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This paper will primarily discuss topics related to voting power, and a metric
used to determine a voter’s influence: the Banzhaf-Penrose Power Index. This
metric was originally introduced by Lionel Penrose in 1946, but was further
studied and made famous by an attorney by the name of John Banzhaf III in
1965. In this paper, this metric will be referred to as the Banzhaf Power Index
(abbrev. BPI).

In 1964, Attorney John Banzhaf III wrote a paper titled Weighted Voting
Doesn’t Work: A Mathematical Analysis. The paper specifically cited a situation
in Nassau County, New York. The Nassau County Board of Supervisors used
a weighted voting system, allocating a fixed number of votes to representatives
from every region in the county based on population. Banzhaf’s thesis in this
paper asserted that assigning weighted votes approximately proportionate to
the region’s population size was insufficient. The argument was compelling, and
Nassau County overhauled their voting system in 1993 after several decades of
legal battles.

A question frequently asked with respect to the U.S. voting system is “how
much does my vote matter?” A sufficient response to this question is much
more involved than it initially appears. It’s tempting to jump right to the
matter of how much weight a player has in a voting system, but that does not
give a realistic view into how much influence a voting member has on the overall
outcome. To answer the question regarding influence, we will observe a statistic
known as the Banzhaf Power Index (BPI) that gives insight into a notably
more valuable factor: Voting Power. Note that the Banzhaf Power Index is not
the only statistic that measures voting power, but the BPI and probabilistic
measures will be the focus of this article.
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Voting Power

A common metric used for measuring the potential influence of an undecided
voter in a weighted voting system is the Banzhaf Power Index. The BPI of any
player in a voting system is calculated using the proportion of the number of
times this specific voting member (member A, for instance) is “critical” to the
number of times all players are critical:

BPI(Member A) =
Sum of instances member A is critical

Sum of instances all members are critical
. (1)

In this context, a “critical” vote is one that overturns the overall decision in a
winning coalition (a combination of votes that wins the majority). Put simply,
the Banzhaf Power Index provides the probability that a voter would play a
“critical” role. Note that the Banzhaf Power Index is used to give valuable
insight into voting influence in weighted voting systems. In unweighted voting
systems (i.e., all members have an equally weighted vote), the BPI for each
voter will be 1

N , taking N as the number of participating voting members.

Before we can look at examples regarding weighted voting systems, there
are a couple mathematical derivations we must observe to assist us in gaining
further insight into the mathematical intricacies of voting power. These are the
same tools Professor Lionel Penrose used in the original paper regarding voting
power using the Banzhaf Power Index.

Tools

Stirling’s Approximation A mathematician by the name of James
Stirling derived a formula that gives a rather accurate estimation for n!
(n factorial). Recall the calculation for factorials:

n! = n · (n− 1) · (n− 2) . . . (2) · (1) .

Stirling comes to the conclusion that n-factorial may be approximated by the
following:

n! ≈ e−nnn
√

2πn ∀ n ∈ N . (2)

Note that this is simply an approximation, and does not give exact results for
small values of n. However, the approximation works well for values of n in most
practical contexts. A brief table is shown below to demonstrate the accuracy of
this approximation for several natural numbers.

n n! Approx. % error
3 6 5.8362 2.81
5 120 118.019 1.67
10 3628800 3598695.62 0.83
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NOTE: As n increases by a factor of 10, percentage of error decreases by a factor
of 10.

Before we dive into an example, let’s review binomial coefficients. Recall the
calculation for unordered combinations:(

a

b

)
=

a!

b! · (a− b)!
.

Binomial coefficients are used to determine the number of combinations possible,
given a population size (a) and a sample size (b). The above equation calculates
the “number of unordered combinatorial possibilities when choosing b objects
from a population of size a.”

Now, let’s look at a few situations that shed light onto voting power as it
might apply to a voter in the United States. A couple of these examples will
explore unweighted voting systems.

Application

Example 1: Consider a situation where there is a population of N voters in
a state, where N+1 is an odd integer. Suppose a person named Bob is a citizen
within this state. In this scenario, assume every voter only has two options
on voting day, “yea” or “nay.” Additionally, every citizen within this state is
equally likely to vote either way. What is the probability Bob’s vote is critical?

To begin to answer this question, we must first find in what scenario(s) Bob’s
vote would be critical, only then is obtaining a probability plausible. As covered
previously, a vote is critical if and only if the vote swings the outcome of the
overall decision. Since only a simple majority is necessary to change the overall
decision in this scenario, N

2 + 1 votes are needed to swing the vote in either of
the two directions, yea or nay. Hence, Bob’s vote would be critical in a number
of situations given by (

N
N
2

)
=

N !

