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Nitesh Mathur

Abstract

We had previously analyzed Dr. Manjul Bhargava’s paper, The Factorial Function
and Generalizations. Dr. Bhargava generalizes the factorial function for any subset
of the integers. The goal of this research paper was to utilize the methods employed
in Dr. Bhargava’s paper to find combinatorial patterns within the factorial function.
Mathematica code was generated to compute generalized factorials given a subset
of the integers based on p-orderings and p-sequences. By the end of the research,
algorithms were proposed to reverse this process, that is, given a sequence of generalized
factorials, generating the subset it came from originally.
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Chapter 1

Introduction

Dr. Manjul Bhargava wrote a paper on the “Factorial Function and Generalizations”
in 2000. The factorial function, defined on the integers, is the product of consecutive
integers less than or equal to itself. More formally, it is defined as follows:

n! =
n∏

k=1

k = n(n− 1)(n− 2)...(3)(2)(1)

The factorial function occurs frequently in mathematics, especially in combinatorics
and number theory. The motivating question of Dr. Bhargava’s paper was as follows:
“Is there some other function–some generalized function–that we could change the
ordinary factorials,so [certain number-theoretic theorems] would still remain true?”
[1]. The author then proceeded to provide a methodology to generate factorials on
any subset of the integers. At the end of the paper, the author posed an intriguing
question, “What is the ‘binomial theorem’ for generalized binomial coefficients?” [1].

Two years ago, I had conducted research on the “Generalization of the Binomial
Theorem and Square Number Patterns.” We found patterns in square numbers and
utilized the Binomial Theorem to generalize these patterns. While extending the
formulas from integers to real numbers, combinatorial identities were utilized. The
initial purpose of this research project was to compare the combinatorial identities
that occured in our prior square number research and relate it to the properties of
the factorial function.

The research process occured in three phases. In the first phase, I closely
analyzed Dr. Bhargava’s paper, familiarized myself with different topics in combinatorics,
and conducted literary research on papers relating to the Generalized Factorials and
binomial coefficients.

In phase two, Mathematica code was generated based on Bhargava’s methodology
of generating factorials on any subset of the integers. First, we checked our solutions
from known examples, but later, we experimented with different subsets. Throughout
this experimentation process, several patterns were found and analyzed. This code
became a tool for us through the end of the research.

In phase three, we did original research and attempted to implement a new
algorithm. Earier, we had looked at another work [10] in which particular generalized
factorials were connected to a power series. If an algorithm could be made in
which the factorials and power series were directly connected, then we could apply
several calculus methods on the generalized factorials, which would increase the
scope of its applications. In order to achieve this, we had to attempt to solve several
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sub-problems. One of these problems, reversing the Bhargava factorial process,
became the focus of this research project.

1.1 Phase I: Background and Literary Research

The major inspiration of the paper comes from Dr. Manjul Bhargava’s Factorial
Function and Generalization. In the following section, we will emphasize important
features from that paper. We want to find what it means to be a factorial for any
subset S ⊂ Z. The procedure is described below:

1. For a subset S of the integers, fix a prime number, p.

2. A p-ordering of S is a sequence {ai}∞i=0 of elements of S that is formed by
the following methodology:

a. Choose an element a0 ∈ S.

b. Choose a1 ∈ S that minimizes the highest power of p that divides a1 − a0.

c. Choose a2 ∈ S that minimizes the highest power of p that divides (a2−a0)(a2−
a1).

d. Similarly, choose ak ∈ S that minimizes the highest power of p that divides
(ak − a0)(ak − a1) · · · (ak − ak−1).

3. Repeat this process for all the prime numbers p.

4. The set {a0, a1, a2, ....} is referred to as the ‘p-ordering’ of the set S. Note,
p-orderings need not be unique.

5. Let vk(S, p) be the highest power of p that divides (ak − a0)(ak − a1) · · · (ak −
ak−1). Then, {v0(S, p), v1(S, p), ...} is referred to as the associated ‘p-sequence.’
(Assume, v0(S, p) = 1). Note, regardless of the choice of the p-ordering, the
p-sequence is unique.

6. The generalized factorial for the integer k (associated with the infinite set S)
is defined as follows:

k!S =
∏
p

vk(S, p) (1.1)

where the product is taken over all prime numbers p[1].

1.2 Example

1. Consider the set of prime numbers. Let S = {2, 3, 5, 7, ...} ⊂ Z.

Fix prime, p = 2

2. The first few iterations of the p-orderings and p-sequences are given below.

a. Choose a0 = 19 from S.

Chapter 1 Nitesh Mathur 5
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b. Choose a1 that minimizes that highest power of 2 that divides a1 − 19. The
only possibility is a1 = 2.

