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For students studying undergraduate mathematics, it is common and proper to en-
counter logical symbols, such as connectives ∼, ∧, ∨, →, and ↔, in courses specifically
containing logic and truth tables as topics, in other courses relying on the ability to
manipulate these symbols, or just incidentally as an instructor uses them to help
communicate mathematical ideas in lectures for any course. In countries outside the
United States, it is not unknown for some introduction of these symbols, along with
truth tables, to be standard by the end of secondary school. The usefulness and
beauty of symbolic logic often motivate U.S. instructors to introduce the subject at
some low level to students, even in the secondary schools, though it is rare for the
actual classroom texts to discuss abstract, symbolic logic except in courses involving
proofs, and then only well into the university level. In particular, algebra and calculus
texts almost completely avoid the issue, apparently instead appealing to the students’
“common sense.”

The main purposes of this paper are two-fold. The first purpose is to describe a
simple and intuitive standardization of logic notation, both for foundational courses
which develop symbolic logic, and for general, everyday use in undergraduate math-
ematics courses. Second is an argument that undergraduate mathematics that does
not usually include logic formally could benefit from widespread use of symbolic logic,
particularly if it is standard and thus truly portable.

Done well, the use of symbolic logic can bring much needed clarity to a topic or course,
while done casually or incoherently it can deepen confusion. To further confound
matters, there is no universal standard for notation or its use, so what little a student
absorbs in one course might not be as portable as he or she would like. I address all
of this with my proposed standard, but first address the problems in more detail.

Most authors and instructors use the connectives ∼, ∧, ∨ or minor variations similarly.
However, some then use =⇒ and ⇐⇒ where others use → and ↔, and vice-versa.
To indicate logical equivalence of compound statements, some authors use the symbol
≡ (used elsewhere to indicate function identities or equality by definition), while
others use ↔, ⇐⇒ , or “iff” meaning “if and only if.” (Other notations can also be
found but are less common.) In lecture notes, it is not unheard of to see =⇒ when
⇐⇒ is also correct and therefore more precise (or even intended), and when it would
be very instructive to the students to see the differences between the two; similarly if
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↔ and → are used instead. Indeed, often in some computational argument a string
of equivalence is broken, as in f(x) = x · x ⇐⇒ f(x) = x2 =⇒ f ′(x) = 2x, where
of course we can not replace =⇒ with ⇐⇒ . Of course in a calculus context it
seems inadvisable to use the symbol → in-line because of its ubiquitous use in limit
arguments. Even when we restrict the discussion to the use of logic symbols and
their meaning, we have contexts where P → Q is supposed to be understood to be a
tautology (always true), and others where it is meant to have truth values that may
be T or F, depending upon the context. Similarly with P ↔ Q.

The simple notational proposal put forward here is this:

That we use → and ↔ as connectives, i.e., logical operations, which can

return either truth values T or F, and =⇒ and ⇐⇒ only when the

corresponding connectives return tautologies.

The connectives will be referred to here as “single-line arrows” and the other symbols
as “double-line arrows.” Thus one may write

P ↔ Q ⇐⇒ (P → Q) ∧ (Q → P ), (1)

P ↔ Q =⇒ P → Q. (2)

While the first of these (1) would normally be proved using truth tables by showing
that P ↔ Q and (P → Q) ∧ (Q → P ) have the same truth values for each of the
22 = 4 possible combinations of truth values of the P and Q, it should be noted
that it can also be proved by showing that [P ↔ Q] ↔ [(P → Q) ∧ (Q → P )] is a
tautology.

P Q P ↔ Q P → Q Q → P
(P → Q)
∧(Q → P )

[P ↔ Q]
↔ [(P → Q)
∧(Q → P )]

T T T T T T T
T F F F T F T
F T F T F F T
F F T T T T T

Of course it is easier, and time saving, to simply note that the third and sixth columns
of the truth table have the same values, and spare the effort of producing the final
column. However it is worth noting that showing two compound statements have
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the same truth values in all cases is equivalent to showing that the connective ↔
operating on the compound statements will always return T.

To rephrase, the spirit of the longer method of showing equivalence is the notion that
⇐⇒ means that if its place is taken by ↔ we get a tautology, after adding necessary
grouping symbols. This can be extended to implications, in which =⇒ is taken to
mean that, if replaced by →, we get a tautology. So to prove (2) we construct a truth
table as follows:

P Q P ∧ Q P (P ∧ Q) → P
T T T T T
T F F T T
F T F F T
F F F F T

Now consider compound statements P = P(P1, P2 . . . , P
n
) and Q = Q(P1, P2 . . . , P

n
),

where the P1, P2, . . . , Pn
are assumed to be independent component statements, with

