Enclosing roots of polynomial equations and their applications to iterative processes

Ioannis K. Argyros and Jingshu Zhao Cameron University Department of Mathematics Sciences Lawton, OK 73505, USA iargyros@cameron.edu jingshujiayou@hotmail.com

Abstract

We introduce a special class of real recurrent polynomials f_m $(m \ge 1)$ of degree m, with unique positive roots s_m , which are decreasing as m increases. The first root s_1 , as well as the last one denoted by s_{∞} are expressed in closed form, and enclose all s_m (m > 1).

This technique is also used to find weaker than before [5] sufficient convergence conditions for some popular iterative processes converging to solutions of equations.

AMS Subject Classification. 26C10, 12D10, 30C15, 30C10, 65J15, 47J25.

Key Words. real polynomials, enclosing roots, iterative processes, nonlinear equations.

1 Introduction

We introduce a special class of recurrent polynomials f_m $(m \ge 1)$ of degree m with real coefficients.

Then, we find sufficient conditions under which each polynomial f_m has a unique positive root s_m , such that $s_{m+1} \leq s_m$ $(m \geq 1)$. The first root s_1 , as well as the last one denoted by s_{∞} are expressed in simple closed form.

Two applications are provided. In the first one, we show how to use s_1 and s_{∞} to locate any s_m belonging in $(s_{\infty}, s_1]$ $(m \ge 1)$.

In the second one, using this technique on Newton's method (2.19), we show that the famous for its simplicity and clarity Newton–Kantorovich condition (2.43) for solving equations can always replaced by a weaker one (2.22).

Moreover, the ratio of the quadratic convergence of Newton's method 2 q_0 under our approach is smaller than 2 q_K given in [5].

2 Locating roots of polynomials

We need the main result on locating roots of polynomials.

Theorem 2.1 Let a > 0, b > 0, and c < 0 be given constants. Define polynomials $f_m \ (m \ge 1)$, $g \ on \ [0, +\infty)$ by:

$$f_m(s) = b \ s^m + a \ s^{m-1} + b \ (s^{m-1} + s^{m-2} + \dots + 1) + c, \tag{2.1}$$

and

$$g(s) = b \ s^2 + a \ s - a. \tag{2.2}$$

Set

$$d = \frac{2 a}{a + \sqrt{a^2 + 4 a b}}.$$
 (2.3)

Assume:

$$d \le 1 + \frac{b}{c},\tag{2.4}$$

and

$$a + b + c < 0.$$
 (2.5)

Then, each polynomial $f_m \ (m \ge 1)$ has a unique positive root s_m .

Moreover, the following estimates hold for all $m \ge 1$:

$$1 + \frac{b}{c} \le s^* \le s_{m+1} \le s_m, \tag{2.6}$$

and

$$f_m(s) \le 0 \quad \text{for all} \quad s \in [0, s_m], \tag{2.7}$$

where,

$$s^{\star} = \lim_{m \longrightarrow \infty} s_m.$$

Proof.

We shall first show that each polynomial f_m has a unique positive root s_m $(m \ge 1)$.

We have by (2.1), and (2.5):

$$f_1(0) = a + b + c < 0, \tag{2.8}$$

$$f_m(0) = b + c < 0 \qquad (m > 1).$$
 (2.9)

2

Enclosing roots of polynomial equations \cdots

Moreover for sufficiently large s > 0, we also have:

$$f_m(s) > 0 \qquad (m \ge 1).$$
 (2.10)

It then follows from (2.8)–(2.10), and the the intermediate value theorem that there exists a positive root s_m of polynomial f_m .

Each s_m is the unique positive root of f_m , since

$$f'_m(s) > 0 \ (m \ge 1) \qquad (s \ge 0).$$
 (2.11)

That is the graph of polynomial f_m crosses the positive axis only once.

Furthermore, we shall show estimate (2.6) holds.

