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Abstract	

This	paper	explores	the	complete	factoring	of	an	±	bn	for	any	value	of	n.		It	contains	here-
tofore-unpublished	details	on	the	method	of	factoring	such	binomials,	including	finding	
factors	that	are	not	immediately	obvious.		The	key	to	the	complete	factoring	is	the	prime	
factorization	of	the	exponent	n.		Beyond	the	first	direct	factors	are	a	number	of	indirectly	
determined	factors	that	are	the	results	of	many	polynomial	divisions	that	were	needed	
to	find	them.		The	methodology	required	to	identify	those	factors	is	described.		This	ul-
timately	 leads	to	a	 formulation,	based	on	binomial	coefficients,	 for	the	total	number	of	
factors	of	such	polynomials.		The	work	contains	a	detailed	factoring	of	several	binomials,	
especially	a105	+	b105	and	a252	–	b252,	which	demonstrate	everything	presented	in	the	pa-
per.	The	complete	factorization	of	a105	+	b105	is	given	in	detail	to	demonstrate	the	meth-
odology	of	the	procedure	for	finding	the	indirectly	determined	factors	and	its	effective-
ness.	The	complete	factorization	of	a252	–	b252	is	given	in	detail	to	demonstrate	all	of	the	
various	formulas	involved	in	the	complete	factoring.	In	the	end,	binomial	coefficients	are	
shown	to	be	the	key	to	identifying	the	number	of	factors	leading	to	a	formula	that	pre-
dicts	the	total	number	of	factors	of	such	a	binomial.	
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This	paper	presents	a	theory	and	practice	for	the	complete	factoring	an	±	bn		for	any	n.		A	
literature	search	on	this	subject	only	turned	up	one	relevant	paper,	but	some	others	
have	been	listed	in	the	list	of	references.		The	one	relevant	paper	is	an	article	on	“Factor-
ing”	by	N.	Barrows	of	Kimball	Union	Academy,	(Barrows,	170).		In	it	Barrows	shows	the	
factoring	of	a2	–	b2	into		(a	–	b)•(a	+	b)	for	various	a	and	b.		Barrows	also	shows	that	an	±	
bn	can	be	factored	into	(a	±	b)	times	a	longer	expression	of	degree	n-1.		This	is	the	only	
article	I	could	find	on	factoring	beyond	the	customary	factoring	of	a2–b2,	a3–b3,		&	a3+b3.	
However,	the	inspiration	for	part	of	this	paper	came	from	a	small	article	by	Andy	Parker,	
“Discovering	a	New	Factor	Form”	in	Mathematics	Teacher,	(Parker,	215).	

The	key	to	the	factoring	of	an	±	bn	is	the	prime	factoring	of	n	=	

€ 

2p fi
i=1

m

∏ .		For	each	of	the	m	

odd	prime	factors	fi	there	will	be	a	factor	of	an	±	bn	of	fi	terms.			
	
The	general	forms	of	the	factors	corresponding	to	the	odd	prime	factor	k	of	n,	where	n	=	
jk,	are:	(These	formulas	will	be	referred	to	as	formula	I.)	
ajk	–	bjk	=	(aj	–	bj)•(a(k-1)j	+	a(k-2)jbj	+	a(k-3)jb2j	+	a(k-4)jb3j	+	…	+	b(k-1)j)			

or	=	(aj	–	bj)•(
    

€ 

a(k−1−i)j

i=0

k−1

∑ bij ).	

and	ajk	+	bjk	=	(aj	+	bj)•(a(k-1)j	-	a(k-2)jbj	+	a(k-3)jb2j	-	a(k-4)jb3j	+	…	+	b(k-1)j)	

or	=	(aj	+	bj)•(
    

€ 

(−1)i a(k−1−i)j

i=0

k−1

∑ bij ).	

The	factors	based	on	the	2p	prime	factors	of	n	will	all	be	binomials.			
The	factors	of	ac	–	bc,	where	c=2p,	will	be	(a	–	b)	and	p	factors	of	the	form	ac	+	bc,	where	
c=2i	for	i=0…p-1.			(Formula	II.)	
For	example,	the	factors	of	a8	–	b8	=	(a	–	b)•(a	+	b)•(a2	+	b2)•(a4	+	b4)			
For	ac	+	bc,	where	c=2p,	there	is	no	other	factor.	
	

Any	factor	of	the	form	
    

€ 

a2i

i=0

k

∑ b2(k−i)can	also	be	factored:		
    

€ 

aib(k−i)

i=0

k

∑ • (−1)i aib(k−i)

i=0

k

∑
	

(This	is	formula	III.)
	

	
For	example:	consider	factoring	a10	+	b10	and	a10	–	b10,				10=2•5,		m=1,	p=1,		j=2,			k=5	

a10	+	b10	=	(a2	+	b2)•(a8	–	a6b2	+	a4b4	–	a2b6	+b8),		
a10	–	b10	=	(a	-	b)•(a	+	b)•(a8	+	a6b2	+	a4b4	+	a2b6	+	b8)	
	 =				(a	-	b)•(a	+	b)•(a4	+	a3b	+	a2b2	+	ab3+	b4)•(a4	-	a3b+	a2b2	-	ab3	+	b4)	
	

and	 a112	–	b112	=	(a16–b16)•(a96+a80b16+a64b32+a48b48+a32b64+a16b80+b96)	[112=24•7]	
=	(a–b)•(a+b)•(a2+b2)•(a4+b4)•(a8+b8)	
•(a48–a40b8+a32b16–a24b24+a16b32–a8b40+b48)•(a24–a20b4+a16b8–a12b12+a8b16–
a4b20+b24)•(a12–a10b2+a8b4–a6b6+a4b8–a2b10+b12)	
•(a6–a5b+a4b2–a3b3+a2b4–ab5+b6)•(a6+a5b+a4b2	+	a3b3+a2b4+ab5+b6)	

(a96	+	a80b16	+	a64b32	+	a48b48	+	a32b64	+	a16b80	+	b96)	is	factored	four	times	(p	=	4).	
	



	

	 2	

	
In	the	case	of	a60	+	b60:		60	=	22•3•5,	m=2,	p=2.		For	the	5-term	factor	based	on	the	prime	
factor	5	of	n,	k=5,	j=22•3=12.		The	first	binary	factor	taken	out	will	be	(a12	+	b12)	and	the	
exponents	of	the	five	terms	in	the	other	factor	will	be	multiples	of	12.			
	 a60	+	b60	=	(a12+b12)•(a48	–	a36b12	+	a24b24	–	a12b36	+	b48)	
Then	(a12	+	b12)	will	be	factored	as	jk	=	4•3,	k=3,	j=4:	(a4	+	b4)•(a8	–	a4b4	+b8)	
	 a60	+	b60	=	(a4	+	b4)•(a8	–	a4b4	+	b8)•(a48	–	a36b12	+	a24b24	–	a12b36	+	b48)	
In	this	case,	m+1	=	3	giving	us	the	three	factors	with	2,	3,	&	5	terms.			
Similarly,	
	 a60	-	b60	=	(a4	-	b4)•(a8	+	a4b4	+	b8)•(a48	+	a36b12	+	a24b24	+	a12b36	+	b48)	
	 =	(a	–	b)•(a	+	b)•(a2	+	b2)•(a8	+	a4b4	+	b8)•(a48	+	a36b12	+	a24b24	+	a12b36	+	b48)	
	 =	(a	–	b)•(a	+	b)•(a2	+	b2)•(a4	+	a2b2+	b4)•(a4	–	a2b2	+	b4)•(a48	+	a36b12	+	a24b24	+	
a12b36	+	b48)	
	 =	(a	–	b)•(a	+	b)•(a2	+	b2)•(a2	+	ab+	b2)•(a2	–	ab	+	b2)•(a4	–	a2b2	+	b4)•(a48	+	
a36b12	+	a24b24	+	a12b36	+	b48)	
	 =	(a	–	b)•(a	+	b)•(a2	+	b2)•(a2	+	ab+	b2)•(a2	–	ab	+	b2)•(a4	–	a2b2	+	b4)•(a24	+	a18b6	
+	a12b12	+	a6b18	+	b24)•(a24	–	a18b6	+	a12b12	–	a6b18	+	b24)	
	 =	(a	–	b)•(a	+	b)•(a2	+	b2)•(a2	+	ab+	b2)•(a2	–	ab	+	b2)•(a4	–	a2b2	+	b4)•(a12	+	a9b3	
+	a6b6	+	a3b9	+	b12)•(a12	–	a9b3	+	a6b6	–	a3b9	+	b12)•(a24	–	a18b6	+	a12b12	–	a6b18	+	b24)	
	
The	factors	arising	from	2p	should	be	postponed	to	the	last;	otherwise,	it	will	be	neces-
sary	to	factor	a	large	expression	by	grouping	to	get	the	smaller	factors.			As	an	example	
of	the	reason	for	postponing	the	binary	factors	based	on	2p,	consider	factoring	(a9	+	b9).		
n=3•3,	m=2	and	p=0.		There	should	be	2+1	=	3	factors,	a	binary	and	two	with	3	terms	
each.		But	if	we	start	with	the	factor	(a	+	b),	we	get	a	factor	of	nine	terms.	
	 a9	+	b9	=	(a	+	b)•(a8	–	a7b	+	a6b2	–	a5b3	+	a4b4	–	a3b5	+	a2b6	–	ab7	+	b8)	
The	large	factor	can	be	further	factored	by	grouping:		

