
Using Centrality to Predict Movement of Stock Prices

Bryant Wilson

Oral Roberts University

April 10, 2015

The purpose of this paper is to use various centrality measures to predict movement of stock prices. It has been shown that a social network can be created by knowing only membership within groups [1]. Here a network is created using the words found in annual regulatory 10-K reports filed with the US Securities and Exchange Commission during 2012. The method was correct in predicting up to 81

Securities and Exchange Commission (SEC)

Securities and Exchange Commission (SEC)

The Electronic Data Gathering, Analysis, and Retrieval system (EDGAR)

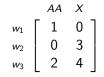
Securities and Exchange Commission (SEC)

The Electronic Data Gathering, Analysis, and Retrieval system (EDGAR)

10-K report

Leinweber, D. Nerds on Wall Street: Math, machines, and wired markets. (2009)

The number of filings by companies increase when they expect to do poorly.

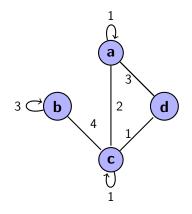

Leinweber, D. Nerds on Wall Street: Math, machines, and wired markets. (2009)

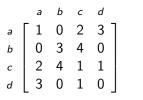
The number of filings by companies increase when they expect to do poorly.

Breiger, R. L. *The duality of persons and groups.* (1997) Individuals come together within groups based on shared interests, and the connection between them can be measured.

Methods

A = Word by Company Matrix




Methods

$$A = Word by Company Matrix A = Word by Company Matrix A^{T} = Company by Word Matrix A^{T} = Company by Word Matrix A = Matrix A =$$

$\mathsf{A} \cdot \mathsf{A}^{\mathcal{T}} = \mathsf{Non-Directional}$ Word by Word Matrix

	w_1	<i>w</i> ₂	W3
w_1	[20	0	2]
<i>w</i> ₂	0	9	12
W3	2	12	20

For all nodes, degree centrality is the number of ties a node has compared to all the other nodes in the graph.

For all nodes, degree centrality is the number of ties a node has compared to all the other nodes in the graph.

Let *u* be a node in a graph *G* of *n* nodes, the degree centrality of *u* is equal to $\frac{u}{n-1}$

Eigenvector Centrality

Let u be a node in a graph G of n nodes, Eigenvector Centrality of $u = \frac{1}{\lambda} \sum_{v \in M(u)} v$

where λ is the principle eigenvalue.

Eigenvector Centrality

Let
$$u$$
 be a node in a graph G of n nodes,
Eigenvector Centrality of $u = \frac{1}{\lambda} \sum_{v \in M(u)} v$

where λ is the principle eigenvalue.

 $\boldsymbol{\lambda}$ is typically calculated using Power Iteration where:

$$b_{k+1} = \frac{Ab_k}{||Ab_k||}$$
 assuming it converges

Making the Prediction

Calculate the centralities for the initial (2012) corpus.

Calculate the centralities for the initial (2012) corpus.

Calculate the individual centralizes for new filings (2013).

Degree Centrality:

Predicted Up: 81% Predicted Down: 66% out of 830 ending up and 1592 ending down

Degree Centrality:

Predicted Up: 81% Predicted Down: 66% out of 830 ending up and 1592 ending down

Eigenvector Centrality:

Predicted Up 66% Predicted Down 67% out of 831 ending up and 1594 ending down

Breiger, R. L. (1974). The Duality of Persons and Groups. Social Forces, 53, 2, 181-190.

Leinweber, D. (2009). Nerds on Wall Street: Math, machines, and wired markets. Hoboken, N.J: John Wiley & Sons.

networkx.lanl.gov