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1 Introduction

In this paper we plan to investigate, by mathematical means, optimal treatment courses of intrahost malaria
infections. We will first, however, take a look at current research supported models of both erythropoiesis
and malaria infections, to try to better model the effect of malaria on red blood cell production.

2 Erythropoiesis Model

Erythropoiesis is the process by which new red blood cells are produced. Precursor erythrocytes reside in
the bone marrow and consume hemoglobin. When they get to a certain age, they leave the bone marrow
and join the mature erythrocyte population. The production of precursors is motivated by the hormone
erythropoietin, which is secreted by the kidneys. Current biological research shows that erythropoiesis can
be modeled with the following system of equations [1,2,3,4,5]:

∂p(t, µ)

∂t
+ g(E(t))

∂p(t, µ)

∂µ
= σ(t, µ,E(t))p(t, µ) 0 < µ < µF 0 < t < T (1A)

∂m(t, ν)

∂t
+
∂m(t, ν)

∂ν
= −γ(t, ν,M(t))m(t, ν) 0 < ν < νF 0 < t < T (2A)

dE(t)

dt
= f(t,M(t))− aE(P (t))E(t) 0 < t < T (3)

g(E(t))p(t, 0) = φ(t)E(t) 0 < t < T

m(t, 0) = g(E(t))p(t, µF ) 0 < t < T

p(0, µ) = p0(µ) 0 < µ < µF

m(0, ν) = m0(ν) 0 < ν < νF

E(0) = E0
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p(t, µ) density of precursor erythrocytes of age µ
P (t) total precursor erythrocyte population
m(t, ν) density of mature erythrocytes of age ν
M(t) total mature erythrocyte population
E(t) erythropoietin hormone concentration level
g(E(t)) maturation rate of precursor cells

σ(t, µ,E(t)) birth/death rate of precursor cells
γ(t, ν,M(t)) death rate of mature erythrocytes
f(t,M(t)) erythropoietin response by kidneys
aE(P (t)) erythropoietin decay rate
φ(t) proportionality function

3 Malaria Model

Malaria is a parasitic disease. When a person is bitten by a mosquito carrying a type of malaria, sporozoites
are injected into the blood stream and accumulate in the liver, where they incubate for a period of about two
weeks [8]. When they’ve matured to merozoites, they transfer back to the blood stream and begin infecting
erythrocytes.

In [6], a model for malaria is given, but it assumes that red blood cell production is constant (Λ). The
model is as follows:

dM(t)

dt
= Λ− γM(t)− ksY (t)M(t) 0 < t < T (4)

dX(t)

dt
= ksY (t)M(t)− (a1 + s(t))X(t)− acI(t)X(t) 0 < t < T (5)

dY (t)

dt
= r(t)s(t)X(t)− ayY (t)− ksM(t)Y (t)− ahI(t)Y (t) 0 < t < T (6)

dI(t)

dt
= [λyY (t) + λxX(t)] I(t)− aiI(t) 0 < t < T (7)

M(0) = M0 X(0) = X0 Y (0) = Y 0 I(0) = I0

M(t) total healthy erythrocyte population
Y (t) total merozoite population
X(t) total infected erythrocyte population
I(t) total immune cell population
s(t) bursting rate of infected erythrocytes
r(t) number of merozoites released per burst cell
ks infection rate of mature erythrocytes by merozoites
a1 natural death rate of infected erythrocytes
ay natural death rate of merozoites
ai natural death rate of immune cells
ac clearance rate of infected cells due to immune system
ah clearance rate of merozoites due to immune system
λy proliferation of immune cells in response to the merozoite population
λx proliferation of immune cells in response to the infected population

4 Combining the Two Models

In order to combine these two models, we will drop equation (4) altogether, since it assumes a constant red
blood cell production, and replace it with a slightly modified version of the erythropoiesis model.
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To account for the presence of malaria, which has been shown in [7] to affect precursor erythrocyte de-
velopment indirectly, we will make the following adjustments to (1A) and (2A):

∂p(t, µ)

∂t
+ g(E(t))

∂p(t, µ)

∂µ
= [σ(t, µ,E(t))−H(X(t))] p(t, µ) (1B)

∂m(t, ν)

∂t
+
∂m(t, ν)

∂ν
= − [γ(t, ν,M(t)) + ksY (t)]m(t, ν) (2B)

The affect that malaria has on precursor development is related to a toxin, hemozoin, that the merozoites
produce as they consume hemoglobin inside an erythrocyte. This toxin suppresses precursor development
inside the bone marrow.