2m|19− 2 = −17⇒ 20 = 1| − 17. Hence, v1(P, 2) = 1

c. Choose a2 that minimizes the highest power of 2 that divides (a2−19)(a2−2)
After some experimentation, it can be seen that a2 = 5 and v2(P, 2) = 2.

d. Choose a3 that minimizes the highest power of 2 that divides (a3 − 19)(a3 −
2)(a3 − 5). It can be seen that a3 = 17 and v3(P, 3) = 8

e. Continue this process for the elements in S and observe the related p-orderings
and p-sequences.

3. The p-ordering and p-sequence for p = 2 is as follows:

P-ordering: {19, 2, 5, 17, 23, 31, ...}
P-sequences: {1, 1, 2, 8, 16, 128, ...}

4. Repeat this process for all prime numbers p.

A p-ordering and p-sequence for p = 3 is as follows:

P-ordering: {2, 3, 7, 5, 13, 17, 19, ...}
P-sequence: {1, 1, 1, 3, 3, 9, ...}

5. A p-ordering and p-sequence for p = 5 is as follows:

P-ordering: {2, 3, 5, 19, 11, 7, 13, ...}
P-sequence: {1, 1, 1, 1, 1, 5, ...}

6. Compute the generalized factorial. Denote the primes by P .

k!P =
∏
p

vk(P, p)

p = 2 p = 3 p = 5 p = 7 ... k!p
k = 0 1 1 1 1 ... 1
k = 1 1 1 1 1 ... 1
k = 2 2 1 1 1 ... 2
k = 3 8 3 1 1 ... 24
k = 4 16 3 1 1 ... 48
k = 5 128 9 5 1 ... 5760

Table 1.1: Generalized Factorial Table for the Subset of Primes

Note, we had to multiply across each row to compute the factorial on that
index.

For example, 5!P = 128 · 9 · 5 · 1 · ... · 5760

Chapter 1 Nitesh Mathur 6
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1.3 Generalized Factorials for Specific Cases

Just as we observed above, one can construct the set of generalized factorials by
following the procedure provided by Bhargava.

1. Prime numbers:

k!S = {1, 1, 2, 24, 48, 5760, 11520, ...}

2. Square Numbers:

k!S = {1, 1, 12, 360, 20160, ...} =
(2k)!

2

3. Even Integers:
k!S = {1, 2, 8, 24, ..., } = 2k × k!

4. Set of Integers of form an + b:

k!S = {ak · k!}∞k=0

5. Set of integers of form 2n:

k!S = {(2k − 1) · (2k − 2) · (2k − 2k−1)}∞k=0

6. Natural Numbers:

k!S = {1, 1, 2, 6, 24, 120, 720, ..., } = k!

Notice, that even while using this method based on p-orderings and p-sequences,
the factorial over the natural numbers remain the same. The author proves that
the theorems on the factorials remain true even after the idea of the generalized
factorial is applied.

1.4 Theorems Restated

In the beginning of his paper, Bhargava introduces several theorems in number
theory that make use of the factorial function and combinatorial identities. Later,
he proves that those theorems hold true even when extended to the generalized
factorials. These theorems are stated below.

Theorem 1 For any nonnegative integers k and l, (k + l)!s is a multiple of k!sl!s.

Theorem 2 Let f be a primitive polynomial of degree k and let d(S, f) =gcd{f(a) :
a ∈ S}. Then, d(S, f) divides k!S.

Theorem 3 The number of polynomial functions from S to Z/nZ is given by

n−1∏
k=0

n

gcd(n, k!S)

Chapter 1 Nitesh Mathur 7
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Theorem 4 Let a0, a1, ...an ∈ S be any n + 1 integers. Then their product of their
pairwise differences ∏

i<j

(ai − aj)

is a multiple of 0!S1!S...n!S

Theorem 5 Let S be a subset of Zn(or of Rn, where R is any Dedekind ring). Then
for the fixed ordering M0,M1, ..., of the monomials Z[x1, ..., xn], a p-ordering of S
is a sequence a0, a1, ... of elements in S inductively chosen to minimize the highest
power of p dividing the determinant

V (a0, a1, ..., ak) =

M0(a0) M1(a0) M2(a0) ... Mk(a0)
M0(a1) M1(a1) M2(a1) ... Mk(a1)

...
...

...
. . .

...
M0(ak) M1(ak) M2(ak) ... Mk(ak)

The associated p-sequence of S is then given by

vk(S, p) = wp
V (a0, a1, ..., an)

V (a0, a1, ..., an−1)
)

, and the generalized factorial k!s is

k!s =
∏
p

vk(S, p)

[1]

1.5 Posed Questions by the Author

Towards the end of the paper, the author states some questions posed by his audience
as well his own questions. Some of the posed questions that interested me prior to
this research were as follows:

1. For a subset S ⊂ Z, is there a natural combinatorial interpretation of k!S?

2. What is the natural combinatorial interpretation for (nk)S =
n!S

k!S(n− k)!S
coefficients?