(a8	–	a7b	+	a6b2	–	a5b3	+	a4b4	–	a3b5	+	a2b6	–	ab7	+	b8)	
=(a6(a2	–	ab	+	b2)	–	a3b3(a2	–	ab	+	b2)	+	b6(a2	–	ab	+	b2))	
=(a2	–	ab	+	b2)•(a6	–	a3b3	+	b6)	
a9	+	b9	=(a	+	b)•(a2	–	ab	+	b2)•(a6	–	a3b3	+	b6)	
Which	is	the	same	result	as	when	we	start	with	the	prime	factor	3:	
a9	+	b9	=	(a3	+	b3)•(a6	–	a3b3	+	b6)	

=	(a	+	b)•(a2	–	ab	+	b2)•(	a6	–	a3b3	+	b6)	
	
The	general	form	of	these	factors	is	illustrated	by	the	following	(Formula	IV.).	n	is	a	
product	(n=efg	in	this	case)	and	the	factor	to	be	factored	by	grouping	contains	efg	terms:	
	 aefg	+	befg	=	(a+b)	•(aefg-1	–	aefg-2b	+	aefg-3b2	–	aefg-3b3	+	…	+	befg-1))	

=	(a+b)	•	(ae-1	–	ae-2b	+	ae-3b2	–	ae-3b3	+	…	+	be-1)	
•(ae(f-1)	–	ae(f-2)be	+	ae(f-3)b2e	–	ae(f-3)b3e	+	…	+	be(f-1))	
•(	aef(g-1)	–	aef(g-2)bef	+	aef(g-3)b2ef	–	aef(g-3)b3ef	+	…	+	bef(g-1))	

aefg	–	befg	is	similar,	but	all	the	signs	in	the	factors	after	(a–b)	are	plus	signs.	
	
When	there	are	h	instances	of	the	same	odd	prime	factor,	f,	one	could	use	formula	I	with	
k=fh,	and	then	factoring	by	grouping	can	be	used	to	finding	the	resulting	factors.	For	fh,	
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there	will	be	h	factors	of	f	terms	each	after	the	binomial	factor	and	they	will	be	of	de-
grees	(f–1)•	fi	for	i=0	to	h-1.	
	
The	preceding	shows	this	for	32.	Consider	52	and	33:	 	

a25	–	b25	=	(a–b)•(a24+a23b+a22b2+a21b3+a20b4+a19b5+a18b6+a17b7+a16b8	
+a15b9+a14b10+a13b11+a12b12+a11b13+a10b14+a9b15+a8b16+a7b17	
+a6b18+a5b19+a4b20+a3b21+a2b22+ab23+b24)	
=	(a–b)•(a20(a4+a3b+a2b2+ab3+b4)+a15b5(a4+a3b+a2b2+ab3	
+b4)+	a10b10(a4+a3b+a2b2+ab3+b4)+	a5b15(a4+a3b+a2b2	
+ab3+b4)+	b20(a4+a3b+a2b2+ab3+b4)	)	
=	(a–b)	•	(a4+a3b+a2b2+ab3+b4)	•	(a20+a15b5+	a10b10+	a5b15+	b20)	

a27	–	b27	=	(a–b)•(a26+a25b+a24b2+a23b3+a22b4+a21b5+a20b6+a19b7+a18b8	
+a17b9+a16b10+a15b11+a14b12+a13b13+a12b14+a11b15+a10b16+a9b17	
+a8b18+a7b19+a6b20+a5b21+a4b22+a3b23+a2b24+ab25+b26)	
=	(a–b)	•	(a24(a2+ab+b2)+	a21b3(a2+ab+b2)+	a18b6(a2+ab+b2)	
+	a15b9(a2+ab+b2)+	a12b12(a2+ab+b2)+	a9b15(a2b+ab+b2)	
+	a6b18(a2+ab+b2)+	a3b21(a2+ab+b2)+	b24(a2+ab+b2)	)	
=	(a–b)	•	(a2+ab+b2)		
•	(a24+	a21b3+	a18b6+	a15b9+	a12b12+	a9b15+	a6b18+	a3b21+	b24)	
=	(a–b)	•	(a2+ab+b2)		
•	(a18(a6+	a3b3+b6)+	a9b9(a6+	a3b3+	b6)+	b18(a6+	a3b3+	b6)	
=	(a–b)	•	(a2+ab+b2)	•	(a6+	a3b3+	b6)	•	(a18+	a9b9+	b18)	

	
More	Examples:	
1.	 a5	+	b5	=	(a	+	b)•(a4	–	a3b	+	a2b2	–	ab3	+b4)	

To	see	that	this	works,	use	an	extension	of	FOIL	giving:	
a5	–	a4b	+	a3b2	–	a2b3	+	ab4		+		a4b	–	a3b2	+	a2b3	–	ab4	+	b5			
When	combining	terms,	the	middle	terms	cancel	each	other	leaving	a5	+	b5	
The	same	goes	for	a5	–	b5:	
a5	-	b5	=	(a	-	b)•(a4	+	a3b	+	a2b3	+	ab4	+b5)	
The	“-b”	in	the	“a-b”	factor	causes	all	the	terms	resulting	from	the	“–b”	to	be	nega-
tive,	canceling	the	corresponding	ones	from	the	“a”	except	for	a5	at	the	beginning	
and	the	-b5	at	the	end.	

2.	
Consider	a4	–	b4	,	m=0	and	p=2,	so	there	will	be	no	factors	with	an	odd	number	of	
terms,	but	there	will	be	(a	–	b)	and	two	factors	with	exponents	as	powers	of	2:		
a4	–	b4	=	(a	–	b)•(a	+	b)•(a2	+	b2)	
Which	is	the	same	factoring	we	get	from	the	factoring	of	a4	–	b4	as	a	double	in-
stance	of	a2	–	b2.		I.e.,	a4	–	b4	=	(a2	–	b2)•(a2	+	b2)	=	(a	–	b)•(a	+	b)•(a2	+	b2)		
Note	that	for	a4	+	b4,	m=0,	p=2,	and	a4	+	b4	is	the	only	factor,	there	are	no	others.	

3.	
a6	+	b6	=	(a2	+	b2)	•	(a4	-	a2b2	+	b4)					n=2•3,	m=1,	p=1,	factor	lengths	2	and	3	
a6	–	b6	=	(a	-	b)	•	(a	+	b)	•	(a4	+	a2b2	+	b4),	but	the	factors	of		(a4	+	a2b2	+	b4)	are	(a2		
+	ab	+	b2)	•	(a2	-	ab	+	b2)	
a6	–	b6	=	(a	-	b)	•	(a	+	b)	•	(a2	+	ab	+	b2)	•	(a2	-	ab	+	b2)	
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4.	
	 a20	–	b20	=	(a4	–	b4)•(a16	+	a12b4	+	a8b8	+	a4b12	+	b16)	
	 	 =(a	–	b)•(a	+	b)•(a2	+	b2)•(a16	+	a12b4	+	a8b8	+	a4b12	+	b16)	

=(a	–	b)•(a	+	b)•(a2	+	b2)•(a8	+	a6b2	+	a4b4	+	a2b6	+	b8)•(a8	–	a6b2	+	a4b4	–	
a2b6	+	b8)	

=(a	–	b)•(a	+	b)•(a2	+	b2)•(a4	+	a3b	+	a2b2	+	ab3	+	b4)•(a4	–	a3b	+	a2b2	–	ab3	
+	b8)•(a8	–	a6b2	+	a4b4	–	a2b6	+	b8)	

	
5.	
	 Consider	a210	+	b210,	210	=	2•3•5•7,	p=1,	m=3.		There	will	be	m+1	=	4	factors	with	
2,	3,	5,	and	7	terms	respectively.		So	for	the	first	factoring	k=7,	j=2•3•5	=	30	
a210	+	b210	=	(a30	+	b30)•(a180	–	a150b30	+	a120b60	–	a90b90	+	a60b120	–	a30b150	+	b180),	7	terms	
Then	to	factor	(a30	+	b30),	k=5,	j=2•3=6	
(a30	+	b30)	=	(a6	+	b6)•(a24	–	a18b6	+	a12b12	–	a6b18	+	b24),	a	factor	of	5	terms	
Then	to	factor	(a6	+	b6),	k=3,	j=2	
(a6	+	b6)	=	(a2	+	b2)•(a4	–	a2b2	+	b4),	a	factor	of	3	terms	and	the	binomial	factor	(a2	+	b2)	
	
So	putting	all	these	factors	together:	
a210	+	b210	=	(a2	+	b2)•(a4	–	a2b2	+	b4)•(a24	–	a18b6	+	a12b12	–	a6b18	+	b24)	
	 	 	 •(a180	–	a150b30	+	a120b60	–	a90b90	+	a60b120	–	a30b150	+	b180)	
This	is	four	factors	with	2,	3,	5,	and	7	terms	respectively.			
(I	will	leave	it	to	the	reader	to	multiply	all	this	out	and	verify	it	equals	a210	+	b210.	If	you	
are	really	going	to	do	this,	start	with	the	binomial	factor	and	work	up	to	the	larger	fac-
tors.		If	you	cancel	corresponding	terms	after	each	multiplication,	you	will	have	another	
binomial,	and	will	have	had	a	total	of	3+5+7=15	corresponding	pairs	with	opposite	
signs.		Going	the	other	way,	combining	largest	factors	first,	you	will	end	up	with	a	poly-
nomial	of	210	terms	with	104	matched	pairs	of	terms	with	opposites	signs	scattered	
somewhere	through	out	the	210-term	polynomial.)	
	