We need the relationship between two consecutive polynomials f_m 's:

$$\begin{aligned}
f_{m+1}(s) &= b \, s^{m+1} + a \, s^m + b \, (s^m + \dots + 1) + c \\
&= b \, s^m + a \, s^{m-1} + b \, (s^{m-1} + \dots + 1) + c + \\
&a \, s^m - a \, s^{m-1} + b \, s^{m+1} \\
&= f_m(s) + s^{m-1} \, (b \, s^2 + a \, s - a) \\
&= f_m(s) + g(s) \, s^{m-1}.
\end{aligned}$$
(2.12)

Assume there exists $m \ge 0$, such that

$$s_{m+1} \ge d. \tag{2.13}$$

Note that d is the unique positive root of function g.

We get

$$f_{m+1}(s_{m+1}) = f_m(s_{m+1}) + g(s_{m+1}) \ s_{m+1}^{m-1}$$

or

$$f_m(s_{m+1}) \le 0,$$
 (2.14)

since $f_{m+1}(s_{m+1}) = 0$, and $g(s_{m+1}) \ s_{m+1}^{m-1} \ge 0$, which imply

$$s_{m+1} \le s_m \qquad (m \ge 1).$$
 (2.15)

We can certainly choose the last of the s_m 's denoted by s_∞ , to be s_{m+1} . The point s_∞ has a closed form.

Indeed, polynomial f_m can be written for $s \in [0, 1)$:

$$f_m(s) = b \ s^m + a \ s^{m-1} + b \ \frac{1 - s^{m-2}}{1 - s} + c.$$
(2.16)

 \diamond

By letting $m \longrightarrow \infty$, we get:

$$f_{\infty}(s) = \frac{b}{1-s} + c.$$
 (2.17)

Function f_{∞} has a unique positive root denoted by s_{∞} , and given by:

$$s_{\infty} = 1 + \frac{b}{c}.\tag{2.18}$$

Sequence $\{s_m\}$ is non-increasing, bounded below by zero, and as such it converges to s^* satisfying $s^* \ge s_{\infty}$.

Finally, estimate (2.7) certainly holds if $d \leq s_{\infty}$, which is true by (2.4).

That completes the proof of Theorem 2.1.

As a first application, we show how to locate a root of a polynomial f_m $(m \ge 2)$, using, say e.g. s_{m-1} , and s_{∞} .

Application 2.2 Let a = b = 1, c = -3, and m = 2. We obtain using (2.1)–(2.3), and (2.18):

$$f_1(s) = s - 1,$$
 $f_2(s) = s^2 + 2 s - 2,$
 $s_1 = 1,$ $s_\infty = 0.6666666666,$ $d = .618033989.$

Conditions (2.4), and (2.5) become:

and

$$-1 < 0.$$

Hence, the conclusions of Theorem 2.1 hold. In particular, we know $s_2 \in (s_{\infty}, s_1)$. Actual direct computation justifies the theoretical claim, since

Application 2.3 As a second application, we show how to use Theorem 2.1 to derive sufficient convergence conditions for scalar majorizing sequences of certain popular iterative methods such that as Newton's method:

$$x_{n+1} = x_n - F'(x_n)^{-1} F(x_n) \quad (n \ge 0), \quad (x_0 \in \mathcal{D}),$$
(2.19)

where, F is a differentiable operator defined on a convex subset \mathcal{D} of \mathbb{R} with values in \mathbb{R} .

Enclosing roots of polynomial equations \cdots

It was shown that in [3] (see also [1], [5]) that scalar sequence $\{v_n\}$ $(n \ge 0)$ given by

$$v_0 = 0, \quad v_1 = \eta, \quad v_{n+2} = v_{n+1} + \frac{L (v_{n+1} - v_n)^2}{2 (1 - L_0 v_{n+1})},$$
 (2.20)

where, $\eta > 0$, $L \ge 0$, and $L_0 > 0$ are given constants, is a majorizing sequence for $\{x_n\}$, in the sence that:

$$|x_{n+1} - x_n| \le v_{n+1} - v_n \qquad (n \ge 0). \tag{2.21}$$

The significance of η , L, L₀ can be found in [3].