3. What is the ”binomial theorem” for generalized binomial?

4. It appears that the factorials over the subset of primes is the product of the
first few Bernoulli numbers. He states that although this can be verified using
Von Staudt Theorem, “is there a deeper explanation of this rather striking
connection”?

This question changed the direction of my research process.

[1]

Chapter 1 Nitesh Mathur 8
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1.6 Other Papers

Apart from Dr. Bhargava’s paper, I read some other papers as well to gain
background and insight into this problem. Andrew M. Crabbe’s Generalized Factorial
Functions and Binomial Coefficients relates directly to the initial topic of research.
The paper explores the binomial coefficient and how it connects with the generalized
factorial. One of theorems is especially fascinating and is described below:

Theorem 6 For 0 < k < n, n ∈ N, on the generalized Pascal’s Triangle for a subset
S, the product of six entries surround

(
n
k

)
S is a perfect square [3].

(
n− 1

k − 1

)
S

·
(
n− 1

k

)
S

·
(

n

k − 1

)
S

·
(

n

k + 1

)
S

·
(
n + 1

k

)
S

·
(
n + 1

k + 1

)
S

= a2, where a ∈ Z

(1.2)
Here we can see that using generalized factorials, the author has combined

binomial coefficients and square numbers.
Next, Saranya G. Nair and T.N. Shorey utilize the product of consecutive integers

to solve other combinatorial problems. They define the product of consecutive
integers as follows:

∆(x, k) = x(x + 1) · ... · (x + k − 1) (1.3)

Instead of utilizing factorials and multiplying with decreasing order, they look at
this from another perspective (For example, ∆(2, 5) = 2·3...·(2+5−1) = 2·3·4·5·6)).

An interesting approach might be to use the ∆ function to explore the factorial
function. [5]

Although the initial research goal was to explore the relationship between the
Binomial Theorem and the Generalized Factorial, interesting questions in Michael
R. Pilla’s presentation changed the initial goal.

In this presentation, the denominator of certain Taylor series expansions happened
to be generalized factorials of certain subsets of the integers. The results from this
presentation are stated below.

1.6.1 Summary of Michael R. Pilla’s Presentation

1. (ex)m =
∑∞

n=0

mn

n!
xn = 1 +

mx

1!
+

m2x2

2!
+ ...

2. (
a

a− x
)m = 1+

mx

a
+
m(m− 1)x2

2a2
+
m(m− 1)(m− 2)x3

6a3
+... =

∑∞
n=0

PaN+b,n(m)xn

n!aN+b

3. cosm(
√
x) = 1− mx

2
+

m + 3m(m− 1)x2

24
− ... =

∑∞
n=0

P2T,n(m)xn

n!2T

4. 2 cosm(
√
x) =

∑∞
0

PZ2,n(m)xn

n!Z2

5. (
− ln(1− x)

x
)m = 1 +

mx

2
+

m...

24
+

...

48
=
∑∞

0

Pp,n(m)xn

n!p

Chapter 1 Nitesh Mathur 9
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Summary of n-analogues

Set Factorial Analogue
N n!N = n! (ex)m

aN + b n!aN+b = ann! (
a

a− x
)m

2T n!2T = (2n)! cosm(
√
x)

Z2 n!Z2 =
(2n)!

2
2 cosm(

√
x)

P n!P =
∏

p p

⌊k − 1

p− 1

⌋
+

⌊ k − 1

p(p− 1)

⌋
+

⌊ k − 1

p2(p− 1)

⌋
+...

(
− ln(1− x)

x
)m

Table 1.2: Table of Function Analogues to the Generalized Factorial

Chapter 1 Nitesh Mathur 10



Chapter 2

Initial Research Questions

2.1 Guiding Questions

Before we had started the research, these were some of the guiding questions that I
had proposed.

1. In my earlier research, we derived formulas for taking the differences and sums
of any number across any power. Can we find similar formulas if we apply
factorial to a number instead of a power? For example do interesting patterns
emerge if we observe 6!− 5! or (62)!− (52)!

2. If we find a relationship between squares and factorials, can we define combinatorial
formulas for permutations and combinations solely through square numbers
and the binomial theorem?

3. Dr. Manjul Bhargava utilized a process known as ‘p-ordering’ to define the
generalized factorial. Can we use ‘p-ordering’ on the binomial theorem for the
‘generalized binomial coefficient’?