Consider	a240-b240,	n	=	24•3•5.		Factoring	this	gives	
[For	240,	k=5,j=48]	a240−b240	=	(a48−b48)•(a192+a144b48+a96b96+a48b144+b192)	
(For	48,	k=3,j=16]	a48−b48	=	(a16−b16)•(a32+a16b16+b32)	

(a16−b16)	=	(a–b)•(a+b)•(a2+b2)•(a4+b4)•(a8+b8)			(by	formula	II)	
(a32+a16b16+b32)	=	(a16−a8b8+b16)	•	(a8−a4b4+b16)	•	(a4−a2b2+b4)	•	(a2−ab+b2)	

•(a2+ab+b2)			(by	formula	III)	
(a192+a144b48+a96b96+a48b144+b192)	=	(a96–a72b24+a48b48–a24b72+b96)	

•(a48–a36b12+a24b24–a24b36+b48)	
•(a24–a18b6+a12b12–a6b18+b24)	
•(a12–a9b3+a6b6–a3b9+b12)•(a12+a9b3+a6b6+a3b9+b12)			(by	formula	III)	

a240−b240	=	(a–b)•(a+b)•(a2+b2)•(a4+b4)•(a8+b8)	
•(a16−a8b8+b16)	•	(a8−a4b4+b16)	•	(a4−a2b2+b4)	•	(a2−ab+b2)	•(a2+ab+b2)	
•	(a96–a72b24+a48b48–a24b72+b96)•(a48–a36b12+a24b24–a24b36+b48)	
•(a24–a18b6+a12b12–a6b18+b24)•(a12–a9b3+a6b6–a3b9+b12)	
•(a12+a9b3+a6b6+a3b9+b12)	
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This	gives	five	factors	each	from	(a16−b16),	(a32+a16b16+b32),	and	
(a192+a144b48+a96b96+a48b144+b192):	four	extras	from	the	basic	three:	the	bi-
nary	and	the	two	odd	prime	factors	of	n:	3	and	5.	

	
The	exponents	of	the	factors	based	on	the	prime	factors	of	n	will	vary	from	factor	to	fac-
tor.		If	there	are	two	or	more	odd	prime	factors	of	n,	they	can	be	dealt	with	in	any	order.		
But	since	the	exponents	of	the	terms	will	be	different	when	considering	the	prime	fac-
tors	in	different	orders,	the	different	factors	resulting	from	the	different	orders	can	all	
be	used	to	find	hidden	factors.		This	will	add	an	additional	factor	to	a240–b240	for	a	total	
of	sixteen	factors	and	four	additional	factors	to	a210	+	b210	for	a	total	of	eight.		(See	the	
detailed	factoring	of	a105	+	b105	below.)	
	
To	see	the	affect	the	order	has	on	the	result,	consider	the	two	factorings	of	a15	+	b15:	
For	j=3,	k=5:	a15	+	b15	=	(a3	+	b3)	•	(a12	–	a9b3	+	a6b6	–	a3b9	+	b12)	
	 =	(a+b)	•	(a2	–	ab	+	b2)	•	(a12	–	a9b3	+	a6b6	–	a3b9	+	b12)	
Product	of	last	two	factors:	
a14–a11b3+a8b6–a5b9+a2b12	–	a13b+a10b4–a7b7+a4b10–ab13	+	a12b2–a9b5+a6b8–a3b11+b14	
=	a14–a13b+a12b2–a11b3+a10b4–a9b5+a8b6–a7b7+a6b8–a5b9+a4b10–a3b11+a2b12–ab13+b14	
	
For	j=5,	k=3:	a15	+	b15	=	(a5+b5)	•	(a10	–	a5b5	+	b10)	

=	(a+b)	•	(a4	–	a3b	+	a2b2	–	ab3	+	b4)	•	(a10	–	a5b5	+	b10)	
Product	of	last	two	factors:	
	a14–a9b5+a4b10	–	a13b+a8b6–a3b11	+	a12b2–a7b7+a2b12	–	a11b3+a6b8–ab13	+	a10b4–a5b9+b14	
=	a14–a13b+a12b2–a11b3+a10b4–a9b5+a8b6–a7b7+a6b8–a5b9+a4b10–a3b11+a2b12–ab13+b14	
This	is	the	same	as	the	previous,	and	with	(a+b)	the	two	factoring	are	both	factorings	of	
a15	+	b15.		The	product	of	this	with	(a+b)	gives	a15	+	b15.	(The	reader	can	verify	this.)	
	
Since	both	factorings	are	factorings	of	the	same	expression,	but	are	different	there	must	
be	some	hidden	factors.		If	one	factoring	gives	A•B’	and	the	other	gives	B•A’	(A	and	B	be-
ing	the	factors	with	lower	order),	then	A	must	divide	A’	and	B	divide	B’.		(a2	–	ab	+	b2)	
must	be	a	factor	of	(a10	–	a5b5	+	b10).		So	another	factor	can	be	found	by	dividing	(a10	–	
a5b5	+	b10)	by	(a2	–	ab	+	b2).		Performing	this	division	yields	as	quotient	(a8	+	a7b	–	a5b3	–
	a4b4	–	a3b5	+	ab7	+	b8).		(a2	–	ab	+	b2)	is	not	a	factor	of	(a4	–	a3b	+	a2b2	–	ab3	+	b4)	as	has	
been	verified	by	an	attempted	polynomial	division.		However,	(a4	–	a3b	+	a2b2	–	ab3	+	b4)	
is	a	factor	of	(a12	–	a9b3	+	a6b6	–	a3b9	+	b12)	and	yields	(a8	+	a7b	–	a5b3	–	a4b4	–	
a3b5	+	ab7	+	b8),	the	same	quotient	as	(a10	–	a5b5	+	b10)	divided	by	(a2	–	ab	+	b2).			
	
So	a15	+	b15	=	(a+b)	

•(a2	–	ab	+	b2)	
•(a4	–	a3b	+	a2b2	–	ab3	+	b4)	
•(a8	+	a7b	–	a5b3	–	a4b4	–	a3b5	+	ab7	+	b8).			

	
Is	this	last	factor	factorable	also?	Consider	215	+	315,	when	2	is	substituted	for	a	and	3	for	
b,	the	four	factors	turn	out	to	be	5•7•55•7174.		But	7174	=	31•241.		Both	31	and	241	are	
prime.		Also,	55	=	5•11,	so	ultimately	215	+	315	=	52•7•11•31•241	=	14,381,675.		Even	
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though	55	=	5•11	and	the	5	is	from	(a+b)	and	the	55	comes	from	(a4	–	a3b	+	a2b2	–	ab3	+	
b4),	(a+b)	is	not	a	factor	of	(a4	–	a3b	+	a2b2	–	ab3	+	b4).		So	my	conclusion	is	that	this	pro-
cedure	guarantees	finding	a	complete	factoring	of	all	binomials	of	the	form	an	±	bn	except	
those	of	the	form	ac	+	bc,	where	c=2p,	for	which	there	is	no	other	factor.		But	it	does	not	
provide	a	method	for	finding	all	prime	factors	of	such	binomials	in	specific	instances	
such	as	this	case	of	215	+	315.	
	
Reconsidering	the	factoring	of		
a60	+	b60	=	(a4	+	b4)	•	(a8	–	a4b4	+	b8)	•	(a48	–	a36b12	+	a24b24	–	a12b36	+	b48)		
presented	earlier	with	k=5,	j=22•3=12,		
let	us	now	factor	it	with	k=3	and	j=22•5=20:	
a60	+	b60	=	(a20	+	b20)	•	(a40	–	a20b20	+	b40)	
	 =	(a4	+	b4)	•	(a16	–	a12b4	+	a8b8	–	a4b12	+	b16)	•	(a40	–	a20b20	+	b40)	
(a40	–	a20b20	+	b40)	divided	by	(a8	–	a4b4	+	b8)	gives	the	quotient	(a32	+	a28b4	–	a20b12	–	
a16b16	–	a12b20	+	a4b28	+	b32).		This	is	the	same	quotient	as	(a48	–	a36b12	+	a24b24	–	a12b36	+	
b48)	divided	by	(a16	–	a12b4	+	a8b8	–	a4b12	+	b16).		So	
a60	+	b60	=	(a4	+	b4)	

•	(a8	–	a4b4	+	b8)		
•	(a16	–	a12b4	+	a8b8	–	a4b12	+	b16)	
•	(a32	+	a28b4	–	a20b12	–	a16b16	–	a12b20	+	a4b28	+	b32).	

