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Abstract 

Recall that the Coefficient of Variation �� � 100�/�	 is 

a unit-less measure of spread with respect to the center 

of a data set. The distributions of the standard deviation 

� and �� will be derived and statistical inference 

involving the �� are discussed. 

 

Consider the following example: “A biologist who 

studies spiders believes that not only do female green 

lynx spiders tend to be longer than their male 

counterparts, but also that the lengths of the female 

spiders seem to vary more than those of the male spiders. 

We shall test whether this latter belief is true.”  
 

Green lynx spider attacking a wasp 

 

Here are data for the lengths of lynx spiders in millimeters: 

 

Lengths of males 

5.20 4.70 5.75 7.50 6.45 6.55 4.70 4.80 5.95 

5.20 6.35 6.95 5.70 6.20 5.40 6.20 5.85 6.80 

5.65 5.50 5.65 5.85 5.75 6.35 5.75 5.95 5.90 

7.00 6.10 5.80 

Lengths of females 

8.25 9.95 5.90 7.05 8.45 7.55 9.80 10.80 6.60 

7.55 8.10 9.10 6.10 9.30 8.75 7.00 7.80 8.00 

9.00 6.30 8.35 8.70 8.00 7.50 9.50 8.30 7.05 

8.30 7.95 9.60 

 

We will assume that these are independent 

simple random samples, and that the shapes 

of the accompanying histograms are 

approximately Normal. Thus, we are 

justified in applying the 2-sample F-test for 

comparing standard deviations. The 

hypotheses are 

 

H0: σM = σF and Ha: σM < σF 

 

where M is the male length and F is the 

female length variable, respectively. 

 

The F statistic is sF
2
/sM

2 
= 3.21 with a 

degrees of freedom of (29,29) and a p-value 

of 0.0012. 
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The small p-value is evidence that the variance in the lengths of the females is greater than that 

of the males. However, doing a 2-sample t-test will provide evidence that female lynx spiders 

are longer on average than male lynx spiders. Since the female spiders tend to be longer, it 

would be more appropriate to compare the sex difference in length for the lynx spider using a 

statistic that measures variation relative to length. The coefficient of variation is such a statistic 

and is defined to be 
x

s
CV 100= . For the above data, 

CVM = 100*.663/5.92 = 11.2 and CVF = 100*1.19/8.15 = 14.6, so CVM < CVF, 

 

but is this difference significant? We will need to determine the distribution of the CV random 

variable, so for simplicity the 100 in the formula will be dropped and we redefine 
x

s
CV = . 

 

We will assume for the remainder of this paper that 
nXXX ,...,, 21
 is a simple random sample 

from .0where),( >µσµN  Recall the following theorem: 
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We will derive the distribution of the standard deviation.  Recall that the probability density 

function of )1(~ 2 −nU χ  is ,...3,2,0,
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Here are graphs of some probability distribution functions for the standard deviation and a 

formula for its mean and variance: 

 

 

Graph of S pdf for n=2,3,4,5 using σ=1 
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Mean and Variance of S 

 

To find a formula for the distribution of the CV, consider the joint distribution of ),( SX . By 

independence, the joint probability density function is 
SX

ff  with support +× RR . The 

probability density function for S was derived earlier, and the probability mass function for 
� is 

easily  computed to be R,
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distribution function for CV is 
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(If n is sufficiently large, then 

.)0]0[ ≈<CVP  

 

Differentiate the 

cumulative 

distribution 

function to obtain 

the probability 

density function: 
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For the case � � 2, this formula simplifies to =)(cfCV

 

where ∫
−=

z

t
dtez

0

22
)erf(

π
. I could not find general formula for all n, but the computer algebra 

system  

Derive can find a formula for 

small n. Here are graphs of the 

CV for 1;1;5,4,3,2 === σµn . 

The areas under these curves are 

.921, .958, .977, .987, 

respectively.  These areas are less 

than 1 because µ and n are small 

and the ]0[ <CVP  term in the 

derivation of the probability 

density function was ignored. 

However, note that the area under 

the probability density function 

appears to converge to 1 rapidly 

as n converges to infinity. 

 

Since it appeared hopeless to find a formula for the distribution of the CV for � � 30, I 

attempted to directly compute the probability using ∫ ∫
∞

=<
0 0

)()(][
Mc

MFFFMMFM dcdccfcfCVCVP

. However, both Derive and Maple were unable to compute fM or fF because n=30 was 

apparently too large.  For example, 

 could not be evaluated. My last approach was to try a simulation which was successful. 

 

One thousand samples of size 30 were simulated using the accompanying TI-nspire program. 

The parameters µM=5.92, σM=0.663, µF=8.15, σF=1.18 were estimated from the sample 

statistics. Here are the histograms for the simulated coefficients of variation: 
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The variable mcv is the male CV, and the 

variable fcv is the female CV, 

respectively. The accompanying diagram 

is a typical Law-of- Large Numbers graph 

showing the empirical probability verses 

the number of trials generated using the 

above program. This probability estimated 

using � � 1000 gives 

923.0][ ≈< FM CVCVP . This probability 

is less than 0.95, so this provides evidence 

that the female spider CV does not appear 

to be significantly larger than the male 

spider CV.  
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Conclusion 

Unless the distributions can be modeled with simpler functions, it is impractical to directly do 

statistical inference using the CV. Also, perhaps simulations should not be overlooked as an 

important tool. 

 

It appears that the mean of CV is approximately σ/µ, and its variance approaches zero as n 

approaches infinity. Further investigation would be to provide rigorous proofs or numerical 

evidence for these conjectures. 
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