4. Can the combination of the binomial theorem and generalized factorials be
used to solve other problems in a unique way. Examples include “Sum of Two
Squares” Problem, or expand on new derivations for other functions like the
Riemann Zeta Function. 1

5. Lastly, before the square number research, I worked on the “Laws of Quadratic
Reciprocity.” This law is known in mathematics because it has over 200 proofs
for the same law. I wonder if any part of our work can be utilized to construct
another proof on the Law of Quadratic Reciprocity. 2

1The Riemann Zeta Function is ζ(s) =
∑∞

n=1

1

ns
. For example ζ(2) =

1

12
+

1

22
+

1

32
.... In

1859, Bernard Riemann published “On the Number of Primes Less Than a Given Magnitude”. It
contains what is now known as the ’Riemann Hypothesis,’ an unproven hypothesis regarding the
zeta function which is the basis of several important findings

2The Law of Quadratic Reciprocity. gives conditions of the solvability of quadratic equations
mod prime numbers. This law is fascinating because of its 240 unique proofs after Gauss published
four proofs of his own in the nineteenth century.
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2.2 Proposed Methodology

1. The first step is to explore basic patterns. Write out the first few factorials,
sums and differences, and products. Then, observe any interesting patterns.

For example, complete the following lists and note patters:

(a) {0!, 1!, 2!, 3!, 4!, ...}
(b) {1!− 0!, 2!− 1!, 3!− 2!, 4!− 3!, ....}
(c) {0! + 1!, 1! + 2!, 2! + 3!, 3! + 4!, ....}
(d) {(1!)2 − (0!)2, (2!)2 − (1!)2, (3!)2 − (2!)2, (4!)2 − (3!)2, ...}
(e) {0! · 1!, 1! · 2!, 2! · 3!, 3! · 4!, ...}

2. The binomial coefficient itself contains factorials and is defined as follows:(
n

k

)
=

n(n− 1)(n− 2)...(n− k + 1)

k!
=

n!

(n− k)!(k!)

Crabbe employed the results from Bhargava’s paper to connect square numbers
and the binomial coefficient.

(a) First, manipulate Equation (3.1) and utilize our prior research on square
numbers and binomial theorems from before to further generalize Crabbe’s
result.

(b) Just like Crabbe utilized Bhargava’s results for the research, we attempt
to utilize Bhargava’s process for our research. This will entail working with
p-ordering.

3. The generalized factorial of the square numbers is defined as (2n)!/2. Utilize
this fact and explore from the frame of the Binomial Theorem.

Since
(2n)!

2
= {1, 12, 360, ....}, compute the following:

(a) {(1!)2S − (0!)2s, (2!)2S − (1!)2S, (3!)2S − (2!)2S, (4!)2S − (3!)2S, ...}, where S is the
set of square numbers.

(b) Compare results with 1 (d).

4. Start with the formulas for permutations and combinations and replace known
quantities by the special cases of the binomial theorem we had researched
earlier.

Chapter 2 Nitesh Mathur 12



Chapter 3

Research Process

3.1 Introduction

With the initial purpose of combining combinatorial identities, the Binomial Theorem,
and the Generalized Factorial Function, the first step was to look at concepts from
combinatorics. In the process, I came across the following concepts and proceeded
to review them. Some of these concepts included:

(i) Ramifications of the Binomial Theorem
(ii) Gaussian Coefficients
(iii) Stirling number of the First Kind
(iv) Stirling number of the Second Kind
(v) 12 Fold Way
(vi) Falling Factorial
(vii) Rising Factorial
(vii) Fibinomial and related identities
(ix) Generating Functions

3.2 Idea

It can be seen from Pilla’s work that the sequences of generalized factorials show up
in the denominators of several series. We try to find if there is a deeper connection
between sequences, series, and generalized factorials.

Some questions concerning calculus naturally comes up. For example, if we
integrate or derive the analogues (from Table 1.2), how will the factorial be affected?
More importantly, what set did it originally come from?

3.3 Research Question

Given a sequence of numbers, presumably a sequence of generalized factorials for a
particular set, can we figure out what set that is?

13
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3.4 A Note on Simulataneous P-Ordering

First, we reduce this problem to the set of sets who have a simulataneous p-ordering.
A simulataneous p-ordering occurs when there is a sequence in S that is simulataneous
for all primes, p (For example, one can use the {1, 2, 3, ...} p-ordering for all primes,
so it has a simultaneous p-ordering. On the other hand, if the primes is our set,
then each p-ordering is different as we saw in the Examples section).

By Lemma 16 of Bhargava’s paper,

k!s = [(ak − a0) · (ak − a1) · ...(ak − ak−1)] (3.1)

[1]

3.5 Motivating Example

Given the set {1, 1, 2, 6, 24, 120, 720, ..}, can we figure out an algorithm so we can
precisely point out that this came from the natural numbers?

1. Algorithm 1 - Assume Simultaneous P-ordering

a. Choose the sequence

S0 = {1, 1, 2, 6, 24, 120, 720, ..}

b. Generate P-Sequences through Unique Prime Factorization

p = 2 : {1, 1, 2, 2, 8, 8, 16, 16, 128, ...}
p = 3 : {1, 1, 1, 3, 3, 3, 9, ...}
p = 5 : {1, 1, 1, 1, 1, 5, 5, }

c. Pick an index where enough information is given

d. Reversing the p-ordering process, solve the following problem:

8|(a5 − a0) · (a5 − a1) · (a5 − a2) · (a5 − a3) · (a5 − a4)

5|(a5 − a0) · (a5 − a1) · (a5 − a2) · (a5 − a3) · (a5 − a4)

3|(a5 − a0) · (a5 − a1) · (a5 − a2) · (a5 − a3) · (a5 − a4)

Since simultaneous p-ordering is assumed, the variables are the same for all
primes.

