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Abstract: 

The "delta‑epsilonic" definition for the limits of functions has proven so elusive for calculus students that

many "reformers" have forsaken mathematical rigor, in favor of more "conceptual understanding." But the

Dedekind-Frechet ("zoom") concept of limits is both common-sensible to students, and fully rigorous.
Thereby, students can learn "lim" as an operator that carries each function into its best continuous

approximation — and as a functional that gives numbers to functions having unbounded domains.

"Delta‑epsilonics" becomes a theorem.

Source:

A major tool of the science of mathematics instructology is the syllabus methods adaptation of critical

path methods, from the managerial sciences. When used in the context of clinical research, syllabus

methods uncover many maladies of curricular mathematics syllabi, and ways of improving them. This

description of a re‑formed syllabus is written to mathematicians who already know the mathematical subject

matter, but who are concerned about improving the effectiveness of instruction.
Alternative versions for teachers and students are slated for e‑publication on

http://www.mathsense.org/secrets.htm.

Circumventing epsilonics: 

In the first course in calculus, students' initial difficulties with the notions of "limits of functions" long have

impeded effective progress of learning and instruction. Clinical research discloses that students' conceptual

difficulties with the topic are not intrinsic to the nature of limits, as such. Rather, those difficulties typically

stem from traditional curricular reliance on epsilonics, for purposes of DEFINING the limits of functions.  

Of course, that assertion is established by using an alternative mathematical definition which does not entail
such conceptual difficulties. This paper is about such an alternative — and about re‑forming the definitions

of a function's limits, so as to make those concepts more comprehensible when first encountered.

In normal practice, the calculus instructor uses a calculus textbook — and cannot avoid somehow dealing

with the epsilon‑bands properties of limits of functions. But before doing so, the learning-conscious

instructor may supplement the text with a conceptual bridge, in the form of an alternative definition — and

thereby later achieve the banding property as a common‑sensible theorem.

As presently approached in beginning calculus, the basic role of function‑limits is to focus on a point near

to (and possibly within) the domain of a function, for knowledge about the function‑values of nearby

domain‑points. Such knowledge often is expressed: "as x→a, f(x)→L" — verbally, "as x converges to a,

f(x) converges to L."

Epsilonics being an unduly complicated way of defining such dual convergence, most students eventually

come to understand function-limits, through acquiring the percept, "as x→a, f(x)→L". In fact, the normal
process for actually finding the function's limit at a is to examine an x for which x→a, to find the L for which

f(x)→L. In a sense, this paper is about developing the condition, "as x→a,  f(x)→L", through a rigorous,
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but easily comprehensible initial definition for limits of functions.

The over‑complexity of the epsilonics definition results partly from the traditional rhetoric's reliance on an

implicit definition. The occurrence of epsilon‑bands is contingent on possible existence of a qualifying

number — "... if there exists a number, L, for which ..., then L is called ...."  That definition inversely

manifests an "engineering‑problem approach" to function‑limits: "How can that function be used for

generating tolerable results?" — or — "Given tolerance‑bands, L ±ε , find domain‑restrictions, a ±δ, which

will suffice." In contrast, the epsilonics definition of function‑limits does not actually reveal how to FIND the
needed a ±δ nests. Rather, it begins with a point, a, to verify whether or not a particular a ±δ nest will

suffice.

Of special practical importance is that such verification often yields an "epsilon‑compliance" formula which

can be applied for purposes of calculating adequate restrictions of the function's domain — so revealing a

delta, for any chosen epsilon,. Achieving such a formula can be seriously important for some special

purposes. But that is no excuse for clinging to epsilonics as means for trying to guide students to achieve

their initial conceptual under-standing of limits.

Herein, the "x→a" notion initially is replaced by the concept of an intervals‑nest that converges to a number

or to an "infinity". In the mode of David Frechet's concepts of the Sup(remum) and Inf(imum) of real‑valued
functions, a corresponding nest of function‑ranges generates a (graphic) function‑windows nest which

converges to an interval, and possibly to a point.  On that standpoint, the "x→a" notion later is given a
mathematically firm meaning. However, effective instructional use of all of those ingredients depends on

students owning some version of the continuity condition of the real numbers.

