̇) ∈ −∂f(x(t), u(t)) (3)

(x(0), u(0)) = (x0, u0)

have unique solutions which coincide as curves inH×H up to the moment T when (0, 0) ∈ ∂f(x(T ), u(T )).

We are going to show that the function f(x, u) is the Lyapunov function for the differential inclusion

(6). This method is based on the Lyapunov function theory. Under the Chain rule (see [10]) for the

generalized gradientl of f(x(t), u(t)) almost everywhere in t we obtain

∂tf(x(t), u(t)) = {
〈
(η, ξ), (ẋ(t), u̇(t))

〉
|(η, ξ) ∈ ∂f(y, v), (y, v) = (x(t), u(t)).

The differential inclusion (6) is the Filipov extension of the following differential equation with possibly

discontinuous right-hand side, see [8] and [11] :

(ẋ, u̇) = − m(0, ∂f(t))

‖m(0, ∂f(t))‖2

(x(0), u(0)) = (x0, u0)
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For every (x(t), u(t)) which satisfies the above differential equation and by the properties of the metric

projection m(0, ∂f(t)) we have

max
(η,ξ)∈∂f(x(t),u(t))

〈
(η, ξ), (ẋ(t), u̇(t))

〉
= max

(η,ξ)∈∂f(x(t),u(t))

〈
(η, ξ),− m(0, ∂f(t))

‖m(0, ∂f(t))‖2
〉

= −1.

Thus, f(x, u) is the Lyapunov function for the differential inclusion (6).

We obtain that f(x(t), u(t)) is a monotone decreasing function in t at the solutions of the differential

inclusion (6).

The function ‖m(0, ∂f(x, u))‖2 ≥ γ2 > 0 is strictly positive and lower semicontinuous. Thus, for every

absolutely continuous (x(t), u(t)) the function ‖m(0, ∂f(x(t), u(t)))‖ is lower semicontinuous. Under the

Lemma 3.1 the sets of trajectories of differential inclusions (3) and (6) coincide as curves in H × H.

Let (x(t), u(t)) be a solution of differential inclusion (6) and f is a lower bound of f(x, u). The function

f(x, u)−f is real valued, strictly positive, proper, lower semicontinuous and convex. Assume f(x(t), u(t))

is differentiable a.e. One writes

(f(x(0), u(0))− f)− (f(x(t), u(t))− f)

= f(x(0), u(0))− f(x(t), u(t))

= −
∫ t

0

(f(x(q), u(q)))′qdq

∈ −
∫ t

0

〈
∂f(x(q), u(q)), (ẋ(q), u̇(q))

〉
dq

⊂
∫ t

0

〈
∂f(x(q), u(q)),

∂f(x(q), u(q))

‖m(0, ∂f(q))‖2
〉
dq
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⊂ t
[
1,

(D(0, ∂f(t)))2

‖m(0, ∂f(t))‖2
]
.

Here

D(0, ∂f(t)) = sup
(w,z)∈∂f(x(t),u(t))

‖(0, 0)− (w, z)‖.

For every t, q ∈ [0, t] we have 0 < f(x(t), u(t))−f ≤ f(x(0), u(0))−f−t. Thus in time T ≤ (f(x(0), u(0))−

f), where f is a lower bound of f(x, u), the solution (x(t), u(t)) of (6), for (x(0), u(0)) = (x0, u0), has to

reach the set Xε, because the solutions set of inclusion (3) is bounded.

Therefore according to [12] and Lemma 3.1 we can find a solution of the optimization problem (1) by

solving differential inclusion (6). �

In the following theorem we denote with m(0,ΓTf (t)) the metric projection of the origin onto the

range of the multivalued map Tf (x(t)).

Theorem 3.4 Let f and Tfx satisfy Definition 3.1 and Theorem 3.1. Consider the differential inclusion

ẋ ∈ −Tf (x(t)), x(0) = x0 , (2)

where the right-hand side is maximal monotone and maps x to a bounded, closed and convex set, x0 /∈ Xfε

and ε > 0 is arbitrary chosen. Let ‖m(0, Tf (x))‖ ≥ η > 0, x /∈ Xfε and

Xf := {(x, u) ∈ H ×H|f(x, u) = f inf} = {u ∈ Tf (x), (u, x) ∈ ∂f(x, u), |0 ∈ Tf (x)}.

