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Abstract

We introduce a special class of real recurrent polynomials fm (m ≥ 1) of
degree m, with unique positive roots sm, which are decreasing as m increases.
The first root s1, as well as the last one denoted by s∞ are expressed in closed
form, and enclose all sm (m > 1).

This technique is also used to find weaker than before [5] sufficient conver-
gence conditions for some popular iterative processes converging to solutions of
equations.
AMS Subject Classification. 26C10, 12D10, 30C15, 30C10, 65J15, 47J25.
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1 Introduction

We introduce a special class of recurrent polynomials fm (m ≥ 1) of degree m with
real coefficients.

Then, we find sufficient conditions under which each polynomial fm has a unique
positive root sm, such that sm+1 ≤ sm (m ≥ 1). The first root s1, as well as the
last one denoted by s∞ are expressed in simple closed form.

Two applications are provided. In the first one, we show how to use s1 and s∞
to locate any sm belonging in (s∞, s1] (m ≥ 1).

In the second one, using this technique on Newton’s method (2.19), we show that
the famous for its simplicity and clarity Newton–Kantorovich condition (2.43) for
solving equations can always replaced by a weaker one (2.22).

Moreover, the ratio of the quadratic convergence of Newton’s method 2 q0 under
our approach is smaller than 2 qK given in [5].
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2 Locating roots of polynomials

We need the main result on locating roots of polynomials.

Theorem 2.1 Let a > 0, b > 0, and c < 0 be given constants. Define polynomials
fm (m ≥ 1), g on [0,+∞) by:

fm(s) = b sm + a sm−1 + b (sm−1 + sm−2 + · · ·+ 1) + c, (2.1)

and
g(s) = b s2 + a s− a. (2.2)

Set

d =
2 a

a+
√
a2 + 4 a b

. (2.3)

Assume:
d ≤ 1 +

b

c
, (2.4)

and
a+ b+ c < 0. (2.5)

Then, each polynomial fm (m ≥ 1) has a unique positive root sm.

Moreover, the following estimates hold for all m ≥ 1:

1 +
b

c
≤ s? ≤ sm+1 ≤ sm, (2.6)

and
fm(s) ≤ 0 for all s ∈ [0, sm], (2.7)

where,
s? = lim

m−→∞
sm.

Proof.
We shall first show that each polynomial fm has a unique positive root sm

(m ≥ 1).

We have by (2.1), and (2.5):

f1(0) = a+ b+ c < 0, (2.8)

fm(0) = b+ c < 0 (m > 1). (2.9)
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Moreover for sufficiently large s > 0, we also have:

fm(s) > 0 (m ≥ 1). (2.10)

It then follows from (2.8)–(2.10), and the the intermediate value theorem that
there exists a positive root sm of polynomial fm.

Each sm is the unique positive root of fm, since

f ′m(s) > 0 (m ≥ 1) (s ≥ 0). (2.11)

That is the graph of polynomial fm crosses the positive axis only once.

Furthermore, we shall show estimate (2.6) holds.

We need the relationship between two consecutive polynomials fm’s:

fm+1(s) = b sm+1 + a sm + b (sm + · · ·+ 1) + c
= b sm + a sm−1 + b (sm−1 + · · ·+ 1) + c+

a sm − a sm−1 + b sm+1

= fm(s) + sm−1 (b s2 + a s− a)
= fm(s) + g(s) sm−1.

(2.12)

Assume there exists m ≥ 0, such that

sm+1 ≥ d. (2.13)

Note that d is the unique positive root of function g.

We get
fm+1(sm+1) = fm(sm+1) + g(sm+1) sm−1

m+1

or
fm(sm+1) ≤ 0, (2.14)

since fm+1(sm+1) = 0, and g(sm+1) sm−1
m+1 ≥ 0, which imply

sm+1 ≤ sm (m ≥ 1). (2.15)

We can certainly choose the last of the sm’s denoted by s∞, to be sm+1.
The point s∞ has a closed form.

Indeed, polynomial fm can be written for s ∈ [0, 1):

fm(s) = b sm + a sm−1 + b
1− sm−2

1− s
+ c. (2.16)
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By letting m −→∞, we get:

f∞(s) =
b

1− s
+ c. (2.17)

Function f∞ has a unique positive root denoted by s∞, and given by:

s∞ = 1 +
b

c
. (2.18)

Sequence {sm} is non–increasing, bounded below by zero, and as such it con-
verges to s? satisfying s? ≥ s∞.

Finally, estimate (2.7) certainly holds if d ≤ s∞, which is true by (2.4).

That completes the proof of Theorem 2.1. ♦

As a first application, we show how to locate a root of a polynomial fm (m ≥ 2),
using, say e.g. sm−1, and s∞.