Note that the Newton-Kantorovich majorizing sequence is the special case of (2.20) when $L = L_0$. In case $L_0 < L$, our majorizing sequence (2.20) is finer, and under the same computational cost, and hypotheses [1].

Therefore, sufficient convergence conditions for iteration $\{v_n\}$ in view of (2.21) lead to the convergence of iteration $\{x_n\}$ to a solution x^* of equation F(x) = 0.

Set
$$a = L \eta$$
, $b = 2 L_0 \eta$, and $c = -2$, in Theorem 2.1.

It is simple algebra to show that conditions (2.4), and (2.5) reduces to (2.22) in the majorizing lemma that follows:

Theorem 2.4 Assume there exist constants $L_0 \ge 0$, $L \ge 0$, and $\eta \ge 0$, such that:

$$q_0 = \overline{L} \ \eta \le \frac{1}{2},\tag{2.22}$$

where,

$$\overline{L} = \frac{1}{8} \left(L + 4 \ L_0 + \sqrt{L^2 + 8 \ L_0 \ L} \right).$$
(2.23)

The inequality in (2.22) is strict if $L_0 = 0$.

Then, sequence $\{t_k\}$ $(k \ge 0)$ given by

$$t_0 = 0, \quad t_1 = \eta, \quad t_{k+1} = t_k + \frac{L_1 (t_k - t_{k-1})^2}{2 (1 - L_0 t_k)} \qquad (k \ge 1),$$
 (2.24)

is nondecreasing, bounded above by $t^{\star\star}$, and converges to its unique least upper bound $t^{\star} \in [0, t^{\star\star}]$, where

$$L_1 = \left\{ \begin{array}{rrr} L_0 & if \quad k=1\\ L & if \quad k>1 \end{array} \right.,$$

Ioannis K. Argyros and Jingshu Zhao

$$t^{\star\star} = \frac{2 \eta}{2 - \delta},\tag{2.25}$$

$$\delta = \frac{4 L}{L + \sqrt{L^2 + 8 L_0 L}} < 2 \quad \text{for } L_0 \neq 0.$$
 (2.26)

Moreover the following estimates hold:

$$L_0 t^* < 1,$$
 (2.27)

$$0 \le t_{k+1} - t_k \le \frac{\delta}{2} \ (t_k - t_{k-1}) \le \dots \le \left(\frac{\delta}{2}\right)^k \eta, \quad (k \ge 1),$$
 (2.28)

$$t_{k+1} - t_k \le \left(\frac{\delta}{2}\right)^k (2 \ q_0)^{2^k - 1} \eta, \quad (k \ge 0),$$
 (2.29)

$$0 \le t^* - t_k \le \left(\frac{\delta}{2}\right)^k \frac{(2 q_0)^{2^k - 1} \eta}{1 - (2 q_0)^{2^k}}, \quad (2 q_0 < 1), \quad (k \ge 0).$$
(2.30)

Proof. We shall show using induction on k that for all $k \ge 0$:

$$L(t_{k+1} - t_k) + \delta L_0 t_{k+1} < \delta, \qquad (2.31)$$

$$0 < t_{k+1} - t_k, (2.32)$$

$$L_0 t_{k+1} < 1, (2.33)$$

and

$$0 < t_{k+2} < t^{\star\star}. \tag{2.34}$$

Estimates (2.31)–(2.33) hold true for k = 0 by the initial condition $t_1 = \eta$, and hypothesis (2.22). It then follows from (2.24) that

$$0 < t_2 - t_1 \le \frac{\delta}{2} (t_1 - t_0)$$
 and $t_2 \le \eta + \frac{\delta}{2} \eta = \frac{2 + \delta}{2} \eta < t^{\star \star}.$