A number-line approach to limits: 
In a very fundamental sense, the notion of a function's limits at points is a generalization of the process of

removing discontinuities of number-lines. "The limit" of a rational‑numbers line is a real‑numbers line. More
specifically, conceptual understanding of the limits of functions is rooted to understanding that some dense

number-lines have a density of (Dedekind) holes — so constituting infinitesimal sieves.

Even students of introductory algebra can readily grasp the continuity condition by examining the kinds of
Dedekind cuts that occur with various kinds of linearly‑ordered systems of numbers. At that level, the most

illuminating sieve is the dense line of decimal‑numbers (whose simple decimal‑point numerals are of finite
length). Since the non‑decimal fractions are missing, the line of decimal numbers has a density of holes —
and an infinitude of bounded intervals which have no endpoints.

Such instructive recourse to infinitesimal sieves calls for an "intervals" concept which is far more general than

the traditional curricular one. Along the line of real numbers, it suffices to describe intervals in terms of their
endpoints. But for the more general case, "inter-" is taken to mean "between". An interval of a line is a

between-ness closed subset — for every pair of points, therein, all line‑points that are in between those two
also lie within that interval.

That concept allows for intervals of lines which have holes — and for no-endpoint intervals which end at

holes — and for "infinity" nests of singly‑bounded, but endless intervals. Especially pertinent, that concept
also allows delta‑intervals, each of which spans only a single Dedekind hole.

Of course, each pair of line‑points identifies a closed interval. However, the use of (coordinate point)
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ordered pairs to express intervals can introduce initial confusions which are best avoided. So, for a

compromise, intervals which have two extrema may be expressed as [x<<y]. Whether or not ALL intervals
can be expressed in terms of their "ends" depends on the topology of the number‑line.

Beginning calculus students' initial conceptual difficulties with function-limits often stem from their

expectations that "limits" should be limits OF something — and the traditional curriculum fails to clarify,
"limits of what?" But the needed clarification best begins within a context that is conceptually simpler than

the limits of functions — and Dedekind cuts of number‑lines suffice.

A cut of a line is simply an (L,U) disjoint pair of non-empty intervals whose union is the entire line. Every
non-end line-point, x, defines two distinct cuts — its  lower-cut having that point as a max of its lower part

— (‑∞<<x] — and its upper-cut having the same point as the min of its upper part — [x<<+∞). The
discrete lines (e.g. of integers) serve as contra-illustrations which set the stage by contrasting with limit

points of the line. Along lines of the discrete kind, every cut is a gap — having both a max for its lower
part, and a min for its upper part — (‑∞<<x]&[y<<+∞), with x<y and no points between x and y. From
that condition the concept of an interval's endpoints simplistically arises even within the context of discrete

lines — as the max or min of an interval. But while endpoints of that kind do serve as bounds for intervals,
they do not exhibit "the pressures" that we want for "limit‑points".

In the contrast, a dense‑sieve line has 3 kinds of cuts. One kind of cuts consists of holes — where U has

no min, and L has no max. Otherwise, the remaining two kinds of numbered cuts have cut‑numbers.
Each line‑point, x, is the cut number both for an upper‑cut, (‑∞<<x)&[x<<+∞), in which x is the min of the

upper‑part — and also for a lower‑cut,  (‑∞<<x]&(x<<+∞), in which x is the max of the lower‑part.

However, the density dictates that x is crowded by other points from each of the those four outer intervals
— making x a lower limit-point of each upper part, and also an upper limit-point of each lower part. But

while x is the in‑common endpoint of each of those four unbounded intervals, it is an extremum of only
two of them.

Thus, the concept of extrema‑endpoints is generalized — to also include non-extrema endpoints that lie

outside the interval. The essence of limit‑ness simplistically surfaces through the context of interval-ends.

A limit‑point of a subset of a number‑line is "infinitesimally" near to that set, whether or not it also lies
within that set. But students most easily grasp that concept through the context of intervals of dense lines.

When an interval has an upper end, that end is the upper limit of that interval — and when it has a lower
end, that end is the lower limit of that interval.

