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General Argument: Epsilon-Delta Proofs

1. “Students don’t get limits (and continuity),” so textbooks
usually make haste to get to derivatives.

2. Limits and continuity are technically challenging.

3. However, so are other parts of calculus.

4. Later parts of calculus seem straightforward enough, after
rigorous limits/continuity training, and especially ε-δ proofs!

(a) Make students really wrap their brains around what happens at
the “micro” level.

(b) At first, nobody “gets” ε-δ.
(c) With work, everyone can, especially for continuity. (Equalizer?)
(d) After that, much more straightforward are: differentiation rules

(e.g., Chain Rule), implicit differentiation, logarithmic
differentiation, and eventually integration!



Purdue Summer Calculus 1990 versus 1993
The taught Calculus 1 (five hours) as the instructor (still a
teaching assistant) these two summers. Impressions:

Summer 1990: Department included ε-δ computations for
tolerances, proofs for limits (1.5 lessons).

◮ Students did not “get” proofs; unhappy.
◮ But most could be made to mimic the proofs.
◮ Instructor could still refer back to the idea when

limit technicalities arose.
◮ Used Richard Hunt’s book. Later problems

solving inequalities arising from the Mean Value
Theorem were fairly straightforward.

Summer 1993: No longer taught ε-δ. (Students “won.”)
◮ Later limit arguments seemed more ad hoc.
◮ Students were strikingly less able to do the

Mean Value Theorem applications.
◮ Because they had less practice with inequalities?
◮ Because they had less practice with clever—and

complex—technical points?



Defining Continuity, then Limits, by Epsilon-Delta

I. f(x) is continuous at x = a

⇐⇒ (∀ε > 0)(∃δ > 0)(∀x)[|x−a| < δ −→ |f(x)−f(a)| < ε].

1. Requires some knowledge of quantifiers, absolute value
inequalities. Warm up: “For every man there is a woman who
loves him”:

(∀m ∈ M)(∃w ∈ W )[w loves m].

2. Move quantifiers around, learn how to negate these, truth tables,
equivalent statements, negating statements, e.g.,
∼ (P → Q) ⇐⇒ P ∧ (∼ Q).

3. (Shhh.....In fact, what makes it all work is teaching them symbolic logic first

for a week.)
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Show that f(x) = 9− 4x is continuous at x = 2.
Scratch-work: Here a = 2 and f(a) = f(2) = 1.

|f(x)− 1| < ε
⇐⇒ |9− 4x− 1| < ε
⇐⇒ | − 4x+ 8| < ε
⇐⇒ |(−4)(x− 2)| < ε
⇐⇒ 4|x− 2| < ε
⇐⇒ |x− 2| < 1

4
ε.

Proof: For ε > 0, choose δ = 1

4
ε. Then δ > 0 (exists) and

|x− 2| < δ =⇒ |f(x)− 1| = |9− 4x− 1| = | − 4x+ 8| = |(−4)(x− 2)|
= 4|x− 2| < 4δ = 4 · ε

4
= ε, q.e.d.



Larson’s Limit Definition

Let f be a function defined on an open interval containing c
(except possibly at c) and let L be a real number. The statement

lim
x→c

f(x) = L

means that for each ε > 0 there exists a δ > 0 such that if
0 < |x− c| < δ, then |f(x)− L| < ε.

◮ Some books write:
“so that |f(x)− L| < ε whenever 0 < |x− c| < δ.”

◮ Compare to: lim
x→a

f(x) = L

⇐⇒ (∀ε > 0)(∃δ > 0)(∀x)[0 < |x−a| < δ −→ |f(x)−L| < ε].



More Quantified Statements for Students to Ponder

◮ f(x) is right-continuous at x = a ⇐⇒

(∀ε > 0)(∃δ > 0)(∀x)[x ∈ [a, a+ δ) −→ |f(x)− f(a)| < ε]

◮ lim
x→a

f(x) = L ⇐⇒

(∀ε > 0)(∃δ > 0)(∀x)[0 < |x− a| < δ −→ |f(x) − L| < ε]

◮ lim
x→a

+
f(x) = L ⇐⇒

(∀ε > 0)(∃δ > 0)(∀x)[x ∈ (a, a+ δ) −→ |f(x)− L| < ε]

◮ lim
x→∞

f(x) = L ⇐⇒

(∀ε > 0)(∃N)(∀x)[x > N −→ |f(x)− L| < ε].

◮ lim
x→∞

f(x) = ∞ ⇐⇒

(∀M)(∃N)(∀x)[x > N −→ f(x) > M ].



General Argument: Forms Approach to Limits

A. Lets them learn how trends (in inputs) imply other trends (in
outputs).

B. Also allows them to dabble in interesting limit-form arithmetic
for determinant forms (“infinity bottles of beer on the wall...”):

1/0+ = ∞, 1/∞ = 0+, ∞+∞ = ∞, sin
1

∞ = sin 0+ = 0+,

∞+ 2 = ∞, −5 · ∞ = −∞, B/∞ = 0, B · 0 = 0,

as well as to ponder indeterminant forms:

0/0, ∞/∞, ∞−∞, 0 · ∞,
sin 0

0
.