Let us assume estimates (2.31)–(2.34) hold true for all integer values $k \colon k \leq n+1$ $(n \geq 0).$

We also get

$$t_{k+2} \leq t_{k+1} + \frac{\delta}{2} (t_{k+1} - t_k)$$

$$\leq t_k + \frac{\delta}{2} (t_k - t_{k-1}) + \frac{\delta}{2} (t_{k+1} - t_k)$$

$$\leq \eta + \left(\frac{\delta}{2}\right) \eta + \dots + \left(\frac{\delta}{2}\right)^{k+1} \eta$$

$$= \frac{1 - \left(\frac{\delta}{2}\right)^{k+2}}{1 - \frac{\delta}{2}} \eta$$

$$< \frac{2\eta}{2 - \delta} = t^{\star \star}.$$

$$(2.35)$$

We have in turn:

$$L(t_{k+2} - t_{k+1}) + \delta L_0 t_{k+2} \le L\left(\frac{\delta}{2}\right)^{k+1} \eta + L_0 \delta \frac{1 - \left(\frac{\delta}{2}\right)^{k+2}}{1 - \frac{\delta}{2}} \eta \le \delta, \quad (2.36)$$

which shows (2.30)–(2.33) for k = n + 2.

Estimate (2.36) can be rewritten as:

$$\left\{ L\left(\frac{\delta}{2}\right)^n + \delta L_0 \frac{1 - \left(\frac{\delta}{2}\right)^{n+1}}{1 - \frac{\delta}{2}} \right\} \eta \le \delta.$$
(2.37)

Estimate (2.37) motivates us to define for $s = \frac{\delta}{2}$, the sequence $\{f_n\}$ of polynomials on $[0, +\infty)$ by

$$f_n(s) = \left(L \ s^{n-1} + 2 \ L_0 \ (1+s+s^2+\dots+s^n)\right) \eta - 2. \tag{2.38}$$

In view of Theorem 2.1, the induction for (2.31)-(2.34) is completed.

Hence, sequence $\{t_n\}$ is non-decreasing, bounded above by $t^{\star\star}$, and as such that it converges to its unique least upper bound t^{\star} . The induction is completed for (2.28).

If $L_0 = 0$, then (2.27) holds trivially. In this case, for L > 0, an induction argument shows that

$$t_{k+1} - t_k = \frac{2}{L} (2 q_0)^{2^k} \qquad (k \ge 0),$$

and therefore

$$t_{k+1} = t_1 + (t_2 - t_1) + \dots + (t_{k+1} - t_k) = \frac{2}{L} \sum_{m=0}^k (2 q_0)^m,$$

and

$$t^{\star} = \lim_{k \to \infty} t_k = \frac{2}{L} \sum_{k=0}^{\infty} (2 \ q_0)^{2^k}.$$

Clearly, this series converges, since $k \leq 2^k$, $2 q_0 < 1$, and is bounded above by the number

$$\frac{2}{L} \sum_{k=0}^{\infty} (2 \ q_0)^k = \frac{4}{L \ (2 - L \ \eta)}.$$

If L = 0, then in view of (2.3), $0 \le L_0 \le L$, we deduce: $L_0 = 0$, and $t^* = t_k = \eta$ $(k \ge 1)$.

In the rest of the proof, we assume that $L_0 > 0$.