2n possible truth value combinations of T and F. When it is appropriate to write
P ⇐⇒ Q, or P =⇒ Q for compound statements P, Q, I call these, respectively,
a valid equivalence and a valid implication. Otherwise they would be fallacies, and
perhaps, unlike statements using the connectives ↔,→, we would usually avoid writ-
ing the fallacies (just as we avoid writing 2 = 3). We can use this notation to display
valid argument styles in-line. For instance, consider modus tollens, i.e.,

P → Q
∼ Q

∴ ∼ P

which becomes (P → Q) ∧ (∼ Q) =⇒ ∼ P . A check with a truth table construction
shows [(P → Q) ∧ (∼ Q)] → (∼ P ) is indeed a tautology. (I have found that using
extra “grouping” characters ( )and [ ] expedites the learning of logic by my calculus
students, and thus defers the whole discussion of an “order of operations” until they
are more comfortable with the notation.)

The symbols ⇐⇒ and =⇒ are robust enough to use in many contexts, including
algebraic contexts, in which they can very much enhance student understanding of
the logical nature of simple mathematics. For example,

x −
√

x + 6 = 0 ⇐⇒ x =
√

x + 6

=⇒ x2 = x + 6

⇐⇒ x2 − x − 6 = 0

⇐⇒ (x − 3)(x + 2) = 0

⇐⇒ (x = 3) ∨ (x = −2).

(3)
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Students witness where we “broke” our equivalence, allowing us (at this point) only
to conclude that x −

√
x + 6 = 0 =⇒ (x = 3) ∨ (x = −2), and thus we have a need

to “check” our candidate answers, discovering that x = 3 will work in the original
while x = −2 will not, so we finally conclude x−

√
x + 6 = 0 ⇐⇒ x = 3. Of course

this kind of thing happens all the time, and in fact we can prove (as above) that
P =⇒ P ∨Q, as for example x−

√
x + 6 = 0 ⇐⇒ x = 3 =⇒ (x = 3)∨ (x = −2).

We can also point to cases in algebra and elsewhere for which there is no need to check
solutions (excepting for actual errors), as for instance when we have a polynomial
equation that we solve by factoring, or a linear equation we solve by steps which only
yield equivalent statements. Knowing when we do not need to check the solutions
except for errors can be a useful skill in its own right.

At this point in the discussion it is interesting to show students how, if we have
P =⇒ Q and Q =⇒ P, then we can write P ⇐⇒ Q. (It is reasonable on its face,
and can also be shown with creative use of truth tables.) This fact is also often useful,
such as when we show how the three “row operations” in Gauss-Jordan elimination
produce systems with the same solutions, because the operations are reversible. More
specifically, it is easy to show that a solution to the original system is contained in the
solution of the transformed system, and that “going backwards” we see the inverse
operation of the transformation gives that the solution of the transformed system is
contained in the original system’s solution. However, like squaring both sides of an
equation, differentiation is not quite reversible:

f(x) = sin x =⇒ f ′(x) = cos x ⇐⇒ (∃C ∈ R)[f(x) = sin x + C]. (4)

Similarly, x = −5 =⇒ x2 = 25 ⇐⇒ (x = 5) ∨ (x = −5). This simple example
reminds students of two important, often forgotten ideas: that squaring both sides of
the equation can lose important information about the signs of the original expressions
(the technicality which can be buried in the process, as in our original algebraic
example (3)), and that x2 = k ⇐⇒ x = ±

√
k. Students are also interested to note

that we do not have the same difficulty when cubing both sides: x = −3 ⇐⇒ x3 =
−27 ⇐⇒ x = −3, assuming x ∈ R.

More simple examples where we lose equivalence can be found in solving logarithmic
equations, such as the following:

log x + log(x − 3) = 1 =⇒ log[x(x − 3)] = 1

⇐⇒ x(x − 3) = 10

⇐⇒ (x = 5) ∨ (x = −2).

(5)

A quick check shows x = −2 is not a solution while x = 5 is a solution. We lost
equivalence in combining the logarithms, since when x = −2 we have x, x − 3 < 0
while x(x− 3) > 0. In fact, the first equivalence is only valid because 10 > 0 (for the
direction ⇐=).
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When dealing with quantifiers, it also seems appropriate to keep the single-line-arrow
connectives “inside” the quantified statements. For instance, since P → Q ⇐⇒ (∼
P ) ∨ Q, we can write

(∀x ∈ S)(P (x) → Q(x)) ⇐⇒ (∀x ∈ S)((∼ P (x)) ∨ Q(x)).

Perhaps less clear at first is the one-way nature of the implication

[(∀x ∈ S)(P (x))] ∨ [(∀x ∈ S)(Q(x))] =⇒ (∀x ∈ S)(P (x) ∨ Q(x)).