Of course, if those ends are endpoints, those are the sup and inf of that interval — but it is distractive to

introduce additional vocabulary until it serves additional purposes.  In the calculus, however, it often is

expedient to regard upper and lower "infinities" as "ends" of line‑intervals.  Indeed, it can be helpful even to

regard Dedekind holes as being "ends" of intervals.

Along the line of decimal numbers, every point is a limit‑point — being a limit of other decimal numbers.

But density dictates that each line‑hole also is a limit of decimal numbers. Although a hole-cut cannot be

endpoint-described, the hole, itself, can be regarded as being an "end" for both parts — and given a name,
say h or e or pi. Thereby, as with ±∞ — even though, h is not a number — the hole-cut is (-∞<<h)&

(h<<+∞). So, to the extent that we can generate a vocabulary for the holes (e.g. by using non-terminating
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decimal‑points), all intervals can be described by their ends — even when those ends are not endPOINTS

.

On the surface, so attending Dedekind holes might seem to be extraneous for beginning calculus. But the

holes provide the context for the "delta intervals" on which even the sup/inf definition of function‑limits

depends. Indeed, achieving the limit‑values for functions often is done by using delta-intervals to generate

holes in the function, and by then inserting limit‑points to fill those holes.

En route, our numeric approach to limits takes an interim trek through nested intervals.  That serves to

advance the concept of "limit" a step beyond limits as ends of intervals — while not yet broaching the

complexity of function‑limits. But that turn is not actually tangential. The nests also are crucial to the sup/inf
definition of function‑limits.

A nest is simply an inclusion‑ordered chain of non‑empty intervals. The nest of all upper-intervals, and the

nest of all lower‑intervals, serve as viable definitions of upper infinity and lower infinity. Classical epsilonics
uses three special kinds of nests — its epsilon nests, its delta‑nests, and its "infinity" nests of outer intervals.

But some of the built‑in postulates about those nests are not essential — and serve only to inhibit acquisition

of the concepts of function‑limits. The more general notion of nests is easier to grasp.

For each nest, a non-empty intersection of all of its member-intervals is an interval — which might or might

not be a member of the nest. In a sense, each nest "converges" to its intersection — but more precisely, its

intervals concur there. To speak of a nest "concurring" allows "convergence" to mean, as usual, the specific
cases where the nested intervals converge to a single point — or to a single hole or an infinity — as the

limit of that nest.

Each decimal number is a limit point of a convergent nest of intervals — but some such decimals‑line nests
converge to holes in that line. To somehow fill those holes (e.g. with non‑terminating decimals, or with

delta‑nests) amounts to achieving limit‑points for ALL convergent nests. Scenarios of that kind can serve as

a prolog for the passage from functions which have a density of holes (such as the equality function over the

rationals), to their continuous extensions.

Nests of function‑windows:

The typical calculus book ignores some notions which are fundamental standpoints for under‑standing the
limits of functions. One of those is the concept of a function's nests of function‑windows.

Along a line of real numbers, each interval of the line includes a (possibly empty) interval of the chosen

function's domain. In turn, that domain‑interval identifies a particular sub‑function as an
interval‑restriction of the original function. Thereby, each such interval‑restriction of the function's domain

also yields a corresponding restriction of that function's range. The resulting restricted range lies fully within

a minimal encompassing line-interval. The latter, if non‑empty, has "end" limits which are real-number

endpoints, or are one or both of the "infinities". Thus, through each interval-restriction of its domain, that
function induces a corresponding interval‑restriction of its range.

Whenever the restricted domain and range are bounded, the restricted function's configuration is quite

naturally linked to the technology of graphics calculators. Since the calculator's  "x-interval" comprises its
endpoints, it is closed — and it also restricts the function's domain. The  restricted function's window is 

completed by the corresponding minimal closed "y‑interval" which includes the restricted range — which
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the calculator might or might not be able to accomodate.  The y-interval's ends — whether numbers or

infinities — are automatically set by the restricted function. Conceptually, that "window frame" builds upon

the students' experience with the calculators.