	
Finding	the	extra	factors	of	the	a60	–	b60	from	those	of	the	form	    

€ 

a2ib2(k−i)
i=1

k
∑ should	be	

postponed	until	after	the	hidden	factors	are	determined	as	the	factored	forms	compli-
cate	the	process.		So	doing	this,	the	factors	of	a60	–	b60	are	the	same	as	for	a60	+	b60	except	
that	the	factors	other	than	(a4	–	b4)	have	all	plus	signs.		So	by	the	example	of	a60	+	b60:		
a60	–		b60	=	(a20	–		b20)	•	(a40	+	a20b20	+	b40)	and	(a40	+	a20b20	+	b40)	=	(a8	+	a4b4	+	b8)	•	(a32	
–	a28b4	+	a20b12	–	a16b16	+	a12b20	–	a4b28	+	b32).			
After	that,	the	factors	of	the	form	    

€ 

a2ib2(k−i)
i=1

k
∑ 	can	be	factored	giving:	

a60	–	b60	=	(a	–		b)	•	(a	+	b)	•	(a2	+	b2)	
•	(a2	+	ab	+	b2)	•	(a2	–	ab	+	b2)	•	(a4	–	a2b2	+	b4)		
•	(a4	+	a3b	+	a2b2	–	ab3	+	b4)	•	(a4	–	a3b	+	a2b2	–	ab3	+	b4)	•	(a8–	a6b2	+	a4b4	–	a2b6	+	

b8)	
•	(a32	–	a28b4	+	a20b12	–	a16b16	+	a12b20	–	a4b28	+	b32).		(No	factors	of	hidden	factor.)	

	
If	the	two	factorings	are	represented	as	A•B’	and	B•A’,	then	A’	=	A•E	and	B’	=	B•E,	for	
some	hidden	factor	E,	the	result	is	reduced	by	substitution	to	A•B•E.			
So	what	happens	when	there	are	three	odd	prime	factors	of	n?		How	many	hidden	fac-
tors	are	there?		They	can	be	combined	pair-wise	based	on	the	reversal	of	the	last	two	
factors	to	determine	a	hidden	factor.		Each	distinct	pair	of	factorings	can	yield	a	hidden	
factor,	which	would	make	the	number	of	hidden	factors	three	when	m	=	3.		As	an	exam-
ple	of	this,	consider	a105+b105.		n	=	3·5·7,	so	there	are	six	different	orders	of	factoring:	
3·5·7,	5·3·7,	3·7·5,	7·3·5,	5·7·3,	7·5·3.		Each	of	these	will	produce	a	different	set	of	fac-
tors,	but	pair-wise,	by	the	above	procedure,	there	should	be	a	common	factor	between	
each	pair	yielding	three	additional	factors.		If	the	factors	are	A•B•C,	there	are	six	orders	
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to	compute	these	factors:	A•B’•C”,	B•A’•C”,	A•C’•B”,	C•A’•B”,	B•C’•A”,	and	C•B’•A”.		The	
three	different	pairings	are:	A•B’	with	B•A’,	A•C’	with	C•A’,	and	B•C’	with	C•B’.		In	par-
ticular,	for	n=105,	let	A	be	the	three-term	polynomial	(T3),	B	be	the	five-term	polyno-
mial	(T5),	and	C	be	the	seven-term	polynomial	(T7).		Comparing	AB’	with	A’B,	we	should	
get	ABE1	or	T3·T5·E1.		Similarly,	comparing	AC’	with	CA’,	we	should	get	ACE2		or	T3·T7·E2,	
and	comparing	BC’	with	CB’,	we	should	get	BCE3	or	T5·T7·E3.		It	will	be	shown	later	that	
these	factors	all	combine	into	seven	factors	of	a105+b105:	(a+b),	T3,	T5,	T7,	E1,	E2,	and	E3.		
And	the	E’s	can	be	combined	to	give	a	final	hidden	factor	for	a	total	of	eight.		
	
Testing	this	hypothesis	involves	a	lot	of	time-consuming	polynomial	division.		But	I	have	
completed	all	the	necessary	polynomial	divisions	and	verified	the	theory.		The	following	
is	a	summary	of	those	calculations.		[The	reader	may	skip	over	the	details	of	this	exam-
ple	to	the	end	for	the	algebraic	analysis	of	this	theory.	However,	seeing	the	details	will	
clarify	the	process.]	
	
So	now	we	consider	the	complete	Factoring	of	a105	+	b105:	
	
105	=	3·5·7,	p=0,	m=3.		We	will	factor	a105	+	b105	several	ways	to	look	for	all	the	hidden	
factors.	
	
k=7	,	j=15:	

a105	+	b105	=	(a15	+	b15)	•	(a90	–	a75b15	+	a60b30	–	a45b75	+	a30b60	–	a15b75	+	b90)	
k=5,	j=3:	

a15	+	b15	=	(a	+	b)	•	(a2	–	a1b1	+	b2)	•	(a12	–	a9b3	+	a6b6	–	a3b9	+	b12)	
k=3,	j=5:	

a15	+	b15	=	(a	+	b)	•	(a4	–	a3b1	+	a2b2	–	a1b3	+	b4)	•	(a10	–	a5b5	+	b10)	
Dividing	(a10	–	a5b5	+	b10)	by	(a2	–	a1b1	+	b2)		
gives	(a8	+	a7b1	–		a5b3	–	a4b4	–	a3b5	+	a1b7	+	b8).	
Dividing	(a12	–	a9b3	+	a6b6	–	a3b9	+	b12)	by	(a4	–	a3b1	+	a2b2	–	a1b3	+	b4)	gives	the	
same	8-degree	polynomial.	
So	a105	+	b105	=	(a	+	b)		

•	(a2	–	a1b1	+	b2)		
•	(a4	–	a3b1	+	a2b2	–	a1b3	+	b4)	
•	(a8	+	a7b1	–		a5b3	–	a4b4	–	a3b5	+	a1b7	+	b8)	

	 •	(a90	–	a75b15	+	a60b30	–	a45b75	+	a30b60	–	a15b75	+	b90)	
	
k=5,	j=21:	

a105	+	b105	=	(a21	+	b21)	•	(a84	–	a63b21	+	a42b42	–	a21b63	+	b84)	
k=7,	j=3:	

a21	+	b21	=	(a	+	b)	•	(a2	–	a1b1	+	b2)	•	(a18	–	a15b3	+	a12b6	–	a9b9	+	a6b12	–	a3b15	+	b18)	
k=3,	j=7:	

a21	+	b21	=	(a	+	b)	•	(a6	–	a5b1	+	a4b2	–	a3b3	+	a2b4	–	a1b5	+	b6)	•	(a14	–	a7b7	+	b14)	
Dividing	(a14	–	a7b7	+	b14)	by	(a2	–	a1b1	+	b2)		
gives	(a12	+	a11b1	–		a9b3	–	a8b4	+	a6b6	–	a4b8	–	a3b9	+	a1b11	+	b12).	
Dividing	(a18	–	a15b3	+	a12b6	–	a9b9	+	a6b12	–	a3b15	+	b18)	
	 by	(a6	–	a5b1	+	a4b2	–	a3b3	+	a2b4	–	a1b5	+	b6)	
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	 gives	the	same	12-degree	polynomial.		
So	a105	+	b105	=	(a	+	b)	

•	(a2	–	a1b1	+	b2)		
•	(a6	–	a5b1	+	a4b2	–	a3b3	+	a2b4	–	a1b5	+	b6)	
•	(a12	+	a11b1	–		a9b3	–	a8b4	+	a6b6	–	a4b8	–	a3b9	+	a1b11	+	b12)	
•	(a84	–	a63b21	+	a42b42	–	a21b63	+	b84)	

	
k=3,	j=35:	

a105	+	b105	=	(a35	+	b35)	•	(a70	–	a35b35	+	b70)	
k=7,	j=5:	

a35	+	b35	=	(a	+	b)	•	(a4	–	a3b1	+	a2b2	–	a1b3	+	b4)	•	(a30	–	a25b5	+	a20b10	–	a15b15	+	
a10b20	–	a5b25	+	b30)	

k=5,	j=7:	
a35	+	b35	=	(a	+	b)	•	(a6	–	a5b1	+	a4b2	–	a3b3	+	a2b4	–	a1b5	+	b6)	•	(a28	–	a21b7	+	a14b14	
–	a7b21	+	b28)	
Dividing	(a28	–	a21b7	+	a14b14	–	a7b21	+	b28)	by	(a4	–	a3b1	+	a2b2	–	a1b3	+	b4)	
gives	(a24	+	a23b1	–		a19b5	–	a18b6	–		a17b7	–	a16b8	+	a14b10	+	a13b11	+	a12b12	+	a11b13	+	
a10b14	–	a8b16	–	a7b17	–	a6b18	–	a5b19	+	a1b23	+	b24).	
Dividing	(a30	–	a25b5	+	a20b10	–	a15b15	+	a10b20	–	a5b25	+	b30)	by	(a6	–	a5b1	+	a4b2	–	
a3b3	+	a2b4	–	a1b5	+	b6)	also	gives	the	same	24-degree	polynomial	
So	a105	+	b105	=	(a	+	b)		

•	(a4	–	a3b1	+	a2b2	–	a1b3	+	b4)	
•	(a6	–	a5b1	+	a4b2	–	a3b3	+	a2b4	–	a1b5	+	b6)	
•	(a24	+	a23b1	–		a19b5	–	a18b6	–		a17b7	–	a16b8	+	a14b10	+	a13b11	+	a12b12	
+a11b13	+	a10b14	–	a8b16	–	a7b17	–	a6b18	–	a5b19	+	a1b23	+	b24)	
•(a70	–	a35b35	+	b70)	

	
If	we	can	put	all	the	hidden	factors	in	together,	we	would	get	the	following,	but	can	we	
justify	combining	them	together	into	one	set	of	factors?	
a105	+	b105	=	(a+b)	

•	(a2	–	a1b1	+	b2)	
•	(a4	–	a3b1	+	a2b2	–	a1b3	+	b4)	
•	(a6	–	a5b1	+	a4b2	–	a3b3	+	a2b4	–	a1b5	+	b6)	
•	(a8	+	a7b1	–		a5b3	–	a4b4	–	a3b5	+	a1b7	+	b8)	
•	(a12	+	a11b1	–		a9b3	–	a8b4	+	a6b6	–	a4b8	–	a3b9	+	a1b11	+	b12)	
•	(a24	+	a23b1	–		a19b5	–	a18b6	–		a17b7	–	a16b8	+	a14b10	+	a13b11	+	a12b12	+	a11b13	+		
a10b14	–	a8b16	–	a7b17	–	a6b18	–	a5b19	+	a1b23	+	b24).	