In order for us to show (2.29) we need the estimate:

$$\frac{1-\left(\frac{\delta}{2}\right)^{k+1}}{1-\frac{\delta}{2}} \eta \le \frac{1}{L_0} \left(1-\left(\frac{\delta}{2}\right)^{k-1} \frac{L}{4 \ \overline{L}}\right) \qquad (k\ge 1).$$
(2.39)

For k = 1, (2.39) becomes

$$\left(1+\frac{\delta}{2}\right)\eta \leq \frac{4\,\overline{L}-L}{4\,\overline{L}\,L_0}$$

or

$$\left(1 + \frac{2 L}{L + \sqrt{L^2 + 8 L_0 L}}\right) \eta \le \frac{4 L_0 - L + \sqrt{L^2 + 8 L_0 L}}{L_0 (4 L_0 + L + \sqrt{L^2 + 8 L_0 L})}$$

In view of (2.22), it suffices to show:

$$\frac{L_0 \left(4 \ L_0 + L + \sqrt{L^2 + 8 \ L_0 \ L}\right) \left(3 \ L + \sqrt{L^2 + 8 \ L_0 \ L}\right)}{\left(L + \sqrt{L^2 + 8 \ L_0 \ L}\right) \left(4 \ L_0 - L + \sqrt{L^2 + 8 \ L_0 \ L}\right)} \le 2 \ \overline{L},$$

which is true as equality.

Let us now assume estimate (2.39) is true for all integers smaller or equal to k. We must show (2.39) holds for k being k + 1:

$$\frac{1-\left(\frac{\delta}{2}\right)^{k+2}}{1-\frac{\delta}{2}} \eta \leq \frac{1}{L_0} \left(1-\left(\frac{\delta}{2}\right)^k \frac{L}{4 \overline{L}}\right) \qquad (k \geq 1).$$

or

$$\left(1 + \frac{\delta}{2} + \left(\frac{\delta}{2}\right)^2 + \dots + \left(\frac{\delta}{2}\right)^{k+1}\right) \eta \le \frac{1}{L_0} \left(1 - \left(\frac{\delta}{2}\right)^k \frac{L}{4 \ \overline{L}}\right). \tag{2.40}$$

By the induction hypothesis to show (2.40), it suffices

$$\frac{1}{L_0} \left(1 - \left(\frac{\delta}{2}\right)^{k-1} \frac{L}{4 \overline{L}} \right) + \left(\frac{\delta}{2}\right)^{k+1} \eta \le \frac{1}{L_0} \left(1 - \left(\frac{\delta}{2}\right)^k \frac{L}{4 \overline{L}} \right)$$
$$\left(\frac{\delta}{2}\right)^{k+1} \eta \le \frac{1}{L_0} \left(\left(\frac{\delta}{2}\right)^{k-1} - \left(\frac{\delta}{2}\right)^k \right) \frac{L}{4 \overline{L}}$$

or

or

$$\delta^2 \ \eta \leq \frac{L \ (2-\delta)}{2 \ \overline{L} \ L_0}$$

In view of (2.22) it suffices to show

$$\frac{2\ \overline{L}\ L_0\ \delta^2}{L\ (2-\delta)} \le 2\ \overline{L},$$

which holds as equality by the choice of δ given by (2.26).

That completes the induction for estimates (2.39).

We shall show (2.29) using induction on $k \ge 0$: Estimate (2.29) is true for k = 0 by (2.22), (2.24), and (2.26). In order for us to show estimate (2.29) for k = 1, since $t_2 - t_1 = \frac{L (t_1 - t_0)^2}{2 (1 - L_0 t_1)}$, it suffices:

$$\frac{L \eta^2}{2 (1 - L_0 \eta)} \le \delta \overline{L} \eta^2$$

or

$$\frac{L}{1 - L_0 \eta} \le \frac{16 \ \overline{L} \ L}{L + \sqrt{L^2 + 8 \ L_0 \ L}} \quad (\eta \ne 0)$$

or

$$\eta \le \frac{1}{L_0} \left(1 - \frac{L + \sqrt{L^2 + 8 L_0 L}}{16 \overline{L}} \right) \quad (L_0 \ne 0, \ L \ne 0).$$