4.1 The New, Combined Model

∂p(t, µ)

∂t
+ g(E(t))

∂p(t, µ)

∂µ
= [σ(t, µ,E(t))−H(X(t))] p(t, µ) 0 < µ < µF 0 < t < T

∂m(t, ν)

∂t
+
∂m(t, ν)

∂ν
= − [γ(t, ν,M(t)) + ksY (t)]m(t, ν) 0 < ν < νF 0 < t < T

dE(t)

dt
= f(t,M(t))− aE(P (t))E(t) 0 < t < T

dX(t)

dt
= ksY (t)M(t)− [a1 + s(t)]X(t)− acI(t)X(t) 0 < t < T

dY (t)

dt
= r(t)s(t)X(t)− ayY (t)− ksM(t)Y (t)− ahI(t)Y (t) 0 < t < T

dI(t)

dt
= [λyY (t) + λxX(t)] I(t)− aiI(t) 0 < t < T

g(E(t))p(t, 0) = φ(t)E(t) 0 < t < T

m(t, 0) = g(E(t))p(t, µF ) 0 < t < T

p(0, µ) = p0(µ) 0 < µ < µF

m(0, ν) = m0(ν) 0 < ν < νF

E(0) = E0 M(0) = M0 X(0) = X0 Y (0) = Y 0 I(0) = I0

(8.1)

5 Setting Up The Finite Difference

First we will divide up the intervals [0, µF ], [0, νF ], and [0, T ] into n1, n2, and K subintervals respectively.
If we do this, then we can define ∆µ = µF

n1
, ∆ν = νF

n2
, and ∆t = T

K . This allows us to define age and time
at specific steps by:

µi = i∆µ for i = 0, 1, 2, . . . , n1

νj = j∆ν for j = 0, 1, 2, . . . , n2

tk = k∆t for k = 0, 1, 2, . . . ,K

Which motivates the step notation: p(tk, µi) = pki .

Next we will define our backwards difference operators for age and forward difference operator for time.

D−∆µ(αki ) =
αki − αki−1

∆µ
D−∆ν(αkj ) =

αkj − αkj−1

∆ν
D+

∆t(α
k
i ) =

αk+1
i − αki

∆t
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These should look fairly familiar, as they resemble the prototype difference quotient, which, in a limit, leads
to actual derivatives.

6 Applying The Finite Difference to the Model

If we replace all of the derivative operators in (8.1) with the appropriate difference operator and adopt the
step notation, we get:

pk+1
i − pki

∆t
+ gk

pk+1
i − pk+1

i−1

∆µ
=
[
σki −Hk

]
pk+1
i (8.2.1)

mk+1
j −mk

j

∆t
+
mk+1
j −mk+1

j−1

∆ν
= −

[
γkj + ksY

k
]
mk+1
j (8.2.2)

Ek+1 − Ek

∆t
= fk − akEEk+1 (8.2.3)

Xk+1 −Xk

∆t
= ksM

k+1Y k −
[
sk + a1 + acI

k
]
Xk+1 (8.2.4)

Y k+1 − Y k

∆t
= rkskXk+1 −

[
ksM

k+1 + ay + ahI
k
]
Y k+1 (8.2.5)

Ik+1 − Ik

∆t
=
[
λyY

k+1 + λxX
k+1
]
Ik − aiIk+1 (8.2.6)

gkpk+1
0 = φkEk (8.2.7)

mk+1
0 = gkpk+1

n1
(8.2.8)

Notice that terms on the right which are negative get k+ 1 time-steps while terms which are positive get k.
We will see later that this allows us to get a strictly non-negative solution, which biologically makes sense.

6.1 Solving for the k+1 Step

Taking the first equation from the discretized system, (8.2.1), we will attempt to solve for the k+1 term.

pk+1
i − pki

∆t
+ gk

pk+1
i − pk+1

i−1

∆µ
−
[
σki −Hk

]
pk+1
i = 0(

pk+1
i − pki

)
+ gk

∆t

∆µ

(
pk+1
i − pk+1

i−1

)
−∆t

(
σki −Hk

)
pk+1
i = 0

−gk ∆t

∆µ
pk+1
i−1 +

(
1 + gk

∆t

∆µ
−∆t

(
σki −Hk

))
pk+1
i = pki (9)

Notice that we have two different k + 1 terms, one a age-step i − 1 and one at age-step i. Equation (9),
paired with the first boundary condition, (8.2.7), gives us the rules for building a matrix equation for this
approximation.

To simplify this down a bit, we make the following definitions:
First is the variable vector. Eventually, we will be solving for this term:

~pk+1 =
[
pk+1

0 , pk+1
1 , . . . , pk+1

n1

]′
Next is the coefficient of the pk+1

i term:

dk1,i = 1 + gk
∆t

∆µ
−∆t

(
σki −Hk

)
, i = 1, 2, ..., n1
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Here is a vector representing the right hand side of equation (9). Notice that the first entry comes from the
boundary condition:

~bk1 =
[
φkEk, pk1 , . . . , p

k
n1

]′
And lastly is the characteristic matrix for the system, containing the coefficients of our variables:

Ak1 =


gk 0 0 · · · 0 0

−gk ∆t
∆µ dk1,1 0 · · · 0 0

0 −gk ∆t
∆µ dk1,2 · · · 0 0

· · · · · · · · ·
. . . · · · · · ·

0 0 0 · · · −gk ∆t
∆µ dk1,n1


Using these definitions, equation (9) can be written as Ak1~p

k+1 = ~bk1 . Similar steps can be taken to get a
matrix equation for (8.2.2).

6.2 The Complete Finite Difference Solution

With a little bit of algebra, the other equations (8.2.3,4,5,6) can be solved for the k+1 terms and we get the
following system:

~pk+1 = Āk1
~bk1

~mk+1 = Āk2
~bk2

Ek+1 =
Ek + ∆tfk

1 + ∆takE

Xk+1 =
Xk + ∆tksM

k+1Y k

1 + ∆t (a1 + sk + acIk)

Y k+1 =
Y k + ∆trkskXk+1

1 + ∆t (ksMk+1 + ay + ahIk)

Ik+1 =
Ik
(
1 + ∆t

(
λyY

k+1 + λxX
k+1
))

1 + ∆tai

Notice that since all the terms are naturally positive, and none are subtracted, so this system gives strictly
non-negative solutions. The system is now ready to be programmed.

7 Generated Solutions

It’s important to remember that since we’re dealing with biologically processes, the quantitative difference
between simulations doesn’t mean very much; however, qualitatively, we should at least be able to determine
which situations are more preferable and what kind of trends the treatments have.

The figure below shows graphs for when the person has no malaria (blue line) and untreated malaria (green
line). The beginning of day 0 is when the merozoites leave the liver and start to roam the bloodstream. We
will consider the no malaria case to be the benchmark for health when comparing other situations.
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The no treatment case shows a staggering drop in healthy erythrocyte count between days 5 and 8, with
a ∼100 fold drop. The periodic behavior seen in the no treatment case is due to the approximate 2 day
infection period of the erythrocytes by merozoites (that is, a merozoite infects an erythrocyte, feeds and
multiplies for two days, then the merozoites destroy the cell and move back into the bloodstream).

7.1 Treatment

First, we need to decide what we will treat. For what is presented here, we have decided on treating r(t), the
number of released merozoites from a burst infected erythrocyte, and H(X(t)), the precursor development
suppression due to hemozoin toxin levels. Although there currently are methods for reducing r, the effect of
hemozoin is currently not treatable, so we will also be attempting to determine if it’s a worthwhile treatment
course.

We also need a way to objectively determine which treatments are better. To that end we have designed a
functional that quantifies a treatment, and we will attempt to find an r(t) and H(X(t)) that minimizes it.
The functional is as follows:

J(r(t), H(X(t))) =
w1

T

∫ T

0

|M(t)− M̄healthy|dt+
w2

T

∫ T

0

(X(t) + Y (t))dt

+
w3

T

∫ T

0

e−r(t)dt+
w4

T

∫ T

0

(
−H(X(t))

2
+ 1

)
dt

J computes the average deviation of the erythrocyte count from the healthy amount, the average popu-
lation size of infected erythrocytes and merozoites, and the average health costs for treating the malaria
infection. The expressions for the health costs, terms 3 and 4, were chosen based on the necessity for de-
creasing functions and range of values encountered under the no treatment case. The wi terms are weights,
which should sum to 1 and can be chosen based on the importance of each factor. Also, keep in mind that
the health costs to which we refer are both medicinal expense and potential side effects from overdosing.
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The method for choosing functions for r(t) and H(X(t)) is to build piecewise linear functions for each

of them, with a certain number of parameters. This is facilitated by defining a function, φ̂(~x, i), that takes
a vector of points on the x-axis, and builds a function that is 1 at xi, 0 at the other xj and connects the

points with line segments. For example, let x = [ 0 1 2 3 4 ] and let i = 3, then φ̂(~x, i) returns the following
function:

Using this to build r(t) and H(X(t)), the functional J is then minimized by choosing appropriate parameters.
For example, say we’ve decided that we will treat r on days 3, 6, 9, 12, 15, 18, and 20. We then build an
interval vector:

~x = [ 0 3 6 9 12 15 18 20 ]

which defines the days on which treatment factors are changed. Then we choose an initial guess (representing
a proportion of the no treatment value) for what we think a good treatment would be, say:

~α = [ 1.0 1.0 0.3 0.2 0.4 0.5 0.5 0.5 ]

Notice that the first two are 1.0 because treatment doesn’t start until day 3, and at the beginning of day 3,
it’s still the default value. So this treatment vector says, from day 3 to day 6, treat r so that on day 6, it is
30% of it’s default value, then start treating so that by day 9 it’s 20%, etc. The function r(t) is then given,
overall, by:

r(t) =

8∑
i=1

αiφ̂(~x, i)

We then feed the interval vector and initial guess (with constraints that the first two elements of the guess
vector can’t be modified) to a function that will minimize J based on the parameters (that is, it will adjust
our guess until an optimal solution is found).
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Below is a figure showing three optimal treatments starting on different days. The weights for these were
w1 = w2 = 0.35 and w3 = w4 = 0.15, suggesting a strong lean toward stopping the infection, while not being
overly concerned with, but not ignoring, the health costs.

The outlook is good for someone who is able to seek treatment immediately (though this case is a bit unre-
alistic) and someone seeking treatment by day 3. However, a person waiting until day 7 has to endure the
large dip in healthy erythrocyte count.

The optimal treatment solution for immediate treatment was to treat both r and H down to about one
fifth of their original values for the entire 20 day period. Treatment was more drastic for day 3, which was
to reduce them to practically zero by day 6, ease off to about one tenth by day 8, and then hold around one
sixth for the remainder of the 20 days. Treatment for day 7 was somewhat similar to the day 3 case, but
with stronger treatments for the secondary and tertiary treatment intervals (about one twelfth to one tenth
for the day 9 to day 13 and day 13 to day 20 respectively).

8 Conclusion

So we’ve seen that optimal treatments exist, however, we’ve also seen that waiting until day 7 may have
catastrophic consequences. It would probably be realistic to assume that a person would seek treatment
somewhere between day 3 and day 6. Further research goals are to collect data for more situations, especially
for different starting days and different weight factors, and to refine the treatment vector to see if the optimal
treatment course remains the same when increasing the opportunity to adjust the treatment.
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