So, for each function, f, every x‑nest (of closed intervals) connotes an associated nest of restricted

f‑domains — and its nest of f‑restrictions — and its nest of f‑restrictions' ranges — and its induced nest of

(closed) "y-intervals" — yielding a nest of f‑windows over the concurrence of the x‑nest. In the direction
of smaller subsets, such a nest of border‑including f‑windows is what calculators call an "in‑zoom". But

since the y‑nests are induced by f, all zoom‑in's on f are controlled by the x‑nests. Even through classical

epsilonics, students' awareness of such f‑nests is crucial to under‑standing of function limits.

In the traditional mode, the instructional syllabus would immediately proceed directly to the definition of

f‑limit at points, p. But a much stronger under‑standing is got by first acquiring some standpoints which

justify focusing on what is to be defined. Those come from examining what happens to the f‑induced y‑nest,
at the concurrence of the x-nest — especially when the x‑nest converges to a line‑point or to an "infinity".

It is well worth examining how various selected x‑intervals: restrict functions, define function‑windows,

restrict ranges, and induce the windows' y‑intervals — to detect what happens when the x‑intervals are
expanded or shrunk. But the concepts of function‑limits are all about how the f‑induced y‑nest concurs for

an x‑nest which actually converges (to a point/hole/infinity limit-thing). That is the context in which calculus

students most readily grasp the nature of function‑limits — as domf is shrunk toward (... some number

or infinity ...), ranf is pressed toward (... some interval or number ).

It is noteworthy that differing x‑nests which converge to an in‑common limit might yield greatly differing

y‑nests. But in beginning calculus, only a handful of x‑nests are tacitly used. Students deserve to share in the

mathematical motivation for those choices, and the following four cases are especially revealing.

Case #1: When the x‑nest converges to a point which is fully outside the original function's domain, the

f‑induced y‑nest, and the f‑windows ultimately disappear. Such disappearance can happen also when the
x‑nest converges to an "infinity". Cases of both kinds are realistic, commonplace, and illuminating —

because they disclose that such a convergent x‑nest can say nothing about the function's values.

Case#2: When the x‑nest converges to a non‑domf point — or to an infinity — that is near to domf
— with each of that nest's intervals comprising points of domf, t he f‑values of those domf points define the

induced y‑nest — and the corresponding nest of f‑windows. (This condition allows even for the x‑nest to lie

fully on just on one side of the x-nest limit.)

Convergence of that x‑nest to its limit forces, within the y‑nest, a corresponding (non‑increasing)

progression of f‑induced y‑intervals — perhaps progressively changing their ends. If any intervals of the

y‑nest have upper-endpoints, their respective f‑windows have top‑lines. Convergence of the x‑nest causes

those upper‑endpoints and window‑tops to converge, downward, to a number — or to lower infinity, so
that the f‑window progressively disappears. Likewise, if any of the nested y‑intervals have lower-endpoints,

their f‑windows have bottom‑lines. Convergence of the x-nest causes those endpoints and window‑bottoms

to converge upward, toward a number — or to upper infinity, so that again the f‑window progressively
disappears.

If any of the nested y‑intervals has two endpoints, their respective windows have tops and bottoms.
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Convergence of the x‑nest causes those endpoints to squeeze toward each other and — since no lower

endpoint is above an upper endpoint — ultimately to determine a limiting   closed y‑interval which might or

might not be a member of the y‑nest. The associated f‑windows converge to a vertical line-segment.

Thus, a non-domf point, p, that is near to domf — although it has no f‑value of its own — can gain its own

limiting interval for f‑values. The same is true of the two "infinities". Such an f-limiting interval (at the

limit of the x‑nest) expresses the "clustering tendency" of the f‑values, as the domain and the function are
progressively restricted toward that limit.

The f‑induced y‑nests do not always yield limiting intervals — they might converge to an infinity or to both.
But when the convergence is to a y‑interval, an upper endpoint of that interval is an upper limit (or sup)

for the f-values from points near p, relative to that x‑nest — for brevity, "the upper limit of f, at p, or

Ulimf(p), for THAT x‑nest.  Likewise for the (inf) lower limit at p, Llimf(p) — and for Ulimf(+∞) and

Llimf(+∞), etc.  Of course, such upper and lower limits might be equal — for THAT x‑nest.