But by (2.22)

$$\eta \le \frac{4}{L + 4 \ L_0 + \sqrt{L^2 + 8 \ L_0 \ L}}$$

It then suffices to show

$$\frac{4}{L+4\ L_0+\sqrt{L^2+8\ L_0\ L}} \le \frac{1}{L_0} \left(1-\frac{L+\sqrt{L^2+8\ L_0\ L}}{16\ \overline{L}}\right)$$

or

or

$$\frac{L + \sqrt{L^2 + 8 L_0 L}}{16 \overline{L}} \le 1 - \frac{4 L_0}{L + 4 L_0 + \sqrt{L^2 + 8 L_0 L}}$$

$$L + \sqrt{L^2 + 8 L_0 L}$$

$$L + \sqrt{L^2 + 8 L_0 L}$$

 $\frac{L + \sqrt{L^2 + 8 L_0 L}}{16 \overline{L}} \le \frac{L + \sqrt{L^2 + 8 L_0 L}}{L + 4 L_0 + \sqrt{L^2 + 8 L_0 L}}$

or

 $\overline{L} \ge 0,$

which is true by (2.23).

Let us assume (2.40) holds for all integers smaller or equal to k. We shall show (2.40) holds for k replaced by k + 1.

Using (2.24), and the induction hypothesis, we have in turn

$$\begin{aligned} t_{k+2} - t_{k+1} &= \frac{L}{2 (1 - L_0 t_{k+1})} (t_{k+1} - t_k)^2 \\ &\leq \frac{L}{2 (1 - L_0 t_{k+1})} \left(\left(\frac{\delta}{2} \right)^k (2 q_0)^{2^k - 1} \eta \right)^2 \\ &\leq \frac{L}{2 (1 - L_0 t_{k+1})} \left(\left(\frac{\delta}{2} \right)^{k-1} (2 q_0)^{-1} \eta \right) \left(\left(\frac{\delta}{2} \right)^{k+1} (2 q_0)^{2^{k+1} - 1} \eta \right) \\ &\leq \left(\frac{\delta}{2} \right)^{k+1} (2 q_0)^{2^{k+1} - 1} \eta, \end{aligned}$$

since,

$$\frac{L}{2 (1 - L_0 t_{k+1})} \left(\left(\frac{\delta}{2} \right)^{k-1} (2 q_0)^{-1} \eta \right) \le 1, \qquad (k \ge 1).$$
 (2.41)

Enclosing roots of polynomial equations \cdots

Indeed, we can show instead of (2.41):

$$t_{k+1} \le \frac{1}{L_0} \left(1 - \left(\frac{\delta}{2}\right)^{k-1} \frac{L}{4 \,\overline{L}} \right),$$

which is true, since by (2.28), and the induction hypothesis:

$$t_{k+1} \leq t_k + \frac{\delta}{2} (t_k - t_{k-1})$$

$$\leq t_1 + \frac{\delta}{2} (t_1 - t_0) + \dots + \frac{\delta}{2} (t_k - t_{k-1})$$

$$\leq \eta + \left(\frac{\delta}{2}\right) \eta + \dots + \left(\frac{\delta}{2}\right)^k \eta$$

$$= \frac{1 - \left(\frac{\delta}{2}\right)^{k+1}}{1 - \frac{\delta}{2}} \eta$$

$$\leq \frac{1}{L_0} \left(1 - \left(\frac{\delta}{2}\right)^{k-1} \frac{L}{4 \overline{L}}\right).$$

That completes the induction for estimate (2.29).