If the differential inclusion (2) admits a solution and the set of these solutions is bounded for t ≥ 0, then

every solution of

ẋ ∈ − Tf (x(t))

‖m(0,ΓTf (t))‖2
, x(0) = x0,
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can be extended up to the set Xf in a finite time T ≤ f(x0, u0)− f , where u0 ∈ Tf (x0).

We omit the proof, because it is similar to the proof of Theorem 3.3.

4 Minimization Problem for a Fitzpatrick Function

Let us consider now next Fitzpatrick function.

Definition 4.1 (see [1] 3.1. Definition) Let T : H → H be a monotone operator.

LT : H ×H =⇒]−∞,+∞] := (x, u) 7→ sup
y∈H
{
〈
u, y
〉

+
〈
Ty, x− y

〉
}.

The function LT (x, u) is called the Fitzpatrick function representing a monotone operator T .

It follows from Definition 3.1 that if D(T ) 6= ∅, then the function LT is proper, lower semicontinuous

and convex on H ×H and ∂LT is maximal monotone (see [6] and [7]).

According to Theorem 3.10 in [1] if T is a maximal monotone operator on H, then LT is the minimal

convex function f on H × H such that f(x, u) ≥
〈
u, x

〉
for all x and u, and f(y, v) =

〈
v, y
〉

for all

(y, v) ∈ G(T ).

We will consider two cases.

Case 1

The following result will be used in what follows.

Theorem 4.1 (see [1] 3.4. Theorem) If T is a monotone operator from Definition 4.1 on H and (x, u) ∈

G(T ) then LT (x, u) =
〈
u, x

〉
and (u, x) ∈ ∂LT (x, u)
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We can apply for this case directly Theorem 3.1 from the previous section because when (x, u) ∈ G(T )

then (u, x) ∈ ∂LT (x, u).

Case 2

The folloowing result will be used in what follows.

Lemma 4.1 (see [1] 3.3. Lemma ) If T is the monotone operator from Definition 4.1 on H and (y, v) ∈

G(T ) and for some (x, u) ∈ H ×H we have

LT (x, u) =
〈
v, x− y

〉
+
〈
u, y
〉

then (y, v) ∈ ∂LT (x, u).

Using Lemma 4.1 we prove the following theorem:

Theorem 4.2 Let T and LT be as in Definition 4.1, D(T ) 6= ∅ and T is maximal monotone. And let

there exist an open set S ⊂ H × H such that for every (x, u) ∈ S the conditions of Lemma 4.1 will be

satisfied and therefore if (y, v) ∈ G(T ), then (y, v) ∈ ∂LT (x, u). Suppose (x, u) ∈ S. Then the differential

inclusion

ẏ ∈ −T (y(t)), y(0) = y0 (7)

has a unique solution y(·) defined on [0,∞). And the differential inclusion

(ẋ, u̇)∈ −∂LT (x(t), u(t)), (x(0), u(0))=(x0, u0)=(y(0), v(0))=(y0, v0) (8)

has also a unique solution (x(·), u(·)) defined on [0,∞). The solutions y(·) of (7) and (x(·), u(·)) of (8)

coincide when (y, v) ∈ G(T ) and (x, u) ∈ S.
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Proof. Since the function LT is real valued, proper, lower semicontinuous and convex on H × H, the

subdifferential ∂LT is maximal monotone (see [8], Proposition 6, Section 6.7). Because T is maximal

monotone and ∂LT is maximal monotone the existence of the unique solutions of differential inclusions

(7) and (8) follows from Theorem 1 Section 6.8 of [8]. Next we involve the uniqueness of the solutions of

(7) and (8) and the definitions of T and LT .

According to Lemma 4.1 above we know that when (y, v) ∈ G(T ) and (x, u) ∈ S then (y, v) ∈

∂LT (x, u). Thus the solutions of the differential inclusions (7) and (8) coincide for every t ∈ [0,∞) for

which (y(t), v(t)) ∈ G(T ) and also because (y, v) ∈ ∂LT (x, u) when (x, u) ∈ S. �

According to Theorem 4.2, for solving optimization problem

inf
(x,u)∈H×H

LT (x, u) = LinfT . (9)

we can solve instead of differential inclusion (8) the easier differential inclusion (7).