(n2 )!(n2 )!
.

Due to the fact that there are two choices on the ballot, the number of coalitions
(i.e., arrangements of voters between “yea” and “nea”) is given by 2N+1. Since
the Banzhaf Power Index is a probability that a voter is critical, we must divide
the number of situations in which the voter is critical by all voting scenarios
(given by 2N+1). Additionally, we must multiply the combinatorial fraction by
a factor of 2 to account for the fact that there is a symmetric losing coalition
for every winning coalition that we observe in which a certain voter is critical
(i.e., there are two choices on the ballot).
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So, the probability Bob’s vote is critical can be obtained by

(
N
N
2

)
· 2

2N+1
=

N !

(n2 )!(n2 )!
· 2

2N+1

=
N !

(n2 )!(n2 )!
· 1

2N
. (3)

Now, for the sake of cleanliness and readability, suppose we set M, an arbitrary
variable, equal to N

2 :

M =
N

2
⇒ N = 2M .

Equation (3) may now be rewritten as(
2M

M

)
· 2

2N+1
=

(2M)!

(M)!(M)!
· 1

22M
. (4)

Using Stirling’s approximation for factorials, equation (4) can now be rewritten
as

(
2M

M

)
· 2

2N+1
=

e−2M2M2M
√

2π2M(
e−MMM

√
2πM

)(
e−MMM

√
2πM

) · 1

22M
.

After a bit of grueling simplification, we obtain

√
πM

πM
=

1√
πM

.

Once we plug N
2 back in for M, we obtain the result

1√
πM

=
1√
πN
2

=

√
2

πN
. (5)

Example 2: Consider a situation where there is a population of 8 voters
in a state. Suppose a man named Bob is a citizen within this state. Assume
voters only have two options on the ballot. Let’s call them Party A and Party
B. Similar to the last example, assume voters are equally likely to vote one way
or the other. What is Bob’s voting power?

Here, we will outline a few algebraic steps in an example of application. First,
refer back to equations (2) and (4).
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Now, let’s substitute our data into equation (3), assuming N = 8:(
N
N
2

)
· 2

2N+1
=

8!

(4)!(4)!
· 1

28
. (6)

Using Stirling’s approximation for factorials, equation (6) can now be rewritten
as

8!

(4)!(4)!
· 1

28
≈ e−888

√
2π8(

e−444
√

2π4
) (

e−444
√

2π4
) · 1

28

≈ (e−8)(88)(2)
√

4π

(e−8)(48)(2)(4π)
· 1

28

≈ (88)

(88)
√

4π

≈ 1√
4π

.

Notice how this result compares to the derivation in the previous example:

√
2

πN
=

√
2

π8

=
1√
4π

.

Example 3: Suppose we have a state within the united States that has a
population of 101 citizens, including Bob. Also, assume all 101 citizens will vote.
Now, assume that a census has been conducted, determining the decisive votes
of the 101 citizens. For this example, assume that all voters will either vote
Republican or Democrat. The survey determined there are 20 citizens who will
definitely vote Democrat, and 30 citizens who will definitely vote Republican.
Lastly, there are 51 citizens (including Bob) who are not entirely decisive, and
could vote either way on voting day. Suppose we wish to calculate Bob’s voting
power within this state.

Let’s define N as the total population, and define u as the number of indepen-
dent/undecided voters:

N = 100

Democratic V oters (Count) = 20

Republican V oters (Count) = 30 .
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Since we are calculating the voting power for the independent voters, we will
need to find two things: 1) the number of situations in which Bob’s vote is
critical and 2) all the number of voting situations. For Bob’s vote to be critical,
there must be a 50/50 split between Democratic votes and Republican votes,
so that Bob will be the decision maker. For that to be the case, 30 of the
independent voters must vote democrat, and 20 of the independent voters must
vote Republican to obtain this even split. Since the equality(

50

20

)
=

(
50

30

)
holds, we may use either to calculate the number of situations in which Bob’s
vote is critical. Note that there are 250 ways in which these undecided voters
can vote, which is why we are dividing by that value to calculate an undecided
voter’s power. (

50

20

)
· 2

250+1
=

(50)!

(20)!(30)!
· 1

250
. (7)

Again, we will be using Stirling’s approximation to simplify equation (8):

(50)!

