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ABSTRACT 

When supplying the student with examples of calculating expectation for a random variable 𝑋𝑋, it is 
important to point out that 𝐸𝐸(𝑋𝑋) may not be finite.  In this classroom note, we explore an example where 
the expectation is finite but the exact value is not known.  This leads to an interesting connection and result 
involving the Riemann Zeta function. 

 

For the past three years during the spring semester, the author has taught a course at Harding 

University entitled MATH 318; Probability.  During the spring semester of 2018, inspiration was 

gained from the following example (see page 209 in [2]).  In this paper, we use the notation and 

terminology of [2] which is the textbook used in MATH 318. 

Example 1. Let 𝑿𝑿 be a random variable with probability function given by  

𝑓𝑓(𝑥𝑥) = �  
1

𝑥𝑥(𝑥𝑥 + 1)
   𝑖𝑖𝑖𝑖 𝑥𝑥 = 1,2,3, …

  0                          otherwise.
 

By definition 

𝐸𝐸(𝑋𝑋) = �𝑥𝑥
1

𝑥𝑥(𝑥𝑥 + 1) =
∞

𝑥𝑥=1

�
1

(𝑥𝑥 + 1) = ∞
∞

𝑥𝑥=1

, 

 

therefore 𝑋𝑋 is a random variable with expectation that is not finite.                                             ■ 

A slight change to the probability function in example 1 allows us in example 2 to make 

connections to a famous sum due to Euler (see chapter 9 in [3]).  
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Example 2. Let 𝑋𝑋 be a random variable with probability function given by 

𝑓𝑓(𝑥𝑥) = �
𝑐𝑐
𝑥𝑥2

   𝑖𝑖𝑖𝑖 𝑥𝑥 = 1,2,3, …

 0              otherwise.
 

As in example 1, 𝑬𝑬(𝑿𝑿) is not finite.  Perhaps a more interesting question for the student 

to investigate is what value of 𝒄𝒄 is necessary so that 𝒇𝒇 is a valid probability function?  

This of course is not an easy calculation.  The reader will likely recognize this as being 

connected to a problem first solved by Leonhard Euler in 1734. We invite the reader to 

the exposition in chapter 9 of Dunham’s book [3] for a look at the history as well as the 

mathematics behind the solution to this problem. Euler proved that 

�
1
𝑥𝑥2

=
𝜋𝜋2

6

∞

𝑥𝑥=1

, 

 
therefore the value of 𝑐𝑐 = 6

𝜋𝜋2
.                                                                                                         ■ 

Next we give the following definition which can be found on page 187 of [1]. 

Definition.  The Riemann zeta function is given by 

𝜁𝜁(𝑧𝑧) = �
1
𝑛𝑛𝑧𝑧

∞

𝑛𝑛=1

,   for 𝑅𝑅𝑅𝑅 𝑧𝑧 > 1. 

One of the most famous unsolved problems in all of mathematics is the location of the zeros of 

the zeta function [1].  The reader can readily see that Euler proved that 𝜁𝜁(2) = 𝜋𝜋2

6
.  In fact, exact 

values of the zeta function for input equal to an even integer can be computed using Euler’s 

techniques expounded upon in chapter 9 of [3].  For instance, Euler proved that 𝜁𝜁(4) = 𝜋𝜋4

90
 .  We 

are ready to make a connection to yet another famous unsolved problem.  The exact value of the 

zeta function for an input equal to an odd integer is unknown.  Regarding 𝜁𝜁(3), Dunham says in 

[3], “it is easy to conjecture that the sum in question is equal to 𝑝𝑝
𝑞𝑞
𝜋𝜋3.” While we do not solve the 

problem of calculating an exact value of 𝜁𝜁(3), we obtain an interesting estimate involving 𝜋𝜋3 

which uses the technique of expectation. First we give our last example of a random variable 

with a unique expected value.  
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Example 3.  Let 𝑋𝑋 be a random variable with probability function given by 

𝑓𝑓(𝑥𝑥) = �
𝑐𝑐
𝑥𝑥4

   𝑖𝑖𝑖𝑖 𝑥𝑥 = 1,2,3, …

 0              otherwise.
 

We see that 𝑐𝑐 = 1
𝜁𝜁(4)

= 90
𝜋𝜋4

.  Therefore, if we compute the expected value for X, we get 

                                    𝐸𝐸(𝑋𝑋) =
90
𝜋𝜋4

�𝑥𝑥
1
𝑥𝑥4

=
90
𝜋𝜋4

�
1
𝑥𝑥3

=
∞

𝑥𝑥=1

∞

𝑥𝑥=1

90
𝜋𝜋4

𝜁𝜁(3).                                      (1) 

 
This gives the student an example where 𝐸𝐸(𝑋𝑋) is finite but the exact value is unknown.             ■ 
 

We are ready to state and prove the main result of this paper. 

Proposition.  𝜁𝜁(3) ≤ √15
90
𝜋𝜋3. 

 Proof.  Let X be the random variable of example 3.  Note that  

𝐸𝐸(𝑋𝑋2) =
90
𝜋𝜋4

�𝑥𝑥2
1
𝑥𝑥4

=
90
𝜋𝜋4

�
1
𝑥𝑥2

=
∞

𝑥𝑥=1

∞

𝑥𝑥=1

90
𝜋𝜋4

𝜁𝜁(2) =
90
𝜋𝜋4

×
𝜋𝜋2

6
=

15
𝜋𝜋2

. 

We now use the fact that 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝐸𝐸(𝑋𝑋2) − [𝐸𝐸(𝑋𝑋)]2.  Solving for 𝐸𝐸(𝑋𝑋) yields  

𝐸𝐸(𝑋𝑋) = �𝐸𝐸(𝑋𝑋2) − 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) ≤ �𝐸𝐸(𝑋𝑋2) 

Since 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) ≥ 0 (see Theorem 4.3.2 in [2]). Using (1) in example 3 and the value for 𝐸𝐸(𝑋𝑋2), 

we get  90
𝜋𝜋4
𝜁𝜁(3) ≤ �15

𝜋𝜋2
  or 𝜁𝜁(3) ≤ √15

90
𝜋𝜋3.                                                                                     ■ 

In conclusion, using techniques of random variables and expectation, we are able to provide a 

unique example of a random variable that has a finite expectation with unknown exact value.  

Moreover, the reader can verify that we have the added bonus that the estimate we obtain for 𝜁𝜁(3) 

is equal to the geometric mean of 𝜁𝜁(2) and 𝜁𝜁(4)! 
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