The	degree	of	the	product	would	be	1+2+4+6+8+12+24	=	57.		This	is	far	
from	the	required	105,	so	something	of	degree	48	must	be	missing.		There	must	
be	something	more	contained	in	the	polynomials	(a90	–	a75b15	+	a60b30	–	a45b75	+	
a30b60	–	a15b75	+	b90),	(a84	–	a63b21	+	a42b42	–	a21b63	+	b84),	and	(a70	–	a35b35	+	b70)	

	
	
The	factor	sets	of	a105	+	b105	are	equal	factorings	of	a105	+	b105	and	are	therefore	equal	to	
each	other.	(In	specifying	these	sets	I	have	eliminated	the	factor	(a+b)	from	each	set	
since	it	is	common	to	all	of	them.)	
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Set	1:	 (a2	–	a1b1	+	b2)	
•(a4	–	a3b1	+	a2b2	–	a1b3	+	b4)	
•(a8	+	a7b1	–		a5b3	–	a4b4	–	a3b5	+	a1b7	+	b8)	
•(a90	–	a75b15	+	a60b30	–	a45b45	+	a30b60	–	a15b75	+	b90)	

=	 	
Set	2:	 (a2	–	a1b1	+	b2)	

•(a6	–	a5b1	+	a4b2	–	a3b3	+	a2b4	–	a1b5	+	b6)	
•(a12	+	a11b1	–		a9b3	–	a8b4	+	a6b6	–	a4b8	–	a3b9	+	a1b11	+	b12)	
•(a84	–	a63b21	+	a42b42	–	a21b63	+	b84)	

=	
Set	3:	 (a4	–	a3b1	+	a2b2	–	a1b3	+	b4)	

•(a6	–	a5b1	+	a4b2	–	a3b3	+	a2b4	–	a1b5	+	b6)	
•(a24	+	a23b1	–		a19b5	–	a18b6	–		a17b7	–	a16b8	+	a14b10	+	a13b11	+	a12b12	+	a11b13	+	
a10b14	–	a8b16	–	a7b17	–	a6b18	–	a5b19	+	a1b23	+	b24)	
•(a70	–	a35b35	+	b70)	

	In	these	sets,	the	basic	factors	for	the	3	odd	prime	factors	of	105	(3,5,7)	are:	
	 (a2	–	a1b1	+	b2)	

(a4	–	a3b1	+	a2b2	–	a1b3	+	b4)	
(a6	–	a5b1	+	a4b2	–	a3b3	+	a2b4	–	a1b5	+	b6)	

And	the	three	hidden	factors	are:	
(a8	+	a7b1	–		a5b3	–	a4b4	–	a3b5	+	a1b7	+	b8)	
(a12	+	a11b1	–		a9b3	–	a8b4	+	a6b6	–	a4b8	–	a3b9	+	a1b11	+	b12)	
(a24	+	a23b1	–		a19b5	–	a18b6	–		a17b7	–	a16b8	+	a14b10	+	a13b11	+	a12b12	+	a11b13	+	
a10b14	–	a8b16	–	a7b17	–	a6b18	–	a5b19	+	a1b23	+	b24)	

The	leftover	factors	that	will	be	used	to	combine	everything	are:	
(a90	–	a75b15	+	a60b30	–	a45b45	+	a30b60	–	a15b75	+	b90)	
(a84	–	a63b21	+	a42b42	–	a21b63	+	b84)	
(a70	–	a35b35	+	b70)	

	
So	comparing	each	pair	of	sets	by	eliminating	a	common	factor,	we	have	from	sets	1	&	2:	

(a4	–	a3b1	+	a2b2	–	a1b3	+	b4)	
•(a8	+	a7b1	–		a5b3	–	a4b4	–	a3b5	+	a1b7	+	b8)	
•(a90	–	a75b15	+	a60b30	–	a45b45	+	a30b60	–	a15b75	+	b90)	

=	 (a6	–	a5b1	+	a4b2	–	a3b3	+	a2b4	–	a1b5	+	b6)	
•(a12	+	a11b1	–		a9b3	–	a8b4	+	a6b6	–	a4b8	–	a3b9	+	a1b11	+	b12)	
•(a84	–	a63b21	+	a42b42	–	a21b63	+	b84)	

and	from	sets	2	&	3:	
(a2	–	a1b1	+	b2)	
•(a12	+	a11b1	–		a9b3	–	a8b4	+	a6b6	–	a4b8	–	a3b9	+	a1b11	+	b12)	
•(a84	–	a63b21	+	a42b42	–	a21b63	+	b84)	

=	 (a4	–	a3b1	+	a2b2	–	a1b3	+	b4)	
•(a24	+	a23b1	–		a19b5	–	a18b6	–		a17b7	–	a16b8	+	a14b10	+	a13b11	+	a12b12	+	a11b13	+	
a10b14	–	a8b16	–	a7b17	–	a6b18	–	a5b19	+	a1b23	+	b24)	
•(a70	–	a35b35	+	b70)	

and	from	sets	1	&	3:	
(a2	–	a1b1	+	b2)	
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•(a8	+	a7b1	–		a5b3	–	a4b4	–	a3b5	+	a1b7	+	b8)	
•(a90	–	a75b15	+	a60b30	–	a45b45	+	a30b60	–	a15b75	+	b90)	

=	 (a6	–	a5b1	+	a4b2	–	a3b3	+	a2b4	–	a1b5	+	b6)	
•(a24	+	a23b1	–		a19b5	–	a18b6	–		a17b7	–	a16b8	+	a14b10	+	a13b11	+	a12b12	+	a11b13	+	
a10b14	–	a8b16	–	a7b17	–	a6b18	–	a5b19	+	a1b23	+	b24)	
•(a70	–	a35b35	+	b70)	

	
Each	of	these	pairs	of	sets	consists	of	three	different	factors,	but	the	products	in	each	set	
are	equal.		These	different	equal	factorings	imply	that	there	are	other	common	factors.		
Large	polynomial	divisions	yield	(a90	–	a75b15	+	a60b30	–	a45b45	+	a30b60	–	a15b75	+	b90)	=	
(a6	–	a5b1	+	a4b2	–	a3b3	+	a2b4	–	a1b5	+	b6)	•	[a	factor	of	25	terms	from	a84	to	b84]	
and	(a84	–	a63b21	+	a42b42	–	a21b63	+	b84)	=	(a4	–	a3b1	+	a2b2	–	a1b3	+	b4)	•	[a	factor	of	33	
terms	from	a80	to	b80]	
and	(a70	–	a35b35	+	b70)	=	(a2	–	a1b1	+	b2)	•	[a	factor	of	47	terms	from	a68	to	b68]	
Making	these	substitutions	in	sets	1,	2,	and	3	gives:	
	
Set	1:	 (a2	–	a1b1	+	b2)	

•(a4	–	a3b1	+	a2b2	–	a1b3	+	b4)	
•(a6	–	a5b1	+	a4b2	–	a3b3	+	a2b4	–	a1b5	+	b6)	
•(a8	+	a7b1	–		a5b3	–	a4b4	–	a3b5	+	a1b7	+	b8)	
•	[a	factor	of	25	terms	from	a84	to	b84]	

=	 	
Set	2:	 (a2	–	a1b1	+	b2)	

•(a4	–	a3b1	+	a2b2	–	a1b3	+	b4)	
•(a6	–	a5b1	+	a4b2	–	a3b3	+	a2b4	–	a1b5	+	b6)	
•(a12	+	a11b1	–		a9b3	–	a8b4	+	a6b6	–	a4b8	–	a3b9	+	a1b11	+	b12)	
•	[a	factor	of	33	terms	from	a80	to	b80]	

=	
Set	3:	 (a2	–	a1b1	+	b2)	

•(a4	–	a3b1	+	a2b2	–	a1b3	+	b4)	
•(a6	–	a5b1	+	a4b2	–	a3b3	+	a2b4	–	a1b5	+	b6)	
•(a24	+	a23b1	–		a19b5	–	a18b6	–		a17b7	–	a16b8	+	a14b10	+	a13b11	+	a12b12	+	a11b13	+	
a10b14	–	a8b16	–	a7b17	–	a6b18	–	a5b19	+	a1b23	+	b24)	
•	[a	factor	of	47	terms	from	a68	to	b68]	

	
So	there	must	be	some	relation	between	the	larger	factors	and	the	factors	from	analyz-
ing	the	different	factorings	pair-wise.		The	25-term	factor	of	degree	84	must	contain	the	
9-term	degree	12	factor	and	the	17-term	degree	24	factor.		Similarly,	the	33-term	degree	
80	factor	must	contain	the	7-term	degree	8	factor	and	the	17-term	degree	24	factor.		And	
the	47-term	degree	68	factor	must	contain	the	7-term	degree	8	factor	and	the	9-term	
degree	12	factor.		It	will	be	sufficient	to	verify	one	of	these	so	I	will	show	that	the	25-
term	degree	84	factor	has	the	9-term	degree	12	factor	and	the	17-term	degree	24	factor	
as	factors.		Note	that	84-12-24	=	48,	80-8-24	=	48,	and	68-8-12	=	48,	the	missing	degree	
that	was	noted	above.		So	the	combination	of	these	sets	must	lead	to	the	missing	48-
degree	polynomial	factor.	
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Let’s	perform	some	more	polynomial	division	and	test	this	theory.	
	