(20)!(30)!
· 1

250
≈ e−505050

√
2π50(

e−20(20)20
√

2π20
) (

e−30(30)30
√

2π30
) · 1

250
.

We can rewrite this as:

≈ 5050

(30)30(20)20
√
.48π50

· 1

250

≈ 5050

(.6)30(.4)20(50)30(50)20
√
.48π50

· 1

250

≈ 1

(.6)30(.4)20
√
.48π50

· 1

250
.

Rewriting decimals as fractions, we obtain:

≈ 1(
3
5

) 3
5 (50)

(
2
5

) 2
5 (50)

√
(2)( 3

5 )( 2
5 )π(50)

· 1

250

≈ 5
3
5 (50) · 5 2

5 (50)

3
3
5 (50) · 2 2

5 (50)
√

(2)( 3
5 )( 2

5 )π(50)
· 1

250

≈
(

5

3

) 3
5 (50)

·
(

5

2

) 2
5 (50)

·
(

1

2

)50

· 1√
(2)( 3

5 )( 2
5 )π(50)

.
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When simplifying using Stirling’s approximation, this method turns out to have
some pretty interesting algebraic properties that allow for useful simplification.

Theorem 1. Suppose there exists a voting game that consists of two parties,
Party A and Party B. The party with a simple majority of N (N2 + 1 votes)
wins the overall vote. Let N denote the number of voting players within said
game. Suppose we have a predetermined number of voters within population N
that have decided to vote for Party A or Party B. Let u define the number of
undecided voters within population N. Let α define the predetermined number
of voters for Party A, and let β define predetermined number of voters for
Party B. Assume that the number of decided predetermined voters in a system
must be less than half of the number of all voters (i.e. α and β must be less
than N

2 ). Then, the probability an undecided voter is critical within this game
can be calculated using the following:

Pc(u) ≈

{
0 if α > 0.5 or β > 0.5[
(PA)−PA · (PB)−PB · 12

]u · (√2πu(PA)(PB)
)−1

if α ≤ 0.5 and β ≤ 0.5

where

PA =
0.5N − α

u

PB =
0.5N − β

u
.

Proof. Consider the voting game given in Theorem 1, along with its necessary
assumptions:

PA =
0.5N − α

u
=
x

u

PB =
0.5N − β

u
=
y

u

u = N − α− β = x+ y

x = 0.5N − α = (u)(PA)

y = 0.5N − β = (u)(PB)

.
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With x and y defined as the number of voters needed from Parties A and B to
split the vote evenly, making an undecided voter critical, we can calculate the
power for an undecided voter:

Pc(u) =

(
u

x

)
· 2

2u+1
=

(
u

y

)
· 2

2u+1

=
u!

(x)!(y)!
· 1

2u

≈ (e−u)(u)u
√

2πu

(e−x) (x)x (e−y) (y)y(2π)
√

(x)(y)
· 1

2u

≈ (u)x+y
√
u

(x)x(y)y
√

2π(x)(y)
· 1

2u

≈
(
ux

xx

)
·
(
uy

yy

)
·

√
u√

2π(u · PA)(u · PB)
· 1

2u

≈ (PA)−x · (PB)−y · 1√
2πu(PA)(PB)

· 1

2u
.

Corollary 1.1. In a voting system in which there are no predetermined voters,

Pc(u) =

√
2

πN
.

Proof. In a situation in which there are no predetermined voters,

u = N

PA =
0.5N − a

u
=

0.5N

N
=

1

2

PB =
0.5N − b

u
=

0.5N

N
=

1

2
.

If we plug these into our generalized solution:

Pc(u) =

(
2

1
2 · 2 1

2 · 1

2

)N
· 1√

(2)( 1
2 )( 1

2 )πN

= (1)N ·

 1√
πN
2


=

√
2

πN
.
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This proof helps us gain a clearer view on the concept of voting power,
especially if we make a few observations about the function. First, note the
purpose of the function: to calculate voting power for an undecided voter. Voting
power with regard to a predetermined voter renders meaningless, because they
have preallocated their vote. A necessary assumption for calculating voting
power is that the voting member in question has the ability to go either way
on voting day. Next, lets observe how the values of voting power change as a
function of α and β, the number of predetermined voters for a party within a
population N. We can do this by graphing a surface of the generalized voting
power as a function of α and β. The surface for N = 10 is displayed below.