In the example, at index, we see that the p-sequence for 2,3, and 5 is 8,3, and
5 respectively.

e. Let d0, d1, d2, d3, d4, d5 represent the pairwise differences. Then, the following
problem can be stated as follows:

8|d0 · d1 · d2 · d3 · d4
5|d0 · d1 · d2 · d3 · d4
3|d0 · d1 · d2 · d3 · d4
As it turns out, the solution to our could not be found using this algorithm as
of yet.

Chapter 3 Nitesh Mathur 14
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2. An alternative way has been utilized to solve this sub-problem.

a. Choose the sequence S0 = {1, 1, 2, 6, 24, 120, 720, ...}

b. Generate p-sequences for each prime as shown above.

c. Let a0 = 1 by default. This will not change our results, just the initial
condition. The difference between each factorial is going to be the same,
so we can rescale it accordingly.

d. Iterate through Bhargava’s scheme of p-ordering and p-sequence with a0 = 1.
Since we are assuming simulatenous p-ordering, we can use Lemma 3.1 to show
that at each step the minimum power is in-fact the generalized factorial.

i. Choose the (minimum) a1 such that 1|(a1 − 1)⇒ 1 = a1 − 1⇒ a1 = 2.

ii. Choose the (minimum) a2 such that 2|(a2−a0)(a2−a1)⇒ 2 = (a2−a0)(a2−a1)
and that it has not been repeated before.

2 = (a2 − 1)(a2 − 2)

2 = (a22 − 3a2 + 2)

0 = a22 − 3a2

0 = a2(a2 − 3)

a2 = 0, 3

Choose the a2 that is increasing in the sequence (in this case, a2 = 2. If the
other solution is chosen, it will still generate the correct solution, but may
start at a different initial location.

iii. Choose a3 such that 6|(a3−a2)(a3−a1)(a3−a0)⇒ 6 = (a3−a2)(a3−a1)(a3−
a0)⇒ 6 = (a3 − 3)(a3 − 2)(a3 − 1)

One can observe, that now, we are just solving for one variable at a time with
an order that is one higher at every iteration.

Note: This problem (for simulataneous p-ordering) has been solved (Credit
Jon Bolin). One can employ optimization and computational techniques (like
Newton’s method) to solve for {a0, a1, ...ak}.

3.6 Other Sub-Problems

These two algorithms above show sub-problems that were needed to solve the
problem of reversing the generalized factorials approach. Some of the other
sub-problems we encountered and briefly attempted to solve are the following:

1. Solve Problem with Simultaneous P-orderings

This problem was stated above and has been solved by solving equations
iteratively. Are there other methods to solve this problem more efficiently?
This sub-problem may be interesting to look from an optimization point of
view (and compare rate of convergence).
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2. Generalize for Non-Simultaneous P-orderings

This is the main focus of this paper. Although we have found one way to solve
the reverse generalized factorial problem with the assumption of simultaneous
p-ordering, we have not yet extended it to sets with non-simultaneous p-ordering.

3. Number Divides product of differences mod n

We saw the following problems in Algorithm 1.

8|d0 · d1 · d2 · d3 · d4
5|d0 · d1 · d2 · d3 · d4
3|d0 · d1 · d2 · d3 · d4
In this case, d0, d1, ..., d4 are represented as (a5 − a0), (a5 − a1), ..., (a5 − a4)
respectively.

The first sub-problem is to solve this. Another interesting problem that stems
out is the following:

What if (di)
∞
i=0 was replaced with different types of expressions (maybe product

instead of difference)?

This could lead to a whole new range of problems to solve. One example is
replacing d0, d1, ..., d4 with the following (a5 · a0), (a5 · a1), ..., (a5 · a4).

4. Fractional Derivatives and Generalized Factorials

Dr. McKinney’s presentation on Fractional Derivatives inspired this question.
If we replace derivatives (from integers) to fractions, then the derivatives have
a factor of the Gamma Function and Factorial that occur. It would be nice
to see what happens if we replace the Factorial in these expressions with the
generalized factorial.

[11]

5. Explore Repeated Factorials (Ex: Cubes and Fibonacci)

In the subset of cubes, we found that 3! = 4! = 504. Similarly, for the subset of
the Fibonacci numbers, 7! = 8! = 443, 520. This was not seen in the factorials
for the set of natural numbers. We were able to explain this observation
with how the p-orderings and p-sequences were structured for the cubes and
Fibonacci set respectively.