C. Makes them more ready for Calculus 2:

(1) L’Hôpital’s Rule, recognizing 0/0 and ∞/∞ forms.
(2) Further forms for improper integrals: tan−1∞ = (π/2)−,

ln(ln(ln∞)) = ln(ln∞) = ln∞ = ∞.



Example: Compute lim
x→9

√
x− 3

x− 9
.

Solution: Note that x = 9 is outside of the domain of the
function, but the actual domain is x ∈ [0, 9) ∪ (9,∞) so we can
certainly approach x = 9 from both directions. More casually, we
can say that we can let x venture small distances to the left or
right of x = 9 and the function will be defined. The usual
technique for a problem such as this is to algebraically rewrite it by
multiplying by (

√
x+ 3)/(

√
x+ 3):

lim
x→9

√
x− 3

x− 9

0/0
====
ALG

lim
x→9

√
x− 3

x− 9
·
√
x+ 3√
x+ 3

0/0
====
ALG

lim
x→9

x− 9

(x− 9)(
√
x+ 3)

0/0
====
ALG

lim
x→9

1√
x+ 3

CONT
=====

1√
9 + 3

=
1

6
.



Example: If possible find lim
x→5−

√

x2 − 25 and lim
x→5+

√

x2 − 25.

Solution:

lim
x→5−

√

x2 − 25
︸ ︷︷ ︸

<0

does not exist,

lim
x→5+

√

x2 − 25
︸ ︷︷ ︸

>0

=
√

52 − 25
(Rt.) CONT
========= 0.

Example: Compute, if possible, lim
x→0

x2

|x| .
Solution:

lim
x→0−

x2

|x|
0/0
====
ALG

lim
x→0−

x2

−x

0/0
====
ALG

lim
x→0−

(−x)
CONT
===== 0,

lim
x→0+

x2

|x|
0/0
====
ALG

lim
x→0+

x2

x

0/0
====
ALG

lim
x→0+

(x)
CONT
===== 0.







∴ lim
x→0

x2

|x| = 0.



1. lim
x→0−

1

x2/3
= lim

x→0−

1
3
√
x2

1/0+

===== ∞,

2. lim
x→−4

x

(x+ 4)4/3
= lim

x→−4

x

[(x+ 4)4]1/3
−4/0+

====== −∞,

3. lim
x→6

x− 4

(x− 6)2
2/0+

===== ∞,

4. lim
x→6

x− 4

x− 6

2/0±
===== DNE,

5. lim
x→π

2

−
ln(cos x)

ln 0+
===== −∞.

6. lim
x→0

x sin
1

x

0·B
==== 0.



The Sandwich Theorem argument for the last limit above can be
summarized graphically as follows:

As x → 0: −|x|
︸︷︷︸

≤ x sin 1
x ≤ |x|

︸︷︷︸

0 0

∴ x sin 1
x −→ 0.

Alternatively, where B represents a bounded but well-defined
quantity as x → 0, we can write:

lim
x→0

x sin
1

x
0·B
==== 0.

Similarly lim
x→∞

(x+ sinx)
∞+B
===== ∞.



In Calculus 2, it is useful to have the notation
x → a =⇒ f(x) → L as well as lim

x→a
f(x) = L:

as β → ∞

1

1 2 3

∫ β

1

1

x2
dx = 1− 1

β
−→ 1

β

Alternatively,

∫
∞

1

1

x2
dx

?
== lim

β→∞

∫ β

1

1

x2
dx = lim

β→∞

[

1− 1

β

]
1− 1

∞=====
1−0

1.

(Most don’t object to using a “provisional =” in L’Hôpital’s Rule
problems, but many do with improper integrals, lest it be seen as a
definition.)



β → ∞

1

1 2 3 4 5

For the series

∞∑

k=1

1

k
, we have partial sums

Sn >

∫ n+1

1

1

x
= ln(n+ 1)

ln(∞+1)−−−−−−−→
(ln∞)

∞ as n → ∞.

∴
∑

∞

k=1
1
k diverges to ∞.



Conclusions (?)

A. Students can get—and do like—making limit forms arguments.

1. The author suspects it helps students to better understand
limiting trends in complex expressions.

2. It makes many computations more elegant, and less awkward, at
all levels of calculus.

3. One must be sure “forms” and other arithmetic are separate:

Correct: lim
x→∞

(x+ 1)
∞+1
===== ∞.

Questionable: lim
x→∞

(x+ 1) = ∞+ 1 = ∞.

B. Students can also get ε-δ proofs, after which:

1. other definitions using quantifiers can be offered and absorbed;
2. students are so happy to see something as straightforward as, e.g.,

a quotient rule; inversely, if limits are given short shrift, perhaps
it’s okay to not quite understand derivatives and integrals?

C. So perhaps we should spend more time front-loading Calculus 1
with more work before derivatives? Shhh...helped with symbolic logic?
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