N = 10

First, notice when there are few predetermined voters, the potential influence
for an undecided voter is significantly larger compared to any other potential
voting scenario. Also, notice as predetermined voter imbalance increases, po-
tential influence for undecided voters decreases.
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Now, let’s take a look at some of the results of this generalization of the
Banzhaf Power Index using recent statistics.

Suppose we wish to evaluate the BPI of an undecided voter in Arizona, a fairly
balanced state in terms of voting members that affiliate with either the Demo-
cratic or Republican Party. Using data from a 2016 Gallup Poll we see that
approximately 41.7% of the state’s population identifies as a Republican, and
41.4% as a Democrat. The poll estimates that approximately 16.9% of Arizona’s
population does not affiliate with either party. For the General Presidential Elec-
tion in 2016, 3,588,466 people registered for voting, and were eligible to vote
on November 8th. For purpose of practice, let’s assume these numbers to be
accurate and true. Also, let’s make the assumption that all those who identify
as a Republican or Democrat will definitely vote with that party on voting day,
regardless of the candidate. Now, let’s make use of our generalized formula for
BPI of an undecided voter.

Let’s state the necessary variables. We will use the estimation of the Re-
publican affiliation for PA, and Democratic affiliation for PB :

PA =
(0.5 · 3, 588, 466)− (.417 · 3, 588, 466)

(.169 · 3, 588, 466)

≈ .4911

PB =
(0.5 · 3, 588, 466)− (.414 · 3, 588, 466)

(.169 · 3, 588, 466)

≈ .5089

u = .169 · 3, 588, 466 ≈ 606, 450 .

Plugging in these results, we have:

Pc(u) ≈
[
(.4911)−.4911 · (.5089)−.5089 · 1

2

]606,450
· 1√

2π(606, 450)(.4911)(.5089)

≈ 1.923014088 · 10(−45).

As shown, this is an extremely small probability; however, relative to voting
power in other states, this result is not extreme. Let’s take a look at power met-
rics in other states, and proportions of the population that identify as Democrats
or Republicans:

State % Rep. % Dem. Pc(u)
Arizona 41.7 41.4 1.923 · 10−45

Colorado 43.0 42.4 7.291 · 10−180

Indiana 45.2 37.2 4.841 · 10−39582
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We find that as the decided voters “tilt” unevenly in one direction (within
a state), the probability that an undecided voter swings the election decreases
dramatically. Penrose mentions this in his paper:

“... a small ‘resolute’ group of people, who always vote together can exercise
a surprisingly powerful control over the whole committee... a bloc of size

√
n

always can carry 84 percent of the decision.”

To summarize, Penrose states that even a very small proportion of the pop-
ulation (

√
n ) can have a very strong influence on the overall decision of the

group (at least 84%), if they decide to vote together.

With these ideas in mind, our focus will shift. Now, we can look at the
difference in predetermined voters. What we see is that opposing preallocated
votes tend to balance the scales in terms of voting power. The remaining block of
voters on either side will have this “surprisingly powerful control” that Penrose
mentions. Let’s take a look at a visual of the swing state’s voting population:

Party Affiliation by State
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Figure 1: Based on data from 2016 Gallup Poll

When observing this graph, notice the difference between the proportion of
Democrats and Republicans within each state. The following table will focus
on this statistic:
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State (% Rep) - (% Dem) Pc(u)
Arizona 0.30 1.923 · 10−45

Colorado 0.60 7.291 · 10−180

Florida -1.10 1.068 · 10−2109

Iowa 5.80 3.578 · 10−10708

Michigan -4.90 1.284 · 10−22512

Missouri 8.30 6.376 · 10−49459

Nevada 1.50 2.493 · 10−507

New Hampshire 4.30 3.253 · 10−2874

North Carolina -1.50 8.315 · 10−2249

Ohio 5.10 1.206 · 10−32235

Pennsylvania -2.30 1.566 · 10−8470

Virginia -0.40 4.545 · 10−133

Wisconsin -2.20 1.259 · 10−2319

Additionally, these results depend upon the number of registered voters
within the state, but this table gives us a good idea of the bigger picture. Note
that these figures are simply describing an individual’s voting power within a
state. Recall Penrose’s assertion about a majority bloc’s overwhelming ability
to dominate voting situations. Let’s take a look at how these bloc voters in
the United States could affect their state’s undecided voters in this theoretical
situation. This table displays undecided voter BPIs for different levels of pre-
allocation. If 0% of voters are assumed to be predetermined, we should obtain
Penrose’s square root that we discussed earlier. If 20% of each polled partisan
voter was assumed to be predetermined, we should obtain a significantly lower
BPI for an undecided voter, as was discussed earlier. First, California:

% Partisan Pc(u) P( Bloc Win )
0 0.000179 0.50
20 2.042 · 10−6769 1.00
50 4.602 · 10−60218 1.00
70 3.088 · 10−165943 1.00
100 0.0 1.00

If a relatively small proportion of predetermined voters are preallocated, an
undecided voter in California holds nearly zero chance of being influential in an
election.
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A voter in Arizona, however, might have a more optimistic story to tell.
Arizona, in recent years, has been considered a swing state (i.e., the difference
in number in Republican vs. Democratic voters is notably smaller).

% Partisan Pc(u) P( Bloc Win )
0 0.00042 0.50
20 0.000177 0.893
50 4.594 · 10−7 0.999
70 4.623 · 10−12 1.00
100 1.923 · 10−45 1.00

In a more balanced state, such as Arizona, undecided voters have a sig-
nificantly greater potential for influence, as we assume higher proportions of
partisan voters are in fact predetermined.

The graph below illustrates how states with voting blocs of greater magnitude
almost surely take away the majority of influence of an undecided voter.
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What if we wanted to calculate the individual’s voting power at the na-
tional level? Here, we may simply multiply the individual’s voting power within
his/her state by the state’s voting power within the overall voting system (in
this case, the electoral college) due to the independent nature of these two prob-
abilities. To calculate a swing state’s voting power in the electoral college, we
made assumptions about 38 out of the 51 voting ”states” within the electoral
college, and calculated BPIs for the swing states based off these assumptions
using a programming language. Simply, we generated scenarios in which these
swing states would be critical given that the other 38 states are ”predetermined”
voters. We decided which way these 38 states would vote (either republican or
democrat) based on a brief history of their partisan tendencies. California, for
example, we assume will vote for the Democratic Party, while we assume Texas
will vote for the Republican Party.

Presented below is a table that gives the individual voting power at the national
level for swing states, assuming the numbers in the Gallup poll are true and
accurate. Take note of the following notation:

Undecided Voter BPI Within State → BPII(u)

States BPI Within Electoral System → BPIS(S)

Undecided Voter BPI at National Level → BPIN (u)

BPIs are extremely small at the national level for individual, undecided
voters due to its multiplicative nature:

BPIN (u) = Pc(u) ·BPIS(S) . (8)

State BPI(u) BPIS(S) BPIN (u)

Arizona 1.923 · 10−45 0.0653 1.255719 · 10(−46)

Colorado 7.291 · 10−180 0.0526 3.835066 · 10(−181)

Florida 1.068 · 10−2109 0.1832 1.956576 · 10(−2110)

Iowa 3.578 · 10−10708 0.0355 1.27019 · 10(−10709)

Michigan 1.284 · 10−22512 0.0958 1.230072 · 10(−22513)

Missouri 6.376 · 10−49459 0.0588 3.749088 · 10(−49460)

Nevada 2.493 · 10−507 0.0355 8.85015 · 10(−509)

New Hampshire 3.253 · 10−2874 0.0225 7.31925 · 10(−2876)

North Carolina 8.315 · 10−2249 0.0891 7.408665 · 10(−2250)

Ohio 1.206 · 10−32235 0.1067 1.2868 · 10(−32236)

Pennsylvania 1.566 · 10−8470 0.1205 1.887 · 10(−8471)

Virginia 4.545 · 10−133 0.0753 3.422385 · 10(−134)

Wisconsin 1.259 · 10−2319 0.0588 7.4029 · 10(−2321)
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Obtaining probabilistic measures for undecided voters within their own un-
weighted voting system (the state the voter registers with) coupled with the
BPI for the corresponding state within the state’s weighted voting system (the
Electoral College), we can shed light onto the intricacies of partisanship in U.S.
voting.

Recap

After reading through the mathematical proofs, tables, and data provided
throughout this article, one might become skeptical of their purpose as a voter.
Academic research that sparks doubt, conflict, or provocation often leads to
positive change. It must be reinforced, however, that exercising voting rights is
of monumental importance in the inherent principles of a democracy.

The notion of voting power gives us meaningful and significant mathematical
insight into the response to a few questions posed towards the beginning of this
paper. To be clear, the purpose of this paper is not suggest or discredit any
certain type of voting system, but simply to further demonstrate the potential
limitations of weighted voting systems.
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