Using estimate (2.40) for $j \ge k$, we obtain in turn for 2 $q_0 < 1$:

$$\begin{aligned} t_{j+1} - t_k &= (t_{j+1} - t_j) + (t_j - t_{j-1}) + \dots + (t_{k+1} - t_k) \\ &\leq \left(\left(\frac{\delta}{2} \right)^j (2 \, q_0)^{2^j - 1} + \left(\frac{\delta}{2} \right)^{j-1} (2 \, q_0)^{2^{j-1} - 1} + \dots + \left(\frac{\delta}{2} \right)^k (2 \, q_0)^{2^k - 1} \right) \eta \\ &\leq \left(1 + (2 \, q_0)^{2^k} + \left((2 \, q_0)^{2^k} \right)^2 + \dots \right) \left(\frac{\delta}{2} \right)^k (2 \, q_0)^{2^k - 1} \eta \\ &= \left(\frac{\delta}{2} \right)^k \frac{(2 \, q_0)^{2^k - 1} \eta}{1 - (2 \, q_0)^{2^k}}. \end{aligned}$$

$$(2.42)$$

Estimate (2.30) follows from (2.42) by letting $j \longrightarrow \infty$.

That completes the proof of Theorem 2.4.

 \diamond

Remark 2.5 In practice

$$L_0 \leq L$$

and $\frac{L}{L_0}$ can be arbitrarily large [1]–[4].

Condition (2.22) coincides with the Newton–Kantorovich hypothesis:

$$q_K = L \ \eta \le \frac{1}{2},\tag{2.43}$$

if $L = L_0$. Otherwise (2.22) is weaker than (2.43). Moreover the ratio 2 q_0 is also smaller than 2 q_K .

Hence, (2.22) can replace (2.43) in the Newton–Kantorovich theorem [5].

Example 2.6 Define the scalar function F by $F(x) = c_0 x + c_1 + c_2 \sin e^{c_3 x}$, $x_0 = 0$, where c_i , i = 1, 2, 3 are given parameters. Then it can easily be seen that for c_3 large and c_2 sufficiently small, $\frac{L}{L_0}$ can be arbitrarily large. That is (2.22) may be satisfied but not (2.43).

Example 2.7 Let $\mathcal{X} = \mathcal{Y} = \mathbb{R}$, $x_0 = 1$, $U_0 = \{x : |x - x_0| \le 1 - \beta\}$, $\beta \in \left[0, \frac{1}{2}\right)$, and define function F on U_0 by

$$F(x) = x^3 - \beta.$$
 (2.44)

Using our hypotheses, we get:

$$\eta = \frac{1}{3} (1 - \beta), \quad L_0 = 3 - \beta, \text{ and } L = 2 (2 - \beta).$$

The Kantorovich condition (2.43) is violated, since

$$\frac{4}{3} (1-\beta) (2-\beta) > 1 \quad \text{for all} \quad \beta \in \left[0, \frac{1}{2}\right].$$

Hence, there is no guarantee that Newton's method (2.19) converges to $x^* = \sqrt[3]{\beta}$, starting at $x_0 = 1$.

However, our condition (2.22) is true for all $\beta \in I = \left[.450339002, \frac{1}{2}\right)$. Hence, the conclusions of our Theorem 2.4 can apply to solve equation (2.44) for all $\beta \in I$.

Other applications where $L_0 < L$ can be found in [1], [3].

This technique can be used for other Newton-type methods [1]–[7]. Moreover, results obtained here also hold in a Banach space setting.

References

- Argyros, I.K., On the Newton–Kantorovich hypothesis for solving equations, J. Comput. Appl. Math., 169 (2004), 315–332.
- [2] Argyros, I.K., A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl., 298 (2004), 374–397.
- [3] Argyros, I.K., Convergence and applications of Newton-type iterations, Springer-Verlag Pub., New York, 2008.
- [4] Argyros, I.K., On a class of Newton-like methods for solving nonlinear equations, J. Comput. Appl. Math., 228 (2009), 115–122.
- [5] Kantorovich, L.V., Akilov, G.P., Functional Analysis, Pergamon Press, Oxford, 1982.
- [6] McNamee, J.M., Numerical methods for roots of polynomials, part I, 14, Elsevier, 2007.
- [7] Potra, F.A., On an iterative algorithm of order 1.839... for solving nonlinear operator equations, Numer. Funct. Anal. Optim., 7(1) (1984/85), 75–106.