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In my Differential Equations’ class we encountered the following problem in the section 

discussing the structure of solutions to 2
nd

 order linear differential homogeneous 

equations. 

 

Let f(t) and g(t) be continuously differentiable real-valued functions on an open interval I.   

Is it true that the Wronskian of f and g is zero on I iff f and g are linearly dependent on I? 

 

For the sake of completeness, let us recall that a set of vectors S ={x1, x2,…,xn} in some 

vector space V is linearly dependent iff there exist scalars c1, c2,…cn, not all 0, such that 

c1x1+ c2x2 + …+cnxn = 0.  Otherwise, the set S is called linearly independent.   

It is easy to show that a set of two vectors {x1, x2} is linearly dependent if and only if one 

of the vectors is a multiple of the other; that is, either x1 = cx2 or x2 = cx1 for some scalar 

c.  Note: a set containing the zero vector is always linearly dependent so c can be 0. 

  

The Wronskian for two real-valued differentiable functions f and g is defined by 

 
f(t) g(t)

W f(t),g(t) det f(t)g (t)-f (t)g(t)
f (t) g (t)

 
     

.   If f and g are linearly dependent on 

some interval I, then, WLOG we may assume f = cg for some scalar c, so that the 

Wronskian becomes  

   
cg(t) g(t)

W f(t),g(t) det cg(t)g (t)-cg (t)g(t)= 0 
cg (t) g (t)

 
     

 

on I.  In other words, if f and g are linearly dependent on I, the Wronskian W(f(t),g(t)) is 

identically 0 on I. 

  

That the converse is false is shown by the following example.   

Let  I = ( , )  , 3f(t) = t   and g(t) = |t|
3 

= 
3

3

t , t 0

-t , t<0

 
 
 

.   

Then,   f (t)  = 3t
2 

and 
2

2

3t , t 0
g (t)=

-3t , t<0

 
  

 
 .   

For t > 0 the two columns of the Wronskian are the same whence the determinant equals 

0.  For t<0 the second column is the negative of the first column so that, again, the 
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determinant equals 0.  Therefore, the Wronskian is identically zero on all of I = ( , )  .  

It is clear that the equation f(t) = t
3
 = c|t

3
|
 
= cg(t) cannot hold for all t in I since t>0 

implies c = 1 and t<0 implies c = -1.  Likewise g = cf is not possible.  Hence, f and g are 

linearly independent on I.  Of course, if we choose I to be  (0, ) or ( ,0) , then f and g 

are linearly dependent on the interval I.   

 

The following Theorem occurs in the section on linear homogeneous 2
nd

 order 

differential equations. 

Text Theorem:  Let f and g be two solutions of  x +a(t)x +b(t)x = 0  on an open interval 

I, where a(t) and b(t) are continuous on I.  The Wronskian of f and g is zero at every point 

of the interval I if and only if f and g are linearly dependent on I.   

  

As shown above the “if” part of the result does not require that the functions be solutions 

to the differential equation but only on linear dependence.   The argument below for the 

proof of the converse is taken from our text. 

 

Suppose the Wronskian  

W(f(t),g(t)) = f(t)g (t) - f (t)g(t) = 0    

for every t in I.  Then we can write 

f (t) g (t)

f(t) g(t)

 
  

as long as f(t) and g(t) are not zero.  Integrating the equation gives 

 

ln|f(t)| = ln|g(t)| + B, 

where B is an arbitrary constant of integration.  When we exponentiate both sides, we 

find that 

f(t) = Cg(t) 

where C = Be depending on the signs of f and g.  Hence f and g are linearly dependent. 

 

Note that this argument does not make use of the requirement that the functions f and g 

are solutions of the differential equation but does require that f(t) and g(t) never equal 0 

on I.  So, the question arises as to the need for this condition when f(t) or g(t) equal 0 on I  

and there is no discussion in the text about this case.  Clearly, our counterexample works 

because f(0) = g(0) = 0 and the “proof” above requires that f(t) and g(t) are not zero.  

Thus if we restrict our  interval I so it does not contain t = 0, then f and g in our 

“counterexample” will be linearly dependent on I.  

 

The purpose of this talk is to explore the question:  how do we complete the “proof” of 

the Theorem from the text when f or g takes the value 0 in I. 

 

Case 1.   f(t0) = 0 but g(t0)  0 for some t0 in (a,b).    

 

Since the Wronskian  

W(f(t),g(t)) = f(t)g (t) - f (t)g(t)     



is identically zero on I it follows that 0f (t ) 0.    But f is a solution to the second order 

homogeneous linear differential equation x (t)+a(t)x (t)+b(t)x(t) = 0   with continuous 

“coefficients” a(t) and b(t) on the open interval I and satisfies the initial conditions  

x(t0) = 0x (t ) 0  for some t0 in I.   By the Uniqueness and Existence Theorem for such 

differential equations, there is one and only one function which can satisfy any given set 

of initial conditions on I.  Clearly the zero function is a solution to the homogeneous 

differential equation on I and satisfies these initial conditions, so f must, in fact, be the 

zero function on I.  Of course, {f(t) 0,g(t)} is a linearly dependent set on I.  Clearly, the 

same argument would work if f(t0)  0 and g(t0) = 0.     