Yet, this could be explored more deeply with questions such as:

a. In what other sets, do we see a repeated factorial phenomenon?

b. Can we construct sets in such a way that repeated Generalized Factorials are
guaranteed?

6. Explore Behavior and Slower Growth Rate (per say) of Cubes

The factorial over the cubes grew slower than the factorial over the squares.
Intuition says that it would have grown faster.

Asymptotic behavior and rate of growth between sets could be one area to
explore in the future.
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Chapter 4

Actual Work and Results

4.1 Phase II: Mathematica Code

First, we needed to code Bhargava’s algorithm for generating p-orderings and p-sequences.
Hence, a function in Mathematica was generated.

The code was implemented in a step-by-step manner.

1. First, we picked the set of natural numbers. If the code does not work on the
natural numbers (whose factorial we know), it will definitely not work on any
subsets.

2. Next, we had to design the structure of the code. Our code contained three
for-loops.

a. The first for-loop iterated over the different possibilities of ai that would
minimize the exponent of the difference. This was necessary to find the
p-ordering and p-sequence for each step.

b. The second for-loop iterated over the entire subset to generate and store the
p-orderings and p-sequences for every index.

c. The third for-loop iterated over a finite set of primes (this was done for
computational purposes).

3. Next, we printed out the p-orderings and p-sequences and checked by hand if
they were correct.

4. The final step was to multiply the p-sequences for each index to generate the
generalized factorial.

5. We checked if the above process worked for the natural numbers and then
proceeded to create a function that would take any subset of the natural
numbers.

The body of the code was separated in three major parts: (1) Setup, (2) Body,
and (3) Testing. In the setup phase, several example sets were constructed to
test later. In part (2), Bhargava’s algorithm corresponding to the p-orderings and
p-sequences was programmed. And finally, the function was tested with several sets
constructed in the setup stage.
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4.2 Summary

Some of the important aspects (and description of code) of this phase of research is
summarized below.

1. The code is a function that returns the list of the generalized factorials given
a subset and an index for which the code is to be evaluated.

For example, in the testing section, when we write Bhargava[Naturals,10],
it means to return the 10! for the set of natural numbers (which are defined
in the setup section.

2. Initially, we coded examples from Section 1.3 (Primes, squares, evens, naturals,
etc.) and checked if our solutions matched those results.

3. In order to verify if our code was working, I programmed the closed form of a
subset with simultaneous p-ordering. In the testing section, ‘ActualFactorial,’
‘ActualSquares,’ and ‘ActualEvens’ signify the results of the closed form to
check our results.

4. The code works successfully only for certain indices. The function is looped
over a finite set of prime numbers because of computational time (in this
case, only the first 20 prime numbers are chosen).

For example, for the naturals, the code runs successfully up to 19! and for 10!
for the set of squares.

Note: Jon Bolin coded Bhargava Factorials in python and created dynamic
list, which can verify our solutions more efficiently.
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Chapter 5

Phase III: Proposed Original
Algorithm

In the previous chapter, we introduced the problem of reversing the Generalized
Factorial for simultaneous p-ordering by solving equations at each iteration.

We now attempt to solve the problem for non-simultaneous p-ordering. In order
to accomplish this, we propose a new algorithm and show that it works for sets with
simultaneous p-ordering. The difference between this algorithm with the other two
proposed earlier is that we do not rule out the case for non-simultaneous p-ordering
(although we do not find it explicitly).

5.1 Conjecture/Algorithm

i. Let {an} be any sequence (for now, take a sequence that we know something
about).

ii. Divide the sequence by the factorials on the set of the natural numbers.

iii. Call this new set D.

iv. For each d ∈ D, factor each di = pi · ki where ki represents the gaps between
successive elements in the original set and pi represents the ‘leftover” unique-prime
factorization.

5.2 Examples

Choose the factorials defined on the set of square numbers and work backwards to
verify that we, in fact, do get the square numbers back.

5.2.1 Squares

i. {an} = {1, 1, 12, 360, 20160, 1814400, 239500800, ...}

ii. Divide each element of {an} by each element of n!Z. (Ex: 1/1, 1/1, 12/2,
360/6, 20160/24,etc.)

iii. D = {1, 1, 6, 60, 840, 15120, 332640., ...}
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iv. Write the Unique Prime Factorization (UPF) of each element of D.