Case#3: When the x‑nest converges to a domf point, p, which is an isolated point of the domain, the

f‑window disappears unless p lies within all of the nest's constituent intervals. In the latter case, the point's

f‑value, f(p) lies within all of the induced y‑intervals, and also within the concurrence of the induced y‑nest.
But the isolation and convergence dictate that there are no other domf points in concurrence of the x-nest.

So, the induced y‑intervals ultimately become constantly the single‑point interval, [f(p)] — and the

f‑windows nest concurs in a single function‑point. Of course, that single point says nothing new about the

function. In particular, in contrast to case #2, that result says nothing about function‑values of the other
domf points.

Case#4: When the x‑nest converges to a point, p, which is within domf — with each of the x‑intervals also
comprising some non‑p points of domf — each of the induced y‑intervals comprises f(p) — which then

must be within the (closed) limiting interval for f‑values. Although that interval loosely expresses the cluster-

tendency of f-values from domf points near p,  the value, f(p), might seriously distort that picture. For, f(p)

might be the sup/inf and far above, or far below, the limiting interval that would result if p were "deleted"

from the domain of f. So, the cluster‑tendency could be badly obscured by the presence of f(p) within the

limiting interval.

Of those four cases, only in case #2 does the function's limiting intervals — and any sup/inf of

function‑values — at numbers or at infinities clearly express the cluster-tendency of f‑values as the domain

is restricted. But in that case, while that point or that infinity was near to domf, it was not within domf.

So surfaces the advantage of using delta‑nests of delta‑intervals. Those enable achievement of limiting

intervals even at most points within domf — if those are not isolated points of the domain.

For each real number, p, its deletion from the number line leaves the Dedekind hole, (‑∞<<p)&(p<<+∞). 

A delta‑nest at p uses the p‑deleted real‑numbers line, and converges to that hole, and consists of intervals

which straddle the hole, or which end at the hole. If, at p, the f‑induced y‑nest converges to an f‑values‑limit

interval, that interval is not affected by whether or not p is within domf.  If such an interval occurs at p, an

upper end would also be the sup, at p, of the function as restricted to the p‑deleted line of real numbers.

But without the deletion, when p is within domf, f(p) might be the sup/inf of f, at p — while also differing

from the function's upper/lower limits at p (which might not even exist). Of course, the use of delta‑nests to
define a function's upper/lower limit at a point precludes such limits from occurring at isolated points of the

file:///C:/~research/MAA%20website/old/news/okarproceedings/OKAR-2007/Drag%20to%20a%20file%20to%20make%20a%20link.
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domain (case #3).

The lim operators on functions: 

Especially since the advent of the graphics calculator, it far more effective to approach the limits of functions

through "zooming windows", than through classical epsilonics. But the option of selecting which x‑nests to

use concurrently accommodates "left‑side" and "right‑side" limits at numbers, and "ultimate" limits over the

two "infinity" kinds of x‑nests.  So, the calculator surfaces the fact that nested "spheres" provide the natural

context for describing most kinds of limits of transformations of real-coordinate spaces. All the more reason
for re‑forming the calculus syllabus into the direction of interval‑nests.

Nonetheless, even convergent nests and function‑windows yield only point‑wise definitions for each

function's  various kinds of limits. But the calculus students' conceptual understanding of a function's limits

cannot be adequate until they are fully aware of how a function is changed by passing to each of its various

limit-functions — right‑upper limit, right‑lower limit, etc.

Only by perceiving each of those limiting processes as an operator that carries a function into a limiting
function, can they fully grasp the meaning of continuity of various parts of a function. The student who

cannot draw, upon a function, each of its various limit-functions probably has not yet internalized the

concepts.