In the rest of the section we consider a class of differential inclusions involving the subdifferential of

the Fitzpatrick functions in which every solution of the differential inclusion can be extended up to the

solution set.

Let X := {(x, u) ∈ H ×H|LT (x, u) = LinfT } be the solution set of the optimization problem (9) and

Xε := {(x, u) ∈ H ×H| min
(y,v)∈X

‖(x, u)− (y, v)‖ < ε > 0} be an ε-neighborhood of X.

Recall that the metric projection of the point x in a Hilbert space H on a subset S is defined with
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PrSx, i.e.

PrSx := {y ∈ S| ‖x− y‖ = min
z∈S
‖x− z‖}.

The metric projection on a closed and convex subset of a Hilbert space exists and is unique.

We denote here by m(0, ∂LT (x, u)) the metric projection of the origin onto ∂LT (x, u), that is,

m(0, ∂LT (x, u)) = {(v, y) ∈ H ×H|‖(0, 0)− (y, v)‖ = min
(w,z)∈∂LT (x,u)

‖(0, 0)− (w, z)‖}.

We assume that 0 is not an element of the subdifferential.

We use also the notation

D(0, ∂LT (x, u)) = sup
(w,z)∈∂LT (x,u)

‖(0, 0)− (w, z)‖.

In what follows when x and u depend on a parameter t(time), we will abbreviate the subdifferential in

the metric projection and in the definition of D by ∂LT (t).

Theorem 4.3 Let us consider again the differential inclusion

(ẋ, u̇) ∈ −∂LT (x(t), u(t)), (x(0), u(0)) = (x0, u0), (8)

where ∂LT (x(.), u(.)) is a maximal monotone operator. Suppose the map LT is proper, convex and lower

semicontinous, and maps (x, u) to a bounded, closed and convex set. For ε > 0 and (x0, u0) /∈ Xε let

‖m(0, ∂LT (x, u))‖ ≥ β > 0, (x, u) /∈ Xε and let

X := {(x, u) ∈ H ×H|LT (x, u) = LinfT } =

{(z, w) ∈ H ×H|(0, 0) ∈ ∂LT (z, w)}.
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If the differential inclusion (8) has a solution and the solutions set is bounded for t ≥ 0, then every

solution of

(ẋ, u̇) ∈ − ∂LT (x(t), u(t))

‖m(0, ∂LT (t))‖2
,

(x(0), u(0))=(x0, u0)

can be extended up to the set X in a finite time T ≤ (LT (x0, u0) − LT ) where LT a lower bound of

LT (x, x∗) .

We omit the proof, because it is similar to the proof of Theorem 3.3.

5 Iterative Method

In this section we present an iterative procedure for solving the optimization problems given in Sections

3 and 4.

Definition 4.1, presented in [1], introduces a monotone operator on H by using a convex function on

H ×H. We denote by m(0, ∂fk) the metric projection of the origin onto the multivalued map ∂f(xk, uk)

and with m(0, Tf k) the metric projection of the origin onto the range of the multivalued map ∂(‖Tf (xk)‖2)

We replace the following iterative procedure

(xk+1, uk+1) = (xk, uk)− f(xk, uk)m(0, ∂fk)

‖m(0, ∂fk)‖2
, k = 0, 1, . . . . (10)

which is based on the differential inclusion,

(ẋ, u̇) ∈ − ∂f(x(t), u(t))

‖m(0, ∂f(t))‖2
, (x(0), u(0)) = (x0, u0) (6)
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with the following simpler iterative procedure:

xk+1 = xk −
‖Tf (xk)‖2m(0, Tf k)

‖m(0, Tf k)‖2
, uk = Tf (xk), k = 0, 1, . . . . (11)

based on differential inclusion:

ẋ ∈ − Tf (x(t))

‖m(0, Tf (t))‖2
, x(0) = x0.

We let set Xfε be the ε-neighborhood of Xf , i.e.

Xfε := {(x, u) ∈ H ×H | min
(y,v)∈Xf

‖ (x, u)− (y, v) ‖< ε}.

The following theorem asserts that the sequence(11) is monotone.