The	large	factor	of	the	first	set	is	(a84	+	a83b1	–	a77b7	–	a76b8	+	a70b14	–	a68b16	–	a63b21+	
a61b23	+	a56b28	+	a53b31	–	a49b35	–	a46b38	+	a42b42	–	a38b46	–	a35b49	+	a31b53+	a28b56	+	a23b61	–	
a21b63–	a16b68	+	a14b70	–	a8b76	–	a7b77	+	a1b83	+	b84)	
	
	
The	large	factor	of	the	second	set	is	(a80	+	a79b1	–	a75b5	–	a74b6	+	a70b10	+	a69b11	–	a65b15	–	
a64b16	+	a60b20	–	a58b22	–	a55b25	+	a53b27	+	a50b30	–	a48b32	–	a45b35	+	a43b37+	a40b40	+	a37b43	–	
a35b45–	a32b48	+	a30b50	+	a27b53	–	a25b55	–	a22b58	+	a20b60	–	a16b64	–	a15b65	+	a11b69	+	a10b70	–	
a6b74	–	a5b75	+	a1b79	+	b80)	
	
The	large	factor	of	the	third	set	is	(a68	+	a67b1	–	a65b3	–	a64b4	+	a62b6	+	a61b7	–	a59b9	–	
a58b10	+	a56b12	+	a55b13	–	a53b15	–	a52b16	+	a50b18	+	a49b19	–	a47b21	–	a46b22	+	a44b24	+	a43b25	
–	a41b27–	a40b28	+	a38b30	+	a37b31	–	a35b33	–	a34b34	–	a33b35	+	a31b37	+	a30b38	–	a28b40	–	a27b41	
+	a25b43	+	a24b44	–	a22b46	–	a21b47+	a19b49	+	a18b50	–	a16b52	–	a15b53	+	a13b55	+	a12b56	–	a10b58	
–	a9b59	+	a7b61	+	a6b62	–	a4b64	–	a3b65	+	a1b67+	b68)	
	

	
Let’s	test	this	theory	with	set	one.		The	large	84-degree	factor	has	as	a	factor	the	24-
degree	factor	from	set	three:	
(a84	+	a83b1	–	a77b7	–	a76b8	+	a70b14	–	a68b16	–	a63b21+	a61b23	+	a56b28	+	a53b31	–	a49b35	–	
a46b38	+	a42b42	–	a38b46	–	a35b49	+	a31b53+	a28b56	+	a23b61	–	a21b63–	a16b68	+	a14b70	–	a8b76	–	
a7b77	+	a1b83	+	b84)	=		
(a24	+	a23b1	–		a19b5	–	a18b6	–		a17b7	–	a16b8	+	a14b10	+	a13b11	+	a12b12	+	a11b13	+	a10b14	–	
a8b16	–	a7b17	–	a6b18	–	a5b19	+	a1b23	+	b24)	
•	(a60	+	a55b5	–		a45b15	–	a40b20	+	a30b30	–	a20b40	–	a15b45	+	a5b55	+	b60)	
	
This	60-degree	factor	then	has	as	a	factor	the	12-degree	factor	from	set	two:	
(a60	+	a55b5	–		a45b15	–	a40b20	+	a30b30	–	a20b40	–	a15b45	+	a5b55	+	b60)	=		
(a12	+	a11b1	–		a9b3	–	a8b4	+	a6b6	–	a4b8	–	a3b9	+	a1b11	+	b12)		
•	(a48	–	a47b1	+	a46b2	+	a43b5	–	a42b6	+	2a41b7	–	a40b8	+	a39b9	+	a36b12	–	a35b13	+	a34b14	–	
a33b15	+	a32b16	–	a31b17	–	a28b20	–	a26b22	–	a24b24	–	a22b26	–	a20b28	–	a17b31	+	a16b32	–	a15b33	
+	a14b34	–	a13b35	+	a12b36	+	a9b39	–	a8b40	+	2a7b41	–	a6b42	+	a5b43	+	a2b46	–	a1b47+	b48)	
	
This	means	that	we	have	now	merged	all	of	the	three	sets	into	one	with	all	of	the	previ-
ous	hidden	factors	included	and	have	found	the	missing	48-degree	polynomial	factor:	
	
a105	+	b105	=	(a+b)•	(a2	–	a1b1	+	b2)	

•(a4	–	a3b1	+	a2b2	–	a1b3	+	b4)	
•(a6	–	a5b1	+	a4b2	–	a3b3	+	a2b4	–	a1b5	+	b6)	
•(a8	+	a7b1	–		a5b3	–	a4b4	–	a3b5	+	a1b7	+	b8)	
•(a12	+	a11b1	–		a9b3	–	a8b4	+	a6b6	–	a4b8	–	a3b9	+	a1b11	+	b12)	
•(a24	+	a23b1	–		a19b5	–	a18b6	–		a17b7	–	a16b8	+	a14b10	+	a13b11	+	a12b12	+	a11b13	+	
a10b14	–	a8b16	–	a7b17	–	a6b18	–	a5b19	+	a1b23	+	b24)	
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•(a48	–	a47b1	+	a46b2	+	a43b5	–	a42b6	+	2a41b7	–	a40b8	+	a39b9	+	a36b12	–	a35b13	+	a34b14	
–	a33b15	+	a32b16	–	a31b17	–	a28b20	–	a26b22	–	a24b24	–	a22b26	–	a20b28	–	a17b31	+	a16b32	
–	a15b33	+	a14b34	–	a13b35	+	a12b36	+	a9b39	–	a8b40	+	2a7b41	–	a6b42	+	a5b43	+	a2b46	–	
a1b47+	b48)	

	
[All	of	the	preceding	is	the	result	of	many	days	of	work	resulting	in	seven	pages	of	dense	
hand	written	polynomial	divisions	carefully	checked	at	each	stage	for	errors.]	
	
I	investigated	whether	the	remaining	48-degree	factor	could	actually	be	a	combination	
of	multiple	occurrences	of	the	original	factors,	possibly	four	of	each	of	them,	two	being	
generated	each	with	the	second	and	third	ordering	sets:	

		(a2	–	a1b1	+	b2)	
•(a4	–	a3b1	+	a2b2	–	a1b3	+	b4)	
•(a6	–	a5b1	+	a4b2	–	a3b3	+	a2b4	–	a1b5	+	b6)	

The	product	of	four	of	each	of	these	three	would	account	for	the	48-degree	polynomial.		
Possibly	these	additional	factors	were	created	each	time	we	factored	the	original	poly-
nomial	using	a	different	ordering	of	the	prime	factors	of	105.			
	

To	test	this,	I	attempted	to	divide	the	33-term	48-degree	polynomial	by	(a6	–	a5b1	
+	a4b2	–	a3b3	+	a2b4	–	a1b5	+	b6),	but	that	failed.		Also	I	tried	dividing	it	by	(a4	–	a3b1	+	a2b2	
–	a1b3	+	b4),	and	that,	too,	failed.		Neither	of	these	are	factors	of	that	polynomial.		I	no-
ticed	some	symmetry	in	that	polynomial,	and	thought	it	might	be	factored	by	grouping	
into	a	three-term	polynomial	and	an	eleven-term	polynomial,	(33=3•11).		But	while	the	
first	and	third	eleven-term	parts	are	identical,	the	middle	one	is	very	different,	so	factor-
ing	by	grouping	does	not	work	either.	