Application 2.2 Let a = b = 1, c = −3, and m = 2. We obtain using (2.1)–(2.3),
and (2.18):

f1(s) = s− 1, f2(s) = s2 + 2 s− 2,

s1 = 1, s∞ = 0.666666666, d = .618033989.

Conditions (2.4), and (2.5) become:

.618033989 < .666666666,

and
−1 < 0.

Hence, the conclusions of Theorem 2.1 hold. In particular, we know s2 ∈ (s∞, s1).
Actual direct computation justifies the theoretical claim, since

s2 =
√

3− 1 = .732050808 ∈ (.666666666, 1).

Application 2.3 As a second application, we show how to use Theorem 2.1 to
derive sufficient convergence conditions for scalar majorizing sequences of certain
popular iterative methods such that as Newton’s method:

xn+1 = xn − F ′(xn)−1 F (xn) (n ≥ 0), (x0 ∈ D), (2.19)

where, F is a differentiable operator defined on a convex subset D of R with values
in R.
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It was shown that in [3] (see also [1], [5]) that scalar sequence {vn} (n ≥ 0) given
by

v0 = 0, v1 = η, vn+2 = vn+1 +
L (vn+1 − vn)2

2 (1− L0 vn+1)
, (2.20)

where, η > 0, L ≥ 0, and L0 > 0 are given constants, is a majorizing sequence for
{xn}, in the sence that:

|xn+1 − xn| ≤ vn+1 − vn (n ≥ 0). (2.21)

The significance of η, L, L0 can be found in [3].

Note that the Newton–Kantorovich majorizing sequence is the special case of
(2.20) when L = L0. In case L0 < L, our majorizing sequence (2.20) is finer, and
under the same computational cost, and hypotheses [1].

Therefore, sufficient convergence conditions for iteration {vn}in view of (2.21)
lead to the convergence of iteration {xn} to a solution x? of equation F (x) = 0.

Set a = L η, b = 2 L0 η, and c = −2, in Theorem 2.1.

It is simple algebra to show that conditions (2.4), and (2.5) reduces to (2.22) in
the majorizing lemma that follows:

Theorem 2.4 Assume there exist constants L0 ≥ 0, L ≥ 0, and η ≥ 0, such that:

q0 = L η ≤ 1
2
, (2.22)

where,

L =
1
8

(
L+ 4 L0 +

√
L2 + 8 L0 L

)
. (2.23)

The inequality in (2.22) is strict if L0 = 0.

Then, sequence {tk} (k ≥ 0) given by

t0 = 0, t1 = η, tk+1 = tk +
L1 (tk − tk−1)2

2 (1− L0 tk)
(k ≥ 1), (2.24)

is nondecreasing, bounded above by t??, and converges to its unique least upper bound
t? ∈ [0, t??], where

L1 =
{
L0 if k = 1
L if k > 1

,
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t?? =
2 η

2− δ
, (2.25)

δ =
4 L

L+
√
L2 + 8 L0 L

< 2 for L0 6= 0. (2.26)

Moreover the following estimates hold:

L0 t
? < 1, (2.27)

0 ≤ tk+1 − tk ≤
δ

2
(tk − tk−1) ≤ · · · ≤

(
δ

2

)k

η, (k ≥ 1), (2.28)

tk+1 − tk ≤
(
δ

2

)k

(2 q0)2
k−1 η, (k ≥ 0), (2.29)

0 ≤ t? − tk ≤
(
δ

2

)k (2 q0)2
k−1 η

1− (2 q0)2k , (2 q0 < 1), (k ≥ 0). (2.30)

Proof. We shall show using induction on k that for all k ≥ 0:

L (tk+1 − tk) + δ L0 tk+1 < δ, (2.31)

0 < tk+1 − tk, (2.32)

L0 tk+1 < 1, (2.33)

and

0 < tk+2 < t??. (2.34)

Estimates (2.31)–(2.33) hold true for k = 0 by the initial condition t1 = η, and
hypothesis (2.22). It then follows from (2.24) that

0 < t2 − t1 ≤
δ

2
(t1 − t0) and t2 ≤ η +

δ

2
η =

2 + δ

2
η < t??.

Let us assume estimates (2.31)–(2.34) hold true for all integer values k: k ≤ n+1
(n ≥ 0).



Enclosing roots of polynomial equations · · · 7

We also get

tk+2 ≤ tk+1 +
δ

2
(tk+1 − tk)

≤ tk +
δ

2
(tk − tk−1) +

δ

2
(tk+1 − tk)

≤ η +
(
δ

2

)
η + · · ·+

(
δ

2

)k+1

η

=
1−

(
δ

2

)k+2

1− δ

2

η

<
2 η

2− δ
= t??.