Theorem 5.1 Consider the optimization problem (1)

inf
(x,u)∈H×H

f(x, u) = f inf (1)

where f(x, u) is a convex function on H × H and the iterative procedure (11). Suppose there exist an

ε-neighborhood , Xfε of the set Xf for which

〈
(η, ξ), (x, u)− (y, v)

〉
6= 0, (η, ξ) ∈ ∂f(x, u),

(y, v) ∈ PrXf
(x, u), (x, u) ∈ Xfε \Xf

and

lim inf
k→∞

‖m(∂f(xk, uk))‖ 6= 0,

where inf is taken at all sequences (xk, uk) ∈ Xfε \Xf . We recall that

〈
(v, y), (x, u)

〉
=
〈
v, x
〉

+
〈
u, y
〉
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for all x and y in H and u(x) and v(y) in H.

If (x0, u0) ∈ Xfε and the following inequality is satisfied:

f(xk, uk)−
〈
m(0, ∂fk), (xk, uk)− (yk, vk)

〉
< εk, (12)

where (yk, vk) ∈ PrXf
(xk, uk) and εk < q

2f(xk, uk), 0 < q < 1, then the following inequality:

max ‖(xk+1, uk+1)− PrXf
(xk+1, uk+1)‖ ≤ min ‖(xk, uk)− PrXf

(xk, uk)‖ (13)

is valid for every k = 0, 1, 2, . . . .

On the basis of inequalities (12) and (13) we obtain the following inequalities:

‖Tf (xk)‖2 −
〈
m(0, Tf k), (xk − yk)

〉
< εk1 , (14)

where (yk, vk) ∈ PrXf
(xk, uk) and εk1 <

q
2‖Tf (xk)‖2, 0 < q < 1, and finally:

max ‖xk+1 − yk+1‖ ≤ min ‖xk − yk‖ (15)

for every k = 0, 1, 2, . . . .

And therefore the iterative procedure (10) can be replaced with the iterative procedure (11).

Proof. As long as f(x, u) is convex under (13), for any (yk, vk) ∈ PrXf
(xk, uk), k = 0, 1, 2, . . . , we

obtain

0 ≤ Ak =
‖xk+1 − yk+1‖2

‖xk − yk‖2
≤

‖(xk+1, uk+1)− (yk+1, vk+1)‖2

‖(xk, uk)− (yk, vk)‖2
=
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‖(xk+1, uk+1)− (yk+1, vk+1)‖2

‖(xk, uk)− (yk, vk)‖2
≤ ‖(xk+1, uk+1)− (yk, vk)‖2

‖(xk, uk)− (yk, vk)‖2
=

1

‖(xk, uk)− (yk, vk)‖2
‖(yk, vk)− (xk, uk) +

f(xk, uk)m(0, ∂fk)

‖m(0, ∂fk)‖2
‖2 =

(f(xk, uk))2

‖m(0, ∂fk)‖2‖(xk, uk)− (yk, vk)‖2
+ 1 + 2

f(xk, uk)
〈
m(0, ∂fk), (yk, vk)− (xk, uk)

〉
‖m(0, ∂fk)‖2‖(xk, uk)− (yk, vk)‖2

Under the inequality εk ≤ q
2F (xk, uk) and (12), we complete the proof:

Ak ≤
(f(xk, uk))2

‖m(0, ∂fk)‖2‖(xk, uk)− (yk, vk)‖2
+ 1 + 2

(εk − f(xk, uk))f(xk, uk)

‖m(0, ∂fk)‖2‖(xk, uk)− (yk, vk)‖2
=

1− (f(xk, uk))2

‖m(0, ∂fk)‖2‖(xk, uk)− (yk, vk)‖2
+ 2

εkf(xk, uk)

‖m(0, ∂fk)‖2‖(xk, uk)− (yk, vk)‖2
≤

1− (1− q) (f(xk, uk))2

‖m(0, ∂fk)‖2‖(xk, uk)− (yk, vk)‖2
= 1− (1− q)(Bk)2 < 1,

where

Bk =
(f(xk, uk))2

‖m(0, ∂fk)‖2‖(xk, uk)− (yk, vk)‖2

Thus, for every (xk, uk) ∈ Xfε \Xf , k = 1, 2, . . . we obtain

0 ≤ Ak < 1− (1− q)(Bk)2 < 1.

hence there exists εk1 ≤ εk such that

max ‖xk+1 − yk+1‖ ≤ min ‖xk − yk‖ (15)

�
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6 Numerical Examples

In this section we apply the introduced idea of simplification of the solution of convex unconstrained

continuos differentiable optimization problem to create an iterative procedure of one independent param-

eter for solving the optimization problem. We show that these new iterative procedures solve the convex

optimization problems faster with same precision than the existing optimization procedures.