 

Case 2.   f(t0) = g(t0) = 0 and t0 is the only point in I = (a,b) for which f(t) or g(t) is 0.  

 

Let I1 = (a,t0) and I2 = (t0,b).  Since f and g do not equal 0 at any point of I1 or I2, the 

argument from the text given above can be used to conclude that f = c1g on I1 and f = c2g  

on I2.  Then, the problem is to show that c1 = c2.  Clearly 1 1 2 2f  = c g  on I  and f  = c g   on I    .  

Since f and g are solutions to a second order differential equation, their second 

derivatives must exist whence it follows that f  and g are continuous on I and thus on I1 

and I2.   If 0g (t ) 0  , then the previous argument for Case 1 shows that g is the zero 

function and {f(t),g(t)0} is linearly dependent.  Thus, under the condition that 

0g (t ) 0,   we take the left hand limit in I1  at t0 to obtain 0 1 0f (t ) = c g (t )    and the right-

hand limit in I2 at t0 to obtain 0 2 0f (t ) = c g (t ).    Then, 0g (t ) 0  implies that c1 = c2 = c so 

that {f = cg, g} is linearly dependent on I.  This argument can be repeated “piece-by-

piece” to cover Case 3 where f and g are both 0 on a finite subset of the interval I.   

 

Case 3.  f and g are both 0 on a finite set of points S in I = (a, b). 

Let S = {t1 < t2 < …< tn} and define I0 = (a, t1), I1 = (t1, t2), …, In-1 = (tn-1, tn), In = (tn, b). 

 

Then, as in Case 2, for each j = 0,1,…,n, there is a cj such that f = cjg on Ij.  If 

0j
g (t ) 0  for some j0 such that 0 < j0 < n, then it follows that g is the zero function on I.  

Suppose jg (t ) 0  for all j.  Using exactly the same limit argument as in Case 2, we obtain  

f(tj) = cjg(tj) = cj+1g(tj) whence it follows that cj  = cj+1 for j = 0,1, ...,n-1.  Letting c be the 

common value of cj we obtain f = cg on I whence {f = cg, g} is linearly dependent on I.  

 

Case 4a.  There are infinitely many points S in I where f and g are both 0 and this set S  

has a limit point t0 in I.   

 

In this case there is a sequence {tn} of points in I that converges to t0 and f(tn) = g(tn) = 0.   

Then, continuity implies that f(t0) = g(t0) = 0.  Moreover, n 0
0

n
n 0

f(t ) f(t )
f (t ) lim

t t


 


= 0 so  

that f(t0) = f’(t0) = 0.  Then, as in Case 1,  f must be the zero function and  

{f(t)0,g(t)} is linearly dependent on I.  Note this argument really only requires that  

f  OR  g be 0 on an infinite set of points S in I that has a limit point in I. 



Case 4b.  f and g are both 0 on an infinite subset S of the interval I = (a,b) but S  has no 

limit point in I.  (For example, a limit point of S might be an endpoint of I 

or I might be unbounded.)    

 

If I is bounded, let L = b - a and define In = (a - L/(n+1), a + L/n).   If any In  contained an 

infinite number of points of S then nS I would have a limit point in the bounded interval  

[a + L/n+1, a+1/n] and hence in I contrary to the supposition that S has no limit point in I.  

Thus, each In contains only finitely many points where f and g are both 0.  Then the 

“piece-by-piece” argument used in Case 2 can be used here to to show that f and g are 

linearly dependent on each In.   In other words, either g is the zero function on I or for 

each n there is a constant cn such that f = cng on In.   The argument used for Case 1 (and 

as applied to Case 3) in which there was exactly one point to where f and g are both 0 can 

be used to show that cn = cn+1 for any n.  If we denote by c the common value of  cn for all 

n, we obtain f = cg on I.  Actually, what we have shown is that for any t in I, there is a 

constant c, independent of the choice of t, such that f(t) = cg(t) because for any choice of 

t, there is an In such that t belongs to In   and f(t) = cng(t) = cg(t).    Thus, {f, g} is linearly 

dependent on all of I.  If I is unbounded then we can partition I into intervals In  of length 

one (e.g. if I = (a,  ) then In = (a+n-1, a+n)) and repeat the previous argument for a 

bounded interval to show that f and g are linearly dependent on I. 

 

This now completes the proof of the Text Theorem in all possible cases. 

 