1 = 20 = 1 · 20

6 = 21 · 31 = 3 · 2
60 = 22 · 31 · 51 = 5 · 22 · 3

840 = 23 · 31 · 51 · 71 = 7 · 23 · 3 · 5
15120 = 24 · 33 · 51 · 71 = 9(32) · 24 · 3 · 5 · 7

332640 = 25 · 33 · 51 · 71 · 111 = 11 · 25 · 33 · 5 · 7
8648640 = 26 · 33 · 51 · 71 · 111 · 131 = 13 · 26 · 33 · 5 · 7 · 11

= 27 · 34 · 52 · 7 · 11 · 13 = 15(31 · 51) · 27 · 33 · 5 · 7 · 11 · 13

Note, that the bolded integers are precisely the integer differences between
consecutive square numbers. Hence, given an initial condition (in this case,
02 = 0), we have found the initial set of square numbers, which was our goal.

v. S = {0, 1, 4, 9, 16, 25, 36, 49, 64, ...} Note, how we factor the UPF is, at this
moment, arbitrary. The bolded integers are the factors that changed from
one step to the next BUT we chose to ignore the new power of 2 was added
everytime. Why did we ignore the power of 2, I am not quite sure right now.

5.2.2 (Positive) Even Integers

i. {an} = {1, 2, 8, 48, 384, 3840, 46080, 645120, ...}

ii. n!/Z = {1, 1, 2, 6, 24, 120, 720, 5040, ...}

iii. D = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...}

iv. UPF listed below:

1 = 20 = 1 · 20

2 = 21 = 2 · 20

4 = 22 = 2 · 21

8 = 23 = 2 · 22

16 = 24 = 2 · 23

v. S = {0, 2, 4, 6, 8, 10, ..., }
Notice, in this case we did not ignore the new power of 2.

5.2.3 Integers similar to 2n

i. {an} = {1, 1, 6, 168, 20160, 9999360, 20158709760, }

ii. n!/Z = {1, 1, 2, 6, 24, 120, 720, 5040, ...}
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iii. D = {1, 1, 3, 28, 840, 83328, ..., }

iv. UPF

1 = 20 = 20 · (2− 1)

3 = 20 · 31 = 2 · (4− 1)

28 = 22 · 71 = 22 · (8− 1)

840 = 23 · 31 · 51 · 71 = 23 · 7 · (16− 1)

83328 = 27 · 31 · 71 · 311 = 27 · 3 · 7 · (32− 1)

= 211 · 32 · 72 · 31 = 211 · 31 · (64− 1)

= 217 · 32 · 7 · 31 · 127 = 217 · 32 · 7 · 31 · (128− 1)

v. S = {1, 2, 4, 8, 16, 32, 64, 128, ...} and the gaps are 2, 4, 8, 16, 32, 64, ... respectively.

Notice, we had to embellish one of the prime factors by adding (-1) to get the
gap that we wanted. Why is that the case? Not sure.

5.2.4 Trivial Case: Integers

i. {an} = {1, 1, 2, 6, 24, 120, 720, 5040, ...}

ii. n!/Z = {1, 1, 2, 6, 24, 120, 720, 5040, ...}

iii. D = {1, 1, 1, 1, 1, ...}

iv. Each element of D is just multiplied by 1 from the element before (since each
element is the same). Hence, the gap is 1.

v. S = {1, 2, 3, 4, 5, ..., }

5.2.5 Try Prime Numbers

i {an} = {1, 1, 2, 24, 48, 5760, 11520, 2903040, 5806080, ...}

ii n!/Z = {1, 1, 2, 6, 24, 120, 720, 5040, ...}

iii D = {1, 1, 1, 4, 2, 48, 16, 576, 144, 3840, 768, ...}
Note, elements of D are not monotonic. Hence, divide into 2 sets, D1 (comprised
of even indices) and D2 (comprised of odd indices).

D1 = {1, 1, 2, 16, 144, 768, 19968, 552960, ...}
D2{1, 4, 48, 576, 684, ...}
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iv. UPF of D1

1 = 20 = 1

2 = 21 = 2 · 1
16 = 24 = 8 · 2

144 = 24 · 32 = 9 · 24

768 = 28 · 31 = 16 · 24 · 3
19968 = 29 · 31 · 131 = 26 · 28 · 3

552960 = 212 · 33 · 51 = 360 · 29 · 3
= 214 · 34 · 51 · 171 · 191 = 2

217 · 33 · 52 · 71 · 191 · 231 · 291

UPF of D2

1 = 20 = 1

4 = 22 = 4

48 = 24 · 31 = 12 · 22

576 = 26 · 32 = 12 · 24 · 3
3840 = 28 · 31 · 51 = 20 · 3

= 210 · 32 = 12 · 28 · 3
= 212 · 33 · 51 · 71 = 84 · 210 · 3 · 5

= 214 · 33 · 171 = 102 · 212 · 32

The gaps are as follows: {1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 4, 2, 6, 2, 6}
We have not yet figured out how (or if) this relates to the gaps between the
primes, but one approach to attempt was to write the prime numbers, look at
the differences, and see how that related to the UPF of D1 and D2.

5.3 Significance

If this algorithm could help out reverse the generalized factorials to its specific
subsets, then several applications are possible.