We consider two real valued convex functions f(x, y), supposing x ∈ R1 and y(x) is from the dual

space with values in R1.

The dual space of the Euclidean space R1 of real numbers, which is also a Hilbert space, is also one

dimentional linear space. We remind that R1 can be considered also as a vector space with only two

possible directions, positive and negative.

We consider two simple examples of finding the minimum of convex functions of two variables, sup-

posing one of them is a function of the other one, usually y is a map from R1 to R1, or i.e. y : R→ R.

Because of the convexity, the optimization procedures with two variables can be simplified to proce-

dures with one variable, which is a simple presentation of the idea of simplification of the optimization

process introduced above.

As shown in the previous section for solving numerically an optimization problem instead of using the

next iterative procedure:

(xk+1, uk+1) = (xk, uk)− f(xk, uk)m(0, ∂fk)

‖m(0, ∂fk)‖2
, k = 0, 1, . . . . (10)
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we can solve it with the following simpler iterative procedure:

xk+1 = xk −
‖Tf (xk)‖2m(0, Tf k)

‖m(0, Tf k)‖2
, uk = Tf (xk), k = 0, 1, . . . . (11)

We present next two simple examples.

Numerical Example 1.

Let us solve the unconstrained convex optimization problem (see Fig. 1):

min fp(x, y),

where fp(x, y) = 4(x + p)2 + 4y2 − 4(x + p)y − 12y, with initial point (x, y) = (5, 5) and with precision

ε = 0.000001.p is a parameter of disturbances.

The partial derivatives should be equal to zero at the min fp(x, y)

fpx(x, y) = 8(x+ p)− 4y = 0 and fpy (x, y) = 8y − 4(x+ p)− 12 = 0.

We have to find the conditions for the parameter of distubances such that to have a monotone convergence

algorithm.

Because both partial derivatives should be equal to zero at the solution point, then we have

yp = 2(x+ p) and yp =
x+ p+ 3

2
(∗)

They are monotone, because fp(x, y) is convex.

These two lines intersect at different solution points for a given value of the parameter p and we use a

sequence {pk} to create an iterative procedure depending only on xpk and the parameter of disturbances
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pk+1 on each step. As the solution is a unique one when p = 0 we can find sufficient conditions for the

parameter of disturbances p to ensure convergence.

This simplification is an analog of the monotone operator Tf .

We create an iterative procedute for xpk+1
for finding the minimum of fp(x, y) :

xpk+1
= xpk −

9
4 (xpk + pk+1 − 1)2

9
2 (xpk + pk+1 − 1)

= xpk −
xpk + pk+1 − 1

2

To ensure convergence we have to have

max ‖(xpk , ypk)− (xpk+1
, ypk+1

‖ < εk,

where the sequence {εk} is convergent to zero, i.e. the lim infk→∞ εk = 0+, εk > 0 for every positive

integer k. Because

max |xpk − xpk+1
| ≤ max ‖(xpk , ypk)− (xpk+1

, ypk+1
‖ < εk,

means that

|xpk − xpk+1
| = |xpk − 1 + pk+1| < 2εk.

We receive

|xpk − 1 + pk+1| ≤ |xpk − 1|+ |pk+1| < 2ε1
k

where the sequence {ε1
k} is also convergent to zero, i.e. the lim infk→∞ ε1

k = 0+, ε1
k ≥ εk > 0 for every

positive integer k, such that when |xpk − 1|+ |pk+1| < 2ε1
k then |xpk − 1 + pk+1| < 2εk, or

0 ≤ |pk+1| < 2ε1
k − |xpk − 1|
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or

|xpk − 1| − 2ε1
k ≤ pk+1 ≤ 2ε1

k − |xpk − 1|

From equations (∗) it follows that when pk approaches 0 and xpk approaches x∗ = 1 then ypk approaches

y∗ = 2.