Once students learn about negating quantified statements and implications P → Q,
the following is relatively easy:

∼ [(∀ǫ > 0)(∃δ > 0)(∀x)[|x − a| < δ → |f(x) − f(a)| < ǫ]

⇐⇒ (∃ǫ > 0)(∀δ > 0)(∃x)[(|x − a| < δ) ∧ (|f(x) − f(a)| ≥ ǫ)].

Of course, quantified statements do not conform to the usual truth table based anal-
ysis. Indeed, a quantified statement is either true or false, i.e., a tautology or a
contradiction. Hence the symbol ⇐⇒ is appropriate between “true” quantified
statements, or between “false” quantified statements.

It can also be useful to define a symbol to represent a generic tautology, and another
for a generic contradiction. For these purposes I define T and F , respectively. For
instance, P ∨ (∼ P ) ⇐⇒ T , P ∧ (∼ P ) ⇐⇒ F , T ∨ Q ⇐⇒ T , F ∨ Q ⇐⇒ Q,
and so on. These allow for some interesting computations. For instance, if we wish
to reason one level above truth tables, we can use well known equivalences to prove,
say, P =⇒ P ∨ Q by showing P → (P ∨ Q) ⇐⇒ T :

P → (P ∨ Q) ⇐⇒ (∼ P ) ∨ (P ∨ Q)

⇐⇒ ((∼ P ) ∨ P ) ∨ Q

⇐⇒ T ∨ Q

⇐⇒ T .

Of course there are some results which surprise students at first, such as P → (∼
P ) ⇐⇒ ∼ P , and (P → Q)∨ (Q → P ) ⇐⇒ T . However some are quite reasonable,
such as P → F =⇒ ∼ P , which is perhaps best shown with a truth table, which will
have 2 · 1 = 2 possible truth table combinations to check, since P can have two truth
values while F has only one:

P F P → F ∼ P (P → F) → (∼ P )
T F F F T
F F T T T
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In fact, a quick glance at the truth table reveals that P → F ⇐⇒ (∼ P ), another
interesting computational result for meditation.

I have already attempted to make my case for the second proposition offered here,
which is this:

That secondary or early undergraduate mathematics education include a

standard and coherent introduction to symbolic logic, to improve the clarity

of the material and general discussion, including textbooks, lecture discus-

sions and homework in all under-graduate-level mathematics courses, for

students studying engineering and the sciences, if not all fields.

I have already pointed out how some confusing topics in algebra and calculus can be
clarified by the arrows showing the flow of implication, whether it be two way ( ⇐⇒ )
or one way ( =⇒ ). In my own calculus courses over the last four years, I have seen
enough benefits to justify spending four complete lectures on an outline of symbolic
logic notation and its use. The outline I have used for those four lectures is as follows:

1. the operators and truth tables with examples from everyday life;

2. logical equivalence with several examples which are mostly intuitive upon re-
flection;

3. valid implications and arguments along with symbols for generic tautologies (T )
and contradictions (F);

4. and finally a short introduction to quantified statements and their negations,
some from mathematics and some from everyday life, such as how to negate
“for every man there is a woman who loves him,” using quantifiers.

With these and a few other innovations which work well with the notation, much
clarity can be gained. For instance, the definitions of continuity and a finite limit at
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a point are less mysterious after some brief experience with quantifiers:1

f continuous
at x = a

⇐⇒ (∀ǫ > 0)(∃δ > 0)(∀x)[ |x − a| < δ → |f(x) − f(a)| < ǫ],

lim
x→a

f(x) = L

⇐⇒ (∀ǫ > 0)(∃δ > 0)(∀x)[0 < |x − a| < δ → |f(x) − L| < ǫ].

From here students can see how the limit is silent at the point x = a (while continuity
is not), and how the part of L in the limit is played by f(a) in the continuity definition.
Both definitions cut through the seemingly ad hoc nature of the explanations one often
needs to offer in order to demonstrate the idea of limits without using ǫ-δ definitions.
Many questions can be answered by referring back to the definitions, thus achieving
coherence across examples, at least for the case of a finite limit at a point.

In fact I have used symbolic logic in ǫ-δ proofs for continuity at points with some
success in Calculus 1. For instance, suppose I wish my students to prove that the
function f(x) = 5x − 9 is continuous at the point x = 2. The exercise is broken into
two parts: the “scratchwork” and the “proof.”

Scratch-work: We want |f(x) − f(a)| < ǫ to follow from our choice of δ. We work
backwards from that statement, with f(x) = 5x − 9, a = 2, and f(a) = f(2) = 1.

|f(x) − f(a)| < ǫ (what we need)
⇐⇒ |f(x) − 1| < ǫ
⇐⇒ |5x − 9 − 1| < ǫ
⇐⇒ |5x − 10| < ǫ
⇐⇒ 5|x − 2| < ǫ
⇐⇒ |x − