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Developmental Vs. Elegant Definitions: Traditional curricular presentations of the six basic trigonometric

functions commonly begin by unnecessarily creating an artificial (“Where did that come from?”) developmental

gap in the course. By reducing the common-sensibility of the material, such gaps inhibit mathematical learning

and must be minimized.

This paper is primarily about the commonplace “sohcahtoa gap” (“soh: sine = opposite/adjacent”, etc.) -- and

about one mathematical route for bridging that gap. To a lesser extent, it also is about some oscillation-type

developmental discontinuities – wherein instruction badly vacillates between discordant meanings of some of
its rhetoric.

Necessarily, every course follows its instructor’s own point-after-point mathematical syllabus – which might

or might not conform to the mathematical syllabus that is woven through some textbook that currently is being

used for that course.  A mathematical syllabus is developmentally continuous only to the degree that each of

its newly injected “mathematical points” immediately is rationally derived from whatever mathematical theory the
students already own.

Developmental discontinuities in mathematical syllabi are major causes for prevalent weaknesses in students’

conceptual understanding of curricular mathematics. The  “sohcahtoa gap” is by no means the worst

among commonplace discontinuities in mathematical syllabi. But that gap nicely illustrates a particular “elegance”

kind of instructionally troublesome discontinuities --- and of mathematical bridges for closing such gaps.
The “elegance” gap occurs when the syllabus injects three “sohcahtoa” definitions  -- for the “sines”, “cosines”

and “tangents” of angles – without developing those concepts from within the mathematical thories previously

acquired by the students. In an equally naked manner, those soon are followed by labeling of their three

reciprocals as “cosecants”, “secants”, and “cotangents”.
The gap comes not from using “sohcahtoa” as a mnemonic device -- which can be a useful tool.  Rather, the gap

comes from using those three properties as “elegant” formal definitions – instead of conceptually deriving them as
useful theorems which follow from mathematically derived definitions. In their elegance, those definitions

largely miss the mathematical essence of the concepts – that the numbers express lengths of circle-parts, relative

to  circle-radii.-- so, students largely miss it, as well.

Does the curricular choice among alternative, mathematically adequate definitions really matter? Perhaps only to

instructors who share a conviction that a major goal for genuine education in mathematics must be student

achievement of genuine personal mathematical comprehension of the mathematical theory covered by the

course.  For others who are concerned only with successfully playing the scholastic game (students’ achievement

of scores, grades, credits, and credentials), any definition might suffice – as long as it arms the students for

successfully running the scholastic gamuts.

Throughout the literature of professional mathematical research, it often is elegant to invoke an important
property as a “definition” ... when that same property can otherwise be more tediously developed as a theorem –

derived from other definitions that perhaps are far less elegant.  The striving for that kind of elegance thrives on
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authors’ expectations that professionals who read the material can accept arbitrary, “out of the blue” definitions

as a basis for subsequently digesting whatever mathematical theory then is formally derived from those

definitions.

However, such deference to rhetorical elegance often undermines instructional effectiveness. Instead, the caring

instructor must choose, as definitions, those properties which provide students with strong conceptual

understanding, as needed for functionally internalizing the instructionally targeted mathematical theory. 
The typical novice student of trigonometry has not yet achieved the mathematical maturity needed for exploding

the “sohcahtoa” definitions into a rational personal theory of the six basic functions. Instead, the thoughtful

student easily can be thrown by mathematical jumps ... and might be troubled by such things as, “Why call it that

the ‘sine’ of the angle?” -- and  “Why divide?” -- and “Why are we going this route?”

The usual “sohcahtoa” definitions take on forms similar to:  “The sine of an angle is the ratio of the length of the

opposite side to the length of the hypotenuse.” (Wikipedia).  But the latter makes sense only for acute angles –

not for the other angles of positive or negative rotation that are attended in basic trigonometry.  Another

stumbling block is its commonplace instructional misuse of the term “ratio”. An angle’s sine certainly is not a

“ratio” – it is a number – achieved as a quotient.  

In careless instructional rhetoric, an oscillation occurs when the term “ratio” sometimes means “quotient” -- and

sometimes means “tuple” within an equivalence class of mutually proportional tuples. For students, the proximal
vacillation between those two well-separated meanings blurs, hides or destroys the mathematical connections

between the two.
Nowhere has the  “minor” curricular malady of confusing those two concepts been more disastrous than when

teaching “slope” within basic algebra and calculus – in the same mode as used when teaching the tangent
function. It has led even to “defining” the slope of a line as a quotient of differences of Cartesian coordinates –
which leaves students very much in the dark about why that slope-number is the m(ultiplier) in the mx+b

formulas. [The below use of T-square protractors to develop the tan function also can be woven into algebra to
enhance the mathematical common-sensibility of the slope-numbers for lines.]

The distinction between number-quotients and tuplic ratios (and the importance of that distinction) becomes quite
clear when attending the 3-place tuplic ratios from triangles  ... such as 3:4:5 ... as is done in the below

development of the six basic functions. When that mathematical distinction is duly attended, the “sohcahtoa”
identities and several others become obvious conclusions from more basic geometric definitions.

One improved version of the above quote would be, “The sine of an angle is the quotient of the (positive or
negative) height of any point on that angle’s terminal ray,  along its altitude from the line of that angle’s original

ray,  divided by the length of the hypotenuse out to that point”.  But even that property – while very useful as a
theorem – is instructionally poor as a conceptual “definition” of the sine function. Far more constructive
developments are needed and are possible.

Clinical investigations into students’ mathematical difficulties with the six basic trigonometric functions lead to
more natural and developmentally continuous definitions of those functions – through clarification of the (tuplic)

trigonometric ratios. The following development is a result of such clinical research.
Circular Protractors and their Triangles. In elementary plane geometry, an angle is simply the union of two

co-terminal rays. A trigon is a 3-sided polygon –  with the closed cases also being triangles, So,
trigonometry is about using triangles to measure the results from varying some kinds of things.  Every simple,

closed polygon can be dissected into triangles – and  every triangle can be split – in at least one way (maybe 2 or
3) into right triangles. So, much of trigonometry is about right triangles – and about what those say about not-

right triangles.
The key is that trigonometric angles are not merely pairs of coterminal rays; they are rotations of one
(original-) ray, into a second (terminal-) ray – in the mode of the sweeper on a dial-clock or radar/sonar
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screen. So, trigonometric angles are measured in terms of how many revolutions (revs) they express – and

rotational parts of such revolutions.
Every trigonometric angle has its own original and terminal ray. But that same combination of original and

terminal rays represents many positive and negative trigonometric angles. Nonetheless, an angle’s original and
terminal rays are essential ingredients for defining the six functions.

For purposes of bridging “the sohcahtoa gap”, the below development also attends some commonly neglected
ingredients: the family of full-circle protractors that are concentric about the vertex of the angle – and the T-

square protractors that are attached to each of those circles (together called, herein, that angle’s circle-T
protractors) – and the radian measures of more protractor parts than just the angles and circular arcs,

A full-circle protractor is a non-degenerate circle with one ray from its center being designated as its original ray

– and one direction around its circumference being designated as positive. That circle’s T-square protractor
consists of the radius along the original ray, and the line tangent to that circle at the outer end of that radius. [The
half-way version is the L-square as used in several trades. Most students are more familiar with the semi-

circular,  half-way  versions of circular protractors – but less-so with the use of T-squares or L-squares as
protractors.]

[Students also need to know that there is nothing mathematically “special” about trigonometric angles usually

increasing counterclockwise. The “navigator’s” clockwise-positive orientation comes from northern-hemisphere
sun-dials – whose shadows turn “clock” ways – which is why radial clocks do so. The “engineer’s”

counterclockwise-positive orientation comes from the Sun’s earthly passage upward from (earlier) eastward to
(later) westward – through “high” noon. Those two orientations merge though the context of trigonometric co-

functions. But the trigonometric theory holds for whichever direction of revolution is chosen to be “positive”. ]
Every trigonometric angle has an infinite family of circular protractors concentric around the endpoint of that

angle’s original ray – each such circle carrying its own T-square protractor. That angle serves as the central
angle for that system.
 [In the case of “unit circles”, the T-square also is the  “slope-square” that is essential (though usually hidden)

within basic algebra.]    The six basic functions are geometrically defined in terms of how the revolutions of the
central angle’s terminal side manifest on its circle-T protractors.

Generalizing  Radian-measures; The circular protractor presents arcs from the original ray to all terminal rays
– each such arc indicating some part of (positive or negative) a revolution. For purposes of measuring the angles,

the circular protractor is factored into parts --  so that the part-measure of that angle is the same, regardless of
the radius of the protractor. Circular protractors are thus factored in various convenient ways, according to

the needs at hand: quadrants are 1/4 of circles; sextants are 1/6 of circles. octants are 1/8 of circles; day-grees
are 1/360 circles.

All trigonometry courses teach and rely on radians for measuring angles and circular arcs. So, students need to
recognize that a radian-arc is that part of a circle whose arc-length is 1-radius (slightly less than one-sixth rev. ...

about  0.16 rev. or 57 degrees) – regardless of the size of the circle. But that understanding deepens when

radian measures are applied also to line segments – a radian being the length of any protractor-part whose

length is the same as for that circle’s own radii.
[Herein, the term radia  is used to describe line-segment lengths based on radii of associated circles. Although a

line-segment might be described as being a number of “radii” in length, the word “radius” connotes a specific

kind of parts within the circle – making it inappropriate to speak of lengths of other protractor-parts in terms of

“radii”. Far better to generalize the widespread use of radian-measures for arc-lengths, so as to include radian-
measures also for lengths of line segments. But since  “radian”, too, already connotes specific parts of a circle,

we choose to use “radia”, within the context of the circle-T protractors, “radia”  for lengths based on the radii of
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the respective circles.-- so using it in both the singular and plural  meanings.]

Just as the circle’s circumference is 2*pi radia, each of its diameters is 2 radia – and every circle is a “unit circle”

whose radius is 1 ... exactly 1 radia Thus, we remove a seemingly “special” case: the “unit circle” whose radius is
1. All circles have radii equal to 1 (radia).

Of greater significance, the use of radia as relative lengths of line segments allow for the six basic trigonometric

functions to be developed directly from plane geometry. The “sohcahtoa” and “reciprocal” properties follow as
theorems. But the conceptual development is far more meaningful than it is “elegant”.

The Angle’s Sine-triangles. For each angle, each of its circular protractors generates its own INSIDE right

triangle. The latter’s hypotenuse (h) is the radius to where the terminal ray intersects the protraction circle. Its
altitude-leg (a) is the perpendicular from the line containing the origin-ray, to the outer end of that hypotenuse.

The altitude’s height is positive, negative, or zero -- depending on the minor arc from the original ray to the

terminal ray – and on which direction of rotation has been chosen as “positive”.
Likewise, that triangle’s base-leg (b) is from the circle’s center to the foot of the altitude. When that foot is on the

original ray, the base-leg’s span is called positive; otherwise it is zero or negative.

Thus, we also remove the seemingly “special” requirement for the trigonometric angle to be “in standard

position”.  Any ray can be used as an original. So is disclosed that there is a practical  reason for focusing on
angles that are in standard position. Only for their protractors do the bases and altitudes of their inside triangles

pair up to give the (base, altitude) Cartesian coordinates for the altitude’s endpoint on the circle.

The geometric derivation of the six functions requires geometric meanings for the vocabulary. The word, “sine”

simply means “altitude” ... but it immediately presents an angle, a circular protractor about that angle’s vertex,
and an altitude, from the line of the original ray, to where the terminal ray intersects the circle. One conceptual

derivation of that word is as follows.

A partial bow-and-arrow configuration is provided by a rotational angle, one of its circular protractors, and one
of the latter’s inside triangles. The “hunter’s picture” is completed when that angle’s negative is appended – along

with the latter’s own inner triangle.  The two opposing altitudes make up one of the circle’s chords -- the

“bowstring” – the original meaning of “sine”. Its “arrow” is along the line of the original ray. Primitive bowstrings

were fashioned from sinew (tendons and such) ... whence comes the word sine as meaning a chord of a curve,
As history would have it, “sine” later became the half-chord of a circular arc – which also is the altitude of an

inside right triangle,

So, such inner right triangles are duly called the central angles’ sine triangles within their circular protractors’.

Each  angle’s i family of circular protractors is infinite, and each circle has its own sine triangle for its central
angle. All of those triangles lie within the same angular sector of the plane. All of their base-legs are colinear; all

of their hypotenuses are colinear; and all of their altitudes are parallel to each other. But even though the triangles

are not congruent (because their circles are not) all of their arcs have the same radia-length – as do all of their
altitudes, all base-legs and all hypotenuses.

As the trigonometric angle, Q, continually increases, each sine triangle’s altitude (a) increases from a=0 radia to

a=1 radia – then decreases to a= -1 radia – then increases back to a=1 radia, The radia-length of the sine-

triangle’s hypotenuse always is 1 radia ... so the radia-length of the sine does wave between ‑1 and 1 radia.

So, sine(Q) is simply the radia-measured altitudes to where the angle’s terminal side cuts the rims of its circular

protractors. But that definition does not directly reveal how to calculate an angle’s sine. So, enter the “soh”
theorem.

When a length-scale system is overlaid onto the central angle, the radius of each protraction circle likewise

acquires a numeric value, r -- and the sine-triangle’s a(ltittude) is sine(Q)*r.  When sine(Q) already is known
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(perhaps by a table, a machine, or a serial formula), the condition, a= sine(Q)*r, is a handy tool for determining
the length of the hypotenuse from that of the altitude – or vice versa.. However, when the central angle’s sine is

not known, but those two lengths from a sine-triangle are known, those allow for calculating the central angle’s

sine, as a/h= sine(Q).

So it is seen that the “soh definition” for the sines of (acute) angles actually presents a way of calculating sines –

from lengths of line segments. For “standard position” angles,  their sines even can be “soh” calculated directly
from coordinates of any point on the terminal ray.

Is a formula that is good for purposes of calculation – and in that context an elegant “definition” – necessarily  a

good conceptual definition for novice students? Consider this (from Wikipedia). “The slope is defined as the ratio

of the "rise" divided by the "run" between two points on a line, “  Excepting that “ratio” means “quotient”, that
property is a great way for calculating the slopes of non-vertical lines in the coordinate plane, when two line-

points are known. But that “definition” leaves most students with very little conceptual understanding of what

slope-numbers are all about.  Much more revealing is the sunburst of lines through the origin – and through the

x=1 vertical – in essence, a circle-T protractor.
Just as with line-slopes, the “soh” property mathematically suffices for purposes of calculation – and perhaps as

an elegant formal “definition” --  but not as a  conceptual definition.  There is a major difference between

perceiving sine(Q) as being a numerical quotient of two lengths, and perceiving sine(Q) as being a directed

altitude, measured in radia. The latter interpretation expedites the passage to the sine curve, and also to uses of

the sine function to calculate sides of triangles. But more to the point at hand, the altitude-definition of sine
naturally derives from the students’ own prior knowledge of geometry.

The Angle’s Tangent-triangle:s Similar to the circle-T protractor’s sine triangles (within the circles) are its

outside triangles along its T-squares – called the tangent triangles for that central angle. Their base-legs are

radii from the center out to the tangent lines. Their altitudes – called the angle’s tangents -- are along the tangent
line. Those tangents are positive in accord with the direction that is positive for the revolutions, and negative in

the opposite direction. All of an angle’s tangents have the same radia-measure, regardless of the size of their

circles.
Each tangent triangle’s hypotenuse lies along the same circle-secant as the angle’s terminal ray. Called that

angle’s secants, those hypotenuses are positive when the terminal ray actually intersects the tangent line, and

negative when only the opposing ray intersects the tangent line. (Students are enlightened by the fact that the

tangent and secant disappear whenever the terminal ray is parallel to the tangent lines.)
Like the sides of the sine triangles, the sides of the tangent triangles can be measured in radia. When so done, the

lengths of an angle’s tangent and secant depend only on the angle – not on the radius of the circle.

For each trigonometric angle, and for each of its circle-T protractors, the base-legs of all of its sine and tangent

triangles are along the line of that angle’s original ray – and all hypotenuses are along the terminal ray.  So, all of
an angle’s sine and tangent triangles (each protraction circle has one of each kind) are similar – regardless of how

the lengths are measured.. All of their (altitude: base: hypotenuse) ratios  – or (a:b:h) ratios --  are proportional.

In particular, each (tan: radius: sec) ratio is ~ to its (sine: base: radius) ratio.
When an angle’s protractors are hidden (as they usually are), each right triangle whose base is from the vertex to

a foot on the angle’s original ray is both a sine-triangle and a tangent-triangle for an acute base- angle. As a sine-

triangle, the hypotenuse is 1 radius of its protraction circle. As a tangent-triangle, the base-leg is 1 radius of a

(usually smaller)  protraction circle. When those two circles, and the tangent line and secant line for the smaller
circle, are overlaid onto that triangle, students can readily see how the given triangle is the sine triangle for the

outer circle, and the tangent triangle for the inner circle.

On the other hand, if the right triangle’s foot is on the ray opposite to the angle’s original ray, the triangle again is

a sine triangle, but that triangle is best not regarded as being also a tangent triangle. [Why not? For sure, the T-
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square that uses that opposite ray does present an “image”  tangent line whose triangles identify the tan and sec

functions. But in the subsequent passage to the three co-functions, those “offside” image-triangles fail to yield the

usual reciprocal properties. Of course, one could accept tangent triangles on both sides, but still use only the
original ray’s  side for developing the co-functions.]

The Angle’s Co-triangles  For the base-legs of an angle’s sine triangles, their distinguishing name comes from

the fact that every trigonometric angle has an associated complementary-angle – or co-angle – for which those
two angles add together to give 1/4 rev. 

For such purposes, the angle’s original ray is rotated 1/4 rev. to provide the original ray for the co-angle – and

the two angles share the same terminal ray. But to get the (1/4 rev.) complementation  – the co-angle is positively

measured in the opposite direction of rotation. As the central angle increases, its co-angle decreases – and vice
versa, Thereby, regardless of its number of revolutions, the trigonometric angle and its co-angle add up to 1/4

rev.

A chosen central angle’s co-angle has its own sine-triangles and its own tangent triangles – called that angle’s co-

sine and co-tangent triangles. So, the sine, tangent and secant for the chosen angle’s co-angle are called the co-
sine, co-tangent and co-secant for the central angle. When their sides are measured in radia, all of an angle’s

cosines have the same length, Likewise for all of its cotangents and for all of its cosecants. In its ultimate form,

each circle-T protractor thus uses two T-squares – one from the tangent to a radius along the central angle’s
original ray; and  one at the end of  the 1/4 rev rotation of that radius.

Within each of its circular protractors, an angle’s sine triangle and its cosine triangle constitute a rectangle. One of

its corners is the vertex of the central angle, and the opposite corner is on the circle. The shared hypotenuse is
one of that rectangle’s diagonals.

The central angle’s co-sine (altitude) has the same direction and length as the. base-leg of the sine triangle – and

the co-sine’s base leg has the same direction and length as the. angle’s sine.  Since those two triangles are
congruent, each  triangle can be regarded as being that angle’s  (sin, cos, radius) triangle or (cos, sin, radius)

triangle – with the latter being in closer harmony with the usual system of Cartesian coordinates. When

measured in radia, all radii have length 1.

However, the central angle’s  (a:b:h) ratio for its sine-triangles is (sine:cos:r) – while that angle’s  (a:b:h) ratio for

its cosine-triangles is (cos:sin:r) – as with 3:4:5 Vs. 4:3:5. That difference manifests as a more prominent
difference between the tangent triangle and the cotangent triangle.  Both of those latter two are similar to the two

(congruent) inner triangles – but the tan and cot triangles typically are far from being congruent to each other.

The Basic Identities Through careful progressive construction of the central; angles’  four circle-T triangles,

students are easily guided to personally derive all six traditional "definitions" as personally concluded theorems. 

In the process, the proportional tuplic ratios for triangles reveal not only how ratios differ from quotients – but

also the role of division in converting to, and among unit-ratios.
When the parts of an angle’s circle-T protractors are linearly measured in radia, their Pythagorean relationships

disclose that sin2 + cos2 = 12 – and that  tan2 + 12 = sec2 – and that 12 + cot2 = csc2.

In radia, the central angle’s own  (a:b;h) ratios are (sine:cos:1) – and (tan: 1: sec) – and (1: cot: csc).  But, since

all three ratios are proportional to each other, each can be converted to each of the others through scalar

multiplication.

For (sine:cos:1) –>(tan:1: sec), use 1/cos -- getting [ (sin/cos):1:(1/cos)],,,
... disclosing that  (sin/cos) = tan -- and that (1/cos) = sec

Handy! It means that tan can be calculated from knowing the (“rise”) altitude and the (“run”) base – and
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that sec can be calculated from the base. Useful – but hardly good “definitions”.
 

For (sine:cos:1) –> (1:cot: csc), use 1/sin -- getting [ 1:(cos/sin).(1/sin)]

... disclosing that  (cos/sin) = cot -- and that (1/sin) = csc.

Likewise handy, but again  ....

 

The four additional conversions provide the other identities.

 
 So it is seen that the usual “reciprocal definitions” – for the three co-functions – actually are properties, which

suffice for purposes of calculation. But they largely fail to provide much conceptual understanding about the

entailed trigons.

 

Notably, the tan = sin/cos theorem leads to tan = altitude/ base. On the coordinate plane, it means that the

tangent for each non-vertical line’s inclination angle from the horizontal is the dy from any line-point to any other

line-point, divided by the (same-directed) dx for those two points. Electronic calculators now have make it
possible for students to convert circular measures of angles to their (radia-tangent) slope-numbers for their

terminal rays – and vice versa – without calculating. The resulting perception -- that a linear function’s slope-

number is a T-square measure of its inclination angle -- goes far toward clarifying what slopes are all about.

 

Over years of MALEI’s clinical instruction, the preceding development has consistently proven to be much more

continuous --  in that students of trigonometry (and above) readily derive the targeted identities from their

“middle grade” knowledge of circular protractors and right triangles. Although less frequently, clinical “guided

discovery” instruction, has led even some high school algebra-1 students to follow the same path far enough to
generate realistic sketches of the sin, cos, and tan curves – and then to use the  [sin]. [cos], and [tan] keys on the

graphing calculator to calculate lengths of sides on right triangles.

 