1. Since some of the generalized factorials relate to the denominators of Taylor
expansions, we can apply calculus on it. This includes taking the derivative
and integral of the Taylor series expansion, using the new coefficients, and
seeing what original subset it came from.

2. Sequences and series play an important role in real analysis. If a more generalized
version of this algorithm was implemented, then this may become a tool
to analyze any sequence. This may help in discussing rate of convergence,
conditional versus absolute convergence, and may be extended to analytic
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functions as well (We have so far seen Generalized Factorials, but factorials
can be extended with the Gamma function to negative numbers. If such a
general form could be found, then complex analysis may be involved in this
process as well).

5.4 Other Patterns Found

1. The generalized factorial of the prime subset has an interesting pattern. The
factorials are as follows:

{1, 1, 2, 24, 48, 5760, 11520, 5806080, 1393459200, ...}
It can be seen that going from odd to even indices, the generalized factorial
always has a factor of 2 (For example, 2 = 2 ·1, 48 = 2 ·24, 11520 = 2 ·5760, ...).

On the other hand, going from even to odd indices, the generalized factorial has
a factor of 12 (24 = 12·2, 5760 = 120·48 = (12·10)·48, 5806080 = 252·11520 =
(12 · 21) · 11520, ..). The multiple has to do with the new p-sequence that has
been multiplied for that particular index.

2. As mentioned in the Proposed methodology, we did some basic algebra and
found some interesting patterns at the beginning. One of the interesting
patterns, that relate factorials to the square numbers is shown below.

1!− 0! = 1 = 02 · 1
2!− 1! = 1 = 12 · 1
3!− 2! = 4 = 22 · 1 = 22 · 0!

4!− 3! = 18 = 32 · 2 = 32 · 1!

5!− 4! = 96 = 42 · 6 = 42 · 2!

6!− 5! = 600 = 52 · 24 = 52 · 3!

7!− 6! = 1320 = 62 · 120 = 62 · 5!

8!− 7! = 35280 = 72 · 720 = 72 · 6!

The pattern is explaained below:

(x + 1)!− x! = (x + 1)x!− x!

= x![x + 1− 1]

= x!(x)

= xx!

= x(x)(x− 1)!

= x2 · (x− 1)!

This was an interesting pattern that started our investigations in this project.
We encountered other patterns periodically but these two were the major ones
we have not yet covered.
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Chapter 6

Conclusion

6.1 What did I learn?

This project started as an attempt to combine my earlier research relating to the
Binomial Theorem and relating it to Dr. Bhargava’s Generalized Factorial paper.
Although we initially took this route, our end result was in a completely different
direction.

I learned more about the research process and how to efficiently spend time
to tackle certain problems. For the first half of our research process, I was reading
background material, papers related to this topic, and library books on combinatorics.
In order to start doing original research, I used the proposed methodology to begin
finding patterns. Later, in Phase II, we coded the p-ordering and p-sequences in
Mathematica. This provided us the tool to drive in a different direction.

Earlier, we only had resources from Bhargava’s and Crabbe’s paper on certain
results. Since our code worked for any subset (up to a certain degree of accuracy),
we could generate generalized factorials for subsets that we had not seen before.
Hence, we explored the cubes, fourths, Fibonacci numbers, etc. With these results,
we had further data to analyze, which gave us several more patterns to uncover.

Lastly, Pilla’s presentation drove our work in Phase III. I am intrigued by power
series, and the relationship between Taylor series expansions and the generalized
factorial became our focus. With Taylor series, one can manipulate the coefficients,
take the derivative and integrals, etc. This has implications with the radius of
convergence, conditional versus absolute convergence, etc. Taylor series can be used
to evaluate limits and can make conclusions of the smoothness of a given function.
Maybe, this may lead to interesting cross overs between number theory, calculus,
real analysis, and maybe even functional analysis.

Throughout this process, I learned about concepts from number theory and
combinatorics. Furthermore, I learned that even though some patterns look interesting,
they might not have deep conclusions. On the other hand, innocuous looking
patterns may lead to a significant result. Lastly, especially towards the end, when we
were trying to find the reverse generalized factorial for the primes, I found numerous
patterns and went into details. Although I was going really deep, the result did not
come as of yet. This was frustrating but made me realize, this was all part of the
process. I will continue looking at this, and hopefully solve this problem in the near
future.
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6.2 Correspondence

Last year, I emailed Dr. Bhargava to see if any progress has been made on the
posed question relating the Generalized Factorial to the Binomial Theorem. He
graciously responded and conveyed that no significant contribution has been found
but is curious to see if we find something.

6.3 About the Main Referenced Author - Dr. Manjul

Bhargava

• Paper Published in 2000

• Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average
Rank of Elliptic Curves

• Fields Medal Recipient in 2014

• Doctoral Advisor: Andrew Wiles

• Professor at Princeton, Leiden University, and adjunct professor in several
others.

• Musician (Tabla Player)
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