	
At	this	point	I	have	no	further	explanation	of	the	origin	of	the	33-term	48-degree	factor	
and	consider	it	a	deeper	level	hidden	factor,	revealed	when	all	the	other	factors	are	inte-
grated	into	one	set	of	factors.	So	from	this	analysis	the	final	factors	of	a105	+	b105	are:		

(a+b)	
•(a2	–	a1b1	+	b2)	
•(a4	–	a3b1	+	a2b2	–	a1b3	+	b4)	
•(a6	–	a5b1	+	a4b2	–	a3b3	+	a2b4	–	a1b5	+	b6)	
•(a8	+	a7b1	–		a5b3	–	a4b4	–	a3b5	+	a1b7	+	b8)	
•(a12	+	a11b1	–		a9b3	–	a8b4	+	a6b6	–	a4b8	–	a3b9	+	a1b11	+	b12)	
•(a24	+	a23b1	–		a19b5	–	a18b6	–		a17b7	–	a16b8	+	a14b10	+	a13b11	+	a12b12	+	a11b13	+	
a10b14	–	a8b16	–	a7b17	–	a6b18	–	a5b19	+	a1b23	+	b24)	
•(a48	–	a47b1	+	a46b2	+	a43b5	–	a42b6	+	2a41b7	–	a40b8	+	a39b9	+	a36b12	–	a35b13	+	a34b14	
–	a33b15	+	a32b16	–	a31b17	–	a28b20	–	a26b22	–	a24b24	–	a22b26	–	a20b28	–	a17b31	+	a16b32	
–	a15b33	+	a14b34	–	a13b35	+	a12b36	+	a9b39	–	a8b40	+	2a7b41	–	a6b42	+	a5b43	+	a2b46	–	
a1b47+	b48)	

	
The	following	is	an	algebraic	proof	of	the	preceding	result	for	a105	+	b105.		Let	A,	B,	C	be	
the	basic	prime	factors	of	a105+b105	=	Q,	the	polynomial	involved,	based	on	the	odd	prime	
factors	of	n	where	n	=	105,	m	=	3,	in	this	case.		In	any	factoring,	let	A’,		B	’,	C’	be	the	sec-
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ond	factors,	and	let	A”,	B”,	C”	be	the	third	large	degree	factors	initially	obtained.		In	this	
discussion	all	binomial	factors	of	the	form	of	ac	–	bc	and	ac	+	bc,	where	c=2p	are	omitted.			
	
As	noted	previously,	Q	=	AB’C”	=	BA’C”	by	the	two	factorings	resulting	from	reversing	the	
factorings	from	the	last	two	primes.		Since	AB’	=	BA’,	there	must	be	a	common	factor	be-
tween	these.	Since	the	degree	of	A	<	degree	of	A’	and	the	degree	of	B	<	degree	of	B’,	A	
must	be	a	factor	of	A’	and	B	a	factor	of	B’.		A’	=	AE1	and	B’	=	BE1.		By	substitution	Q	=	
ABE1C”	and	Q	=	B’A’E1C”	for	some	additional	factor	E1.		Choose	Q	=	ABE1C”.		
Also	Q	=	AC’B”	=CA’B”,	so	similarly,	AC’	=	CA’.		C’	=	CE2	and	A’	=	AE2,	and	Q	=	ACE2B”.	
In	the	same	way	Q	=	BC’A”	=	CB’A”,	C’	=	CE3,	B’	=	BE3,	and	Q	=	BCE3A”.	
	
Since	all	of	these	are	equal,	Q	=	ABE1C”	=	ACE2B”	=	BCE3A”,	C”	must	combine	C,	E2,	and	E3,	
B”	must	combine	B,	E1,	and	E3,	A”	must	combine	A,	E1,	and	E2.		So	Q	=	ABE1(CE2E3G)	=	
ACE2(BE1E3G)	=	BCE3(AE1E2G)	=	ABCE1E2E3G	for	some	new	hidden	factor	G.		Since	G	is	
the	only	difference	between	each	of	these,	it	has	to	be	the	same	quantity	in	each	case.	
	

In	this	case,	the	33-term	48-degree	factor	is	the	lower	level	hidden	factor	G	re-
vealed	when	the	other	first	level	hidden	factors	are	combined.		What	we	have	shown	is	
that	with	one	odd	prime	factor	of	n,	we	get	one	factor	in	addition	to	the	binary	factor,	e.g.	
a3	+	b3	=	(a	+	b)	•	(a2	–	a1b1	+	b2).		With	two	odd	prime	factors	of	n	we	get	two	factors	in	
addition	to	the	binary	factor	and	one	hidden	factor	found	by	comparing	different	orders	
of	factoring.		With	three	odd	prime	factors	of	n,	we	get	three	factors,	three	hidden	factors	
from	comparing	the	three	factors	pair-wise,	and	one	deeper	hidden	factor	revealed	
when	we	combine	the	three	hidden	factors	into	one	set.		This	has	been	demonstrated	
above	at	this	point	in	this	paper.			

The	binomial	coefficients	describe	the	process	of	revealing	the	number	of	factors.	

When	n	has	two	prime	factors,	
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combination	of	the	four	deeply	hidden	factors	into	one	set.			For	example	there	are	six	
ways	of	comparing	four	factors	two	at	a	time:	AB,	AC,	AD,	BC,	BD,	and	CD.		Each	of	these	
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leads	to	a	hidden	factor.		Hence	

€ 

4
2
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 	=	6	describes	the	number	of	first	level	hidden	factors	

in	the	case	m=4.		When	we	take	these	and	add	another	factor	we	get	

€ 

4
3
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 	=	4	hidden	fac-

tors	at	the	next	level.	
Summarizing	this	for	different	numbers	of	discrete	odd	prime	factors	of	n:	
m=0:	1	set	of	binary	factors	(1)	
m=1:	1	set	of	binary	factors,	1	factor	(2)	
m=2:	1	set	of	binary	factors,	2	factors,	1	hidden	factor	(4)	
m=3:	1	set	of	binary	factors,	3	factors,	3	hidden	factors,	1	deeply	hidden	factor	(8)	
m=4:	1	set	of	binarys,	4	factors,	6	hiddens,	4	deep	hiddens,	1	very	hidden	(16)	

Perhaps	analyzing	a1155	+	b1155	(1155	=	3•5•7•11,	n	=	the	product	of	four	odd	prime	fac-
tors),	would	verify	the	above.		But	this	represents	an	exponential	increase	in	the	amount	
and	size	of	polynomial	divisions	that	must	be	performed	and	so	will	not	be	attempted,	
but	we	will	analyze	it	algebraically	below.			
	
This	pattern	follows	that	of	Pascal’s	Triangle	for	the	coefficients	of		(a+b)n.		There	is	simi-
larity	between	the	ways	of	comparing	the	original	factors	pair-wise	and	the	binomial	ex-
pansion	of	the	power	of	two	terms.		This	implies	the	number	of	factors	of	an	±	bn	when	n	

=	

€ 

2p fi
i=1

m

∏ 	is	

€ 

m
0
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 	+	

€ 

m
1
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 	+	

€ 

m
2
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 	+	

€ 

m
3
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 	+	…	+	

€ 

m
m
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 	=	2m,	not	counting	the	separate	binary	

factors	resulting	from	an	-	bn,	but	only	counting	all	the	binary	factors	as	a	group	corre-

sponding	to	

€ 

m
0
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ .		But	remembering	that	duplicate	factors	do	not	generate	hidden	fac-

tors	(since	the	order	of	identical	factors	makes	no	difference	and	hence	no	hidden	fac-
tor),	the	formula	must	be	adjusted	accordingly.			

For	n	=	

€ 

2p fi
i=1

m

∏ ,	and	m=r+s,	where	the	r	factors	are	distinct	and	the	s	factors	are	dupli-

cates	of	some	of	the	r	factors,	the	number	of	factors	of	an	+	bn	is	2r	+	s	and	the	number	of	
factors	of	an	-	bn	is	2r	+	s	+	p.	
	

This	analysis	does	not	include	the	factors	that	arise	from	factors	of	the	form	
    

€ 

a2ib2(k−i)

i=0

k

∑ .	

These	factors	only	arise	when	there	is	a	factor	of	the	form	an	–	bn	where	n	contains	at	
least	one	odd	prime.		This	procedure	will	generate	p	new	factors	for	each	of	the	odd	
prime	factors	of	n.			
	
So	the	formula	for	the	number	of	factors	of	an	–	bn	is	2r	+	s	+	p	•	(m+1).	
The	number	of	factors	of	an	+	bn	is	2r	+	s.	
	
We	can	now	verify	the	number	of	hidden	factors	in	the	case	of	an	+	bn	with	four	distinct	
odd	prime	factors	of	n	by	representing	each	factor	as	a	single	variable	and	performing	
the	same	algebra	that	was	used	in	the	case	of	three	odd	prime	factors.	Let	the	four	dis-
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tinct	odd	prime	factors	lead	to	the	polynomial	factors	A,	B,	C,	and	D	of	Q,	the	degree	n	
polynomial.		There	are	4!	=	24	ways	of	ordering	these	factors.		Representing	the	order	of	
the	factors	with	accents	(since	the	exponents	will	be	different	depending	on	when	the	
factor	is	determined)	with	the	largest	set	of	accents	for	the	first	factor	determined	and	
the	least	number	of	accents	for	the	last,	we	have	AB’C’’D’’’,	BA’C’’D’’’,	etc.		Holding	the	C’’	
and	D’’	constant	results	in	twelve	combinations	involving	the	pairs	A-B,	A-C,	A-D,	B-C,	B-
D,	C-D.		For	each	of	these	there	are	two	orders,	e.g.	AB’	and	BA’.		By	the	procedure	de-
scribed	above,	each	of	these	pairs	produces	a	hidden	factor.		I	will	refer	to	them	as	Ei:	
ABE1C’’D’’’,	ACE2C’’D’’’,	ADE3C’’D’’’,	BCE4C’’D’’’,	BDE5C’’D’’’,	CDE6C’’D’’’.		Each	of	these	oc-
curs	twice	as	the	C’’	and	D’’’	can	be	reversed,	e.g.	ABE1C’’D’’’	and	ABE1D’’C’’’.			
	