(2.35)

We have in turn:

L (tk+2 − tk+1) + δ L0 tk+2 ≤ L
(
δ

2

)k+1

η + L0 δ

1−
(
δ

2

)k+2

1− δ

2

η ≤ δ, (2.36)

which shows (2.30)–(2.33) for k = n+ 2.

Estimate (2.36) can be rewritten as:

{
L

(
δ

2

)n

+ δ L0

1−
(
δ

2

)n+1

1− δ

2

}
η ≤ δ. (2.37)

Estimate (2.37) motivates us to define for s =
δ

2
, the sequence {fn} of polynomials

on [0,+∞) by

fn(s) =
(
L sn−1 + 2 L0 (1 + s+ s2 + · · ·+ sn)

)
η − 2. (2.38)

In view of Theorem 2.1, the induction for (2.31)–(2.34) is completed.

Hence, sequence {tn} is non–decreasing, bounded above by t??, and as such that
it converges to its unique least upper bound t?. The induction is completed for
(2.28).
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If L0 = 0, then (2.27) holds trivially. In this case, for L > 0, an induction
argument shows that

tk+1 − tk =
2
L

(2 q0)2
k

(k ≥ 0),

and therefore

tk+1 = t1 + (t2 − t1) + · · ·+ (tk+1 − tk) =
2
L

k∑
m=0

(2 q0)m,

and

t? = lim
k→∞

tk =
2
L

∞∑
k=0

(2 q0)2
k
.

Clearly, this series converges, since k ≤ 2k, 2 q0 < 1, and is bounded above by
the number

2
L

∞∑
k=0

(2 q0)k =
4

L (2− L η)
.

If L = 0, then in view of (2.3), 0 ≤ L0 ≤ L, we deduce: L0 = 0, and t? = tk = η
(k ≥ 1).

In the rest of the proof, we assume that L0 > 0.

In order for us to show (2.29) we need the estimate:

1−
(
δ

2

)k+1

1− δ

2

η ≤ 1
L0

(
1−

(
δ

2

)k−1 L

4 L

)
(k ≥ 1). (2.39)

For k = 1, (2.39) becomes (
1 +

δ

2

)
η ≤ 4 L− L

4 L L0

or (
1 +

2 L
L+
√
L2 + 8 L0 L

)
η ≤ 4 L0 − L+

√
L2 + 8 L0 L

L0 (4 L0 + L+
√
L2 + 8 L0 L)

In view of (2.22), it suffices to show:

L0 (4 L0 + L+
√
L2 + 8 L0 L) (3 L+

√
L2 + 8 L0 L)

(L+
√
L2 + 8 L0 L) (4 L0 − L+

√
L2 + 8 L0 L)

≤ 2 L,
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which is true as equality.

Let us now assume estimate (2.39) is true for all integers smaller or equal to k.
We must show (2.39) holds for k being k + 1:

1−
(
δ

2

)k+2

1− δ

2

η ≤ 1
L0

(
1−

(
δ

2

)k L

4 L

)
(k ≥ 1).

or (
1 +

δ

2
+
(
δ

2

)2

+ · · ·+
(
δ

2

)k+1)
η ≤ 1

L0

(
1−

(
δ

2

)k L

4 L

)
. (2.40)

By the induction hypothesis to show (2.40), it suffices

1
L0

(
1−

(
δ

2

)k−1 L

4 L

)
+
(
δ

2

)k+1

η ≤ 1
L0

(
1−

(
δ

2

)k L

4 L

)
or (

δ

2

)k+1

η ≤ 1
L0

((
δ

2

)k−1

−
(
δ

2

)k) L

4 L
or

δ2 η ≤ L (2− δ)
2 L L0

.

In view of (2.22) it suffices to show

2 L L0 δ
2

L (2− δ)
≤ 2 L,

which holds as equality by the choice of δ given by (2.26).

That completes the induction for estimates (2.39).

We shall show (2.29) using induction on k ≥ 0: Estimate (2.29) is true for k = 0
by (2.22), (2.24), and (2.26). In order for us to show estimate (2.29) for k = 1, since

t2 − t1 =
L (t1 − t0)2

2 (1− L0 t1)
, it suffices:

L η2

2 (1− L0 η)
≤ δ L η2

or
L

1− L0 η
≤ 16 L L

L+
√
L2 + 8 L0 L

(η 6= 0)
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or

η ≤ 1
L0

(
1− L+

√
L2 + 8 L0 L

16 L

)
(L0 6= 0, L 6= 0).

But by (2.22)

η ≤ 4
L+ 4 L0 +

√
L2 + 8 L0 L

.