We can simplify the iterative procedure by presenting the disturbances on each step k for any xk ∈

{xpk} with addition a one parameter pk+1:

xpk+1
= xk −

xk − 1

2
+ pk+1

To have for any xk+1 ∈ {xpk+1
}

lim
k→∞

|xk − xk+1| → 0

pk+1 should satisfy next inequalities:

−
∣∣∣xk − 1

2

∣∣∣ < pk+1 <
∣∣∣xk − 1

2

∣∣∣
for every xk ∈ {xpk}.

Of course, here the direct (analytical) solution is easier. In Example 2 is not so.

We compare our results with the results of well known modifications of Newton’s method using

MATLAB.

a) Solving the problem using our algorithm, we received next results: x = 1.0000 and y = 2.0000 for time

t = 1.8896× 10−4 sec.

b) Solving the problem using the algorithm FMINUNC from MATLAB, we received next results: x =
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1.0000 and y = 2.0000 for time t = 0.0089 sec.

c) Solving the problem using the algorithm FMINSEARCH from MATLAB, we received next results:

x = 1.0000 and y = 2.0000 for time t = 0.0026 sec.

These results are summarized in the next table.

Algorithm x - results y - results time

Our Algorithm 1.0000 2.0000 1.8896 ×10−4 sec.

FMINUNC 1.0000 2.0000 0.0089 sec.

FMINSEARCH 1.0000 2.0000 0.0026 sec.

The advantages of our algorithm are obvious.

f(x,y) = 4x2 + 4y2 − 4xy − 12y

Figure 1.
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Numerical Example 2.

We consider the following unconstrained convex optimization problem in which the surface is flatter

close to the solution point (see Fig. 2.):

min fp(x, y),

where fp(x, y) = (x+p)6 +e(x+p) +(x+p)2 +2(x+p)y+y2 +y4, with the same initial point (x, y) = (5, 5)

and with the same precision ε = 0.000001. p is again a parameter of disturbances.

The partial derivatives should be equal to zero at the min fp(x, y)

fpx(x, y) = 6(x+ p)5 + e(x+p) + 2(x+ p) + 2y = 0 and fpy (x, y) = 4y3 + 2y + 2(x+ p) = 0.

They are monotone, because fp(x, y) is convex.

Because both partial derivatives should be equal to zero at the solution point, then we have

yp = −6(x+ p)5 + e(x+p) + 2(x+ p)

2
and yp =

(6(x+ p)5 + e(x+p)

4

)1/3

(∗∗)

These two lines intersect at different solution points for a given value of the parameter p and we use a

sequence {pk} to create an iterative procedure depending only on xpk and the parameter of disturbances

pk+1 on each step. As the solution is a unique one when p = 0 we can find sufficient conditions for the

parameter of disturbances p to ensure convergence.

This simplification is an analog of the monotone operator Tf .

We create an iterative procedute for xpk+1
for finding the minimum of fp(x, y) :

Fpk+1
=
{(6(xpk + pk+1)5 + e(xpk

+pk+1)

4

)1/3

+
6(xpk + pk+1)5 + 2(xpk + pk+1) + e(xpk

+pk+1)

2

}2

,
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Gpk+1
= 2
{(6(xpk + pk+1)5 + e(xpk

+pk+1)

4

)1/3

+
6(xpk + pk+1)5 + 2(xpk + pk+1) + e(xpk

+pk+1)

2

}
, and

Hpk+1
=
{( 1

12

)[ 4

6(xpk + pk+1)5 + e(xpk
+pk+1

]2/3
(30(xpk+pk+1)4+e(xpk

+pk+1))+0.5(30(xpk+pk+1)4+e(xpk
+pk+1)+2)

}

Then

xpk+1
= xpk −

Fpk+1

Gpk+1
Hpk+1

To ensure convergence we have to have

max ‖(xpk , ypk)− (xpk+1
, ypk+1

‖ < εk,

where the sequence {εk} is convergent to zero, i.e. the lim infk→∞ εk = 0+, εk > 0 for every positive

integer k. Because

max |xpk − xpk+1
| ≤ max ‖(xpk , ypk)− (xpk+1

, ypk+1
‖ < εk,

means that

|xpk − xpk+1
| =

Fpk+1

|Gpk+1
|Hpk+1

< εk,

since Fpk+1
≥ 0 and Hpk+1

≥ 0 for every pk+1 satisfying the convergnce conditions.