First	consider	ABE1C’’D’’’,	ACE2B’’D’’’,	and	BCE4A’’D’’’.	Since	all	of	these	are	equal,	C’’	=	
CE2E4,	B’’	=	BE1E4,	and	A’’	=	AE1E2,	so	they	can	be	combined	leading	to	a	new	hidden	fac-
tor	F1.		So	Q	=	ABCE1E2E4F1D’’’.			
Similarly	from	the	group	three	factorings	based	on	factors	ending	with	C’’’,	Q	=	
ABDE1E3E5F2C’’’.		From	the	B’’’	group	we	get	Q	=	ACDE2E3E6F3B’’’,	and	from	the	A’’	group	
we	get	Q	=	BCDE4E5E6F4A’’’.	
	
Since	Q	=	ABCE1E2E4F1D’’’	=	ABDE1E3E5F2C’’’=	ACDE2E3E6F3	B’’’	=	BCDE4E5E6F4	A’’,	each	of	
the	A’’’,	B’’’,	C’’’,	and	D’’’	must	contain	what	that	factoring	lacks	from	the	other	three	plus	
a	new	hidden	factor	G.		So		D’’’=DE3E5E6F2F3F4G,			C’’’=CE2E4E6F1F3F4G,			
B’’’=BE1E4E5F1F2F4G,			and	A’’’=AE1E2E3F1F2F3G.			
Now	combining	all	of	these	together	gives	Q	=	ABCDE1E2E3E4	E5	E6F1F2F3F4G,	16	factors	
including	the	binary	factor	group,	as	per	the	formula	proposed	above	including	the	bi-
nomial	coefficients	for	the	number	of	factors	at	each	level:	1	binaries,	4	originals,	6	E’s,	4	
F’s	,	and1	G.	
	
One	final	example	that	illustrates	everything	I	have	presented	in	this	paper:	The	factor-
ing	of	a252	–	b252.	In	this	case,	n	=	252	=	22•32•7,	m=3,	p=2,	r=2,	s=1	

a252	–	b252	=	(a36	–	b36)	•	(a216	+	a180b36	+	a144b72	+	a108b108	+	a72b144	+	a36b180	+	b216)	
(by	formula	I,	k=7,	j=36.)	

a36	–	b36	=	(a4	–	b4)	•	(a32	+	a28b4	+	a24b8	+	a20b12	+	a16b16	+	a12b20	+	a8b24	+	a4b28	+	
b32)			(by	formula	I,	k=9,	j=4.)		

a36	–	b36	=	(a	–	b)	•	(a	+	b)	•	(a2	+	b2)	•	(a32	+	a28b4	+	a24b8	+	a20b12	+	a16b16	+	a12b20	+	
a8b24	+	a4b28	+	b32)			(by	formula	II.)	

At	this	point	we	could	apply	formulas	III	and	IV,	but	since	this	would	complicate	
the	polynomial	division	to	find	the	hidden	factor,	these	factorings	will	be	post-
poned	until	that	factor	is	determined.	

a252	–	b252	=	(a	–	b)	•	(a	+	b)	•	(a2	+	b2)	•	(a32	+	a28b4	+	a24b8	+	a20b12	+	a16b16	+	a12b20	
+	a8b24	+	a4b28	+	b32)	•	(a216	+	a180b36	+	a144b72	+	a108b108	+	a72b144	+	a36b180	+	
b216)		

Also	
a252	–	b252	=	(a28	–	b28)	•	(a224	+	a196b28	+	a168b56	+	a140b84	+	a112b112	+	a84b140	+	

a56b168	+	a28b196	+	b224)	(by	formula	I,	k=9,	j=28.)	
a28	–	b28	=	(a4	–	b4)	•	(a24	+	a20b4	+	a16b8	+	a12b12	+	a8b16	+	a4b20	+	b24)			(by	formula	I,	

k=7,	j=4.)	
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a252	–	b252	=	(a	–	b)	•	(a	+	b)	•	(a2	+	b2)	•	(a24	+	a20b4	+	a16b8	+	a12b12	+	a8b16	+	a4b20	+	
b24)•	(a224	+	a196b28	+	a168b56	+	a140b84	+	a112b112	+	a84b140	+	a56b168	+	a28b196	+	
b224)	(by	formula	II.)	

By	dividing	the	degree	24	factor	into	the	degree	216	factor	or	dividing	the	degree	
32	factor	into	the	degree	224	factor,	we	get	a	31-term	degree	192	hidden	factor.	
Note:	the	degree	192	factor	can	also	be	found	by	ignoring	the	22	factors	of	n	and	
dividing	the	resulting	degree	54	factor	(216/4=54)	by	the	degree	6	factor	
(24/4=6)	and	then	multiplying	each	of	the	exponents	of	the	resulting	degree	48	
factor	by	4	to	get	the	required	degree	192	factor,	which	is	what	I	did.	

So,	
a252	–	b252	=	(a	–	b)	•	(a	+	b)	•	(a2	+	b2)	•	(a24	+	a20b4	+	a16b8	+	a12b12	+	a8b16	+	a4b20	+	

b24)	•	(a32	+	a28b4	+	a24b8	+	a20b12	+	a16b16	+	a12b20	+	a8b24	+	a4b28	+	b32)	•	(a	31-
term	degree	192	factor)	

Now	we	can	make	the	formula	III	and	IV	factorings.	
a252	–	b252	=	(a	–	b)	•	(a	+	b)	•	(a2	+	b2)	•	(a24	+	a20b4	+	a16b8	+	a12b12	+	a8b16	+	a4b20	+	

b24)	•	(a8	+	a4b4	+	b8)	•	(a24	+	a12b12	+	b24)	•	(a	31-term	degree	192	factor)	(by	
formula	IV)	

a252	–	b252	=	(a	–	b)	•	(a	+	b)	•	(a2	+	b2)	•	(a6	+	a5b	+	a4b2	+	a3b3	+	a2b4	+	ab5	+	b6)	•	
(a6	–	a5b	+	a4b2	–	a3b3	+	a2b4	–	ab5+	b6)	•	(a12	–	a10b2	+	a8b4	–	a6b6	+	a4b8	–	a2b10	+	
b12)	•	(a8	+	a4b4	+	b8)	•	(a24	+	a12b12	+	b24)	•	(a	31-term	degree	192	factor)	(by	
formula	III	twice)	

a252	–	b252	=	(a	–	b)	•	(a	+	b)	•	(a2	+	b2)	•	(a6	+	a5b	+	a4b2	+	a3b3	+	a2b4	+	ab5	+	b6)	•	
(a6	–	a5b	+	a14b2	–	a3b3	+	a2b4	–	ab5+	b6)	•	(a12	–	a10b2	+	a8b4	–	a6b6	+	a4b8	–	a2b10	
+	b12)		•	(a2	+	ab	+	b2)	•	(a2	–	ab	+	b2)		•	(a4	–	a2b2	+	b4)	•	(a24	+	a12b12	+	b24)	•	(a	
31-term	degree	192	factor)	(by	formula	III	twice.)	

a252	–	b252	=	(a	–	b)	•	(a	+	b)	•	(a2	+	b2)	•	(a6	+	a5b	+	a4b2	+	a3b3	+	a2b4	+	ab5	+	b6)	•	
(a6	–	a5b	+	a14b2	–	a3b3	+	a2b4	–	ab5+	b6)	•	(a12	–	a10b2	+	a8b4	–	a6b6	+	a4b8	–	a2b10	
+	b12)	•	(a2	+	ab	+	b2)	•	(a2	–	ab	+	b2)	•	(a4	–	a2b2	+	b4)	•	(a6	+	a3b3	+	b6)	•	(a6	–	
a3b3	+	b6)	•	(a12	–	a6b6	+	b12)	•	(a	31-term	degree	192	factor)	(by	formula	III	
twice.)	

	
Note	adding	the	degrees	of	each	factor:	1+1+2+6+6+12+2+2+4+6+6+12+192	=	

252.	
Also	note	that	for	the	number	of	factors	formula,	2r	+	s	+	p	•	(m+1),	r=2,	s=1,	p=2,	

m=3,	so	the	number	of	factors	is	22	+	1	+	2•(3+1)	=	4	+	1	+	8	=	13.		This	is	the	
number	of	factors	shown	above	for	a252	–	b252.	

	
In	case	you	are	interested,	here	is	the	31-term	degree	192	factor:	
	
a192	–	a188b4	+	a164b28	–	a160b32	+	a156b36	–	a152b40	+	a136b56	–	a132b60	+	a128b64	–	a124b68	+	
a120b72	–	a116b76	+	a108b84	–	a104b88	+	a100b92	–	a96b96	+	a92b100	–	a88b104+	a84b108	–	a76b116	+	
a72b120	–	a68b124	+	a64b128	–	a60b132	+	a56b136	–	a40b152	+	a36b156	–	a32b160	+	a28b164	–	a4b188	
+	b192	
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