It then suffices to show

4
L+ 4 L0 +

√
L2 + 8 L0 L

≤ 1
L0

(
1− L+

√
L2 + 8 L0 L

16 L

)
or

L+
√
L2 + 8 L0 L

16 L
≤ 1− 4 L0

L+ 4 L0 +
√
L2 + 8 L0 L

or
L+
√
L2 + 8 L0 L

16 L
≤ L+

√
L2 + 8 L0 L

L+ 4 L0 +
√
L2 + 8 L0 L

or
L ≥ 0,

which is true by (2.23).

Let us assume (2.40) holds for all integers smaller or equal to k. We shall show
(2.40) holds for k replaced by k + 1.

Using (2.24), and the induction hypothesis, we have in turn

tk+2 − tk+1 =
L

2 (1− L0 tk+1)
(tk+1 − tk)2

≤ L

2 (1− L0 tk+1)

((
δ

2

)k

(2 q0)2
k−1 η

)2

≤ L

2 (1− L0 tk+1)

((
δ

2

)k−1

(2 q0)−1 η

) ((
δ

2

)k+1

(2 q0)2
k+1−1 η

)

≤
(
δ

2

)k+1

(2 q0)2
k+1−1 η,

since,
L

2 (1− L0 tk+1)

((
δ

2

)k−1

(2 q0)−1 η

)
≤ 1, (k ≥ 1). (2.41)
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Indeed, we can show instead of (2.41):

tk+1 ≤
1
L0

(
1−

(
δ

2

)k−1 L

4 L

)
,

which is true, since by (2.28), and the induction hypothesis:

tk+1 ≤ tk +
δ

2
(tk − tk−1)

≤ t1 +
δ

2
(t1 − t0) + · · ·+ δ

2
(tk − tk−1)

≤ η +
(
δ

2

)
η + · · ·+

(
δ

2

)k

η

=
1−

(
δ

2

)k+1

1− δ

2

η

≤ 1
L0

(
1−

(
δ

2

)k−1 L

4 L

)
.

That completes the induction for estimate (2.29).

Using estimate (2.40) for j ≥ k, we obtain in turn for 2 q0 < 1:

tj+1 − tk = (tj+1 − tj) + (tj − tj−1) + · · ·+ (tk+1 − tk)

≤
((

δ

2

)j

(2 q0)2
j−1 +

(
δ

2

)j−1

(2 q0)2
j−1−1 + · · ·+

(
δ

2

)k

(2 q0)2
k−1

)
η

≤
(

1 + (2 q0)2
k

+
(

(2 q0)2
k

)2

+ · · ·
) (

δ

2

)k

(2 q0)2
k−1 η

=
(
δ

2

)k (2 q0)2
k−1 η

1− (2 q0)2k .

(2.42)
Estimate (2.30) follows from (2.42) by letting j −→∞.

That completes the proof of Theorem 2.4. ♦

Remark 2.5 In practice
L0 ≤ L
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and
L

L0
can be arbitrarily large [1]–[4].

Condition (2.22) coincides with the Newton–Kantorovich hypothesis:

qK = L η ≤ 1
2
, (2.43)

if L = L0. Otherwise (2.22) is weaker than (2.43). Moreover the ratio 2 q0 is also
smaller than 2 qK .

Hence, (2.22) can replace (2.43) in the Newton–Kantorovich theorem [5].

Example 2.6 Define the scalar function F by F (x) = c0 x+c1+c2 sin ec3 x, x0 = 0,
where ci, i = 1, 2, 3 are given parameters. Then it can easily be seen that for c3
large and c2 sufficiently small,

L

L0
can be arbitrarily large. That is (2.22) may be

satisfied but not (2.43).

Example 2.7 Let X = Y = R, x0 = 1, U0 = {x : |x − x0| ≤ 1 − β}, β ∈
[
0,

1
2

)
,

and define function F on U0 by

F (x) = x3 − β. (2.44)

Using our hypotheses, we get:

η =
1
3

(1− β), L0 = 3− β, and L = 2 (2− β).

The Kantorovich condition (2.43) is violated, since

4
3

(1− β) (2− β) > 1 for all β ∈
[
0,

1
2

)
.

Hence, there is no guarantee that Newton’s method (2.19) converges to x? = 3
√
β,

starting at x0 = 1.

However, our condition (2.22) is true for all β ∈ I =
[
.450339002,

1
2

)
. Hence,

the conclusions of our Theorem 2.4 can apply to solve equation (2.44) for all β ∈ I.

Other applications where L0 < L can be found in [1], [3].

This technique can be used for other Newton–type methods [1]–[7]. Moreover,
results obtained here also hold in a Banach space setting.
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