Therefore we have to restrict pk+1 such that, when |pk+1| < ε1
k+1, then

Fpk

|Gpk
|Hpk

< εk. Here {ε1
k} is a

decreasing sequence with positive elemets that ensures these requirements.

From equations (∗∗) it follows that when pk approaches 0 and xpk approaches x∗ = 5 then ypk

approaches y∗ = 5.

We can simplify the iterative procedure by presenting the disturbances on each step k for any xk ∈

{xpk} with addition a one parameter pk+1.
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We use the following simplified notarions

Fk =
{(6x5

k + exk

4

)1/3

+
6x5

k + 2xk + exk

2

}2

,

Gk = 2
{(6x5

k + exk

4

)1/3

+
6x5

k + 2xk + exk

2

}
, and

Hk =
{( 1

12

)[ 4

6x5
k + exk

]2/3
(30x4

k + exk) + 0.5(30x4
k + exk + 2)

}
.

and receive the iterative procedure:

xpk+1
= xk −

Fk
GkHk

+ pk+1

To have for any xk ∈ {xpk} and xk+1 ∈ {xpk+1
}

lim
k→∞

|xk − xk+1| → 0

where

|xk − xk+1| =
∣∣∣ Fk
|Gk|Hk

− pk+1

∣∣∣
pk+1 should satisfy next inequalities:

− Fk
|Gk|Hk

< pk+1 <
Fk

|Gk|Hk

The direct analytical solution is not so easy here as in Example 1.

a) Solving the problem using our algorithm, we received next results: x = −0.5493 and y = 0.4107

for time t = 3.6133× 10−4 sec.

b) Solving the problem using the algorithm FMINUNC from MATLAB, we received next results: x =

−0.5487 and y = 0.4117 for time t = 0.0110 sec.
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c) Solving the problem using the algorithm FMINSEARCH from MATLAB, we received next results:

x = −0.5493 and y = 0.4107 for time t = 0.0034 sec.

These results are summarized in the next table.

Algorithm x - results y - results time

Our Algorithm -0.5493 0.4107 3.6133 ×10−4 sec.

FMINUNC -0.5487 0.4117 0.0110 sec.

FMINSEARCH -0.5493 0.4107 0.0034 sec.

The advantages of our algorithm are clear again.

f(x,y) = x6 + ex + x2 + 2xy + y2 + y4

Figure 2.
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7 A New Example of a Fitzpatrick Function

We considered in Theorem 3.3 the optimization problem

inf
(x,u)∈H×H

f(x, u). (1)

and proved that to solve this problem we could substitute the solution of differential inclusion

(ẋ, u̇) ∈ −∂f(x(t), u(t)) (3)

(x(0), u(0)) = (x0, u0).

by solving differential inclusion

(ẋ, u̇) ∈ − ∂f(x(t), u(t))

‖m(0, ∂f(t))‖2
, (6)

(x(0), u(0)) = (x0, u0),

We showed that the solutions of differential inclusions (3) and (6) coincide.

We proved there also that f(x, u) is a Lyapunov function for the differential inclusion (6). Therefore

this is an example that the Fitzparick function appears to be a Lyapunov fuction.

We showed in Theorem 5.1 that to solve the problem numerically we can substitute its corresponding

iterative procedure

(xk+1, uk+1) = (xk, uk)− f(xk, uk)m(0, ∂fk)

‖m(0, ∂fk)‖2
, k = 0, 1, . . . . (10)
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which is based on the differential inclusion,

(ẋ, u̇) ∈ − ∂LT (x(t), u(t))

‖m(0, ∂LT (t))‖2
, (6)

(x(0), u(0))=(x0, u0)

with the iterative procedure

xk+1 = xk −
‖Tf (xk)‖2m(0, Tf k)

‖m(0, Tf k)‖2
, uk = Tf (xk), k = 0, 1, . . . . (11)

based on differential inclusion:

ẋ ∈ −Tf (x(t)), x(0) = x0 (2)

A Lyapunov function for the differential inclusion (9) is (‖Tf (x)‖)2

Ivanov and Raykov in [12] developed a parametric Lyapunov function method for solving nonlinear

systems in Hilbert space. We show close connections between the Lyapunov function created to solve the

given problem and Fitzpatrick functions.