Unfortunately, the classical symbolism inhibits that perception. Rhetorically, the "lim" passage from "f" to

"limf" traditionally is complicated by traditional curricular reliance on "f(x)"which sometimes means the

function, f, and sometimes means the composition of f onto a function, x, and sometimes means a point  in

its range (sometimes even ALL of its range). Curricular reliance on "f(x)" can obscure the picture by
requiring use of the expression, "limf(x) at x=3" — classically expressed as "limf(x) as x→ 3".  In part

because of the confusing use of  "f(x)", the latter, cluttered expression fails to exhibit that limf — or even

limf(x) is a function in its own right.

In practice, that rhetorical mess presently cannot be avoided — it abounds in the literature. But when it

comes to effective instruction, there is no excuse for letting the classical rhetoric of our exploring forefathers

to serve as a shackle that impedes learning. Far more effective to use the best possible language for

purposes of imparting conceptual understanding, and later to use that language as a tool for digesting the

book. Nonetheless, just as when bridging from the rational numbers to epsilon bands, the learning-

conscious instructor can provide preparatory supplements.

Note the backwards (English) reading of "logf(3)" — the choice of 3 leads to whatever number is f(3),

whose log‑value also is the value of the composite. That convention leads to interpreting "limf(3)" as meaning

"the limit of the constant, f(3)" — which says nothing about limf. But through a nice, clean, and clear

variation, an underline may be used, so that "limf(3)" can mean the function‑value of limf, at 3. Thereby, limf

can empower students to later digest, better, the classical expressions.

In the context of function‑limits, the bridging over the f(x) confusion begins with re‑viewing the "x→p"

notion of "x approaches p". From the students' viewpoint, if x is to "approach" anything, x must vary over

time — i.e. along a line of real numbers — ultimately converging to a.

To grasp the mathematical substance of that notion requires having a meaning for "a variable converging to
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a number" (or to an "infinity"). [The classical curricular notion — of x as a letter whose numeric meaning can
vary — fails to provide mathematical objects which can be objectively studied.] In decades past, the label,

"real variables", was used for what now are called "real functions". The prevalent mathematical model of

"variation" is the concept of functions — whose values might vary, over an increasing progression of

real‑coordinate points. From that viewoint, the notion of a function converging to a number is synonymous

with its being asymptotic to a constant.

So arises the instructional advantage of attending, first, the outer limits of functions (i.e. "at infinity"). The
notion of "x approaches p" tacitly implies that x is a function which is asymptotic to the constantly‑p function

— ultimately converging to p, necessarily over an upper‑unbounded domain, without ultimately equaling p.

A familiar illustration  is the language of infinite decimal‑points — digit‑sequences whose (non‑decreasing)

decimal series converge to real-valued constant functions. Other examples abound among the combination

of algebraic and trigonometric functions. Approaching such asymptotic convergence through a function's

upper/lower limits at upper and lower infinities nicely sets the stage for later attending function' sup's and

inf's over delta-nests.

For such an asymptotic x, f(x) is a composite function — with f acting as possible, on the range of x. Of

course, the case of central interest is where f(x) likewise is asymptotic to some constant, so that limf(x) = L,

as x converges to p. But for f(x) to have an upper-unbounded domain, p must be a limit‑point of domf. So,

it suffices for ranx to lie fully within domf   — a condition often expressed as "x approaches p over the

domain of f".

That "asymptotic" bridge, providing a comprehensible entry into the classical symbolism, gives graphic and
precise mathematical meaning to the expression "as x→p, f(x)→L". But such dual convergence does not

quite give a viable definition for L being the limit of f, at p. For, depending on the nature of f, and on which

p‑asymptotic x-variables are used, the f(x) variables might not all converge to L.

Thus it surfaces that underlying the classical expression is a hidden requirement. At p, the limit of f is L iff for

ALL x which approach p over domf, the composite function, f(x), converges to L. Of course, that

condition can be grasped only by examining contra‑examples, notably at essential discontinuities.

Such explorations of x→p over domf, with regard for what happens with the f(x) composite, serve more

than to enhance digestion of the classical expression of function‑limits. They also set the stage for departing

from that tradition, to express the limit‑operators and their results.

-------------------------------------------------------------

The author and The Institute welcome comments and suggestions which might contribute

toward this paper's progressive improvement through subsequent revisions.

 