Let fi(x, u), i = 1, 2, . . . ,m be nonsmooth scalar functions which are defined on H ×H where H is a

Hilbert space and let us consider the following system of equations

fi(x, u) = 0, i = 1, 2, . . . ,m. (16)

We construct a depending on p(ε) family of functions:

Vp(ε)(x, u) =

m∑
i=1

αi|fi(x, x∗)|1+pi(ε) ≥ 0, (17)
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where αi > 0, and p(ε) = (p1(ε), p2(ε), . . . , pm(ε)) is a vector parameter such that pi(ε) ∈ (pi − ε, pi + ε)

and pi − ε > −1, ε > 0, i = 1, 2, . . . ,m.

According to [10] the generalized directional derivative is

f0((x, u); (t, s)) = lim sup
(y,v)=⇒(x,u), λ↓0

f((y, v) + λ(t, s))− f(y, v)

λ

and the generalized gradient is

∂f(x, u) = {(η, ζ) ∈ H×H | f0((x, u); (t, s)) ≥
〈
(η, ζ), (t, s)

〉
∀ (t, s) ∈ H×H}

Definition 7.1 ( [10]) f is said to be regular at x provided

(i) For all v, the usual one-side directional derivative f ′(x; v) exists.

(ii) For all v, f ′(x; v) = f0(x; v).

We consider functions fi(x, u), i = 1, 2, . . . ,m that are regular and assume that Vp(ε)(x, u) is a convex

function. Note that the convex function is regular.

We denote by m(0, ∂Vp(ε)(x, u) the metric projection of the origin to the set ∂Vp(ε)(x, u).

Let 0 /∈ ∂Vp(ε)(x0, u0). Consider the following differential inclusion:

(ẋ, u̇) ∈ −
∂Vp(ε)(x, u)

‖m(0, ∂Vp(ε)(x, u))‖2
, (x(0), u(0)) = (x0, u0). (18)

As long as fi(x) are regular functions, according to [8] we have

∂Vp(ε)(x, u) =

m∑
i=1

αi‖fi(x, u)‖pi(ε)(sign fi(x, u))∂fi(x, u)(1 + pi(ε)). (19)
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The differential inclusion (18) is the Filippov extension of the following differential equation with possibly

discontinuous right-hand side, see [8] and [11]:

(ẋ, u̇) = −
m(∂Vp(ε)(x, u))

‖m(0, ∂Vp(ε)(x, u))‖2
, (x(0), u(0)) = (x0, u0) (20)

As long as Vp(ε)(x) is a convex function, the subdifferential ∂Vp(ε)(x) is a maximal monotone operator

and the differential inclusion

(ẋ, u̇) ∈ −∂Vp(ε)(x, u), (x(0), u(0)) = (x0, u0) (25)

has an unique solution, see [8] .

We see that so created Lyapunov function Vp(ε)(x, u) is also an example of a Fitzpatrick function.

Using this method, the number of the equations is independent from the number of independent

variables.

We could consider at the end a simplification of problem

inf
(x,u)∈H×H

f(x, u). (1)

Tfx is from Definition 3.1.

We can use differential inclusion

ẋ ∈ −Tf (x(t)), x(0) = x0 (9)

to solve the problem with a Lyapunov function (‖Tfx‖)2.
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8 Concluding Remarks

Our interest in optimizing Fitzpatrick functions is motivated by the following considerations:

1. Optimizing Fitzpatrick functions can be simplified from optimization problems on H×H to optimiza-

tion problems on H. It would be of interest to explore classes of convex functions on H ×H which have

a similar simplification property.

2. We introduce an iterative procedure for solving problems of this type. Because of the convexity the

procedure can be simplified.

3. We present two examples of Fitzpatrick functions which are also Lyapunov functions. This may lead

to further connections with Lyapunov functions.

4. Fitzpatrick functions are convex on H ×H and involve implicit functions.([13]

5. We suppose this type of functions could be used for solving a larger scale of nonconvex optimization

problems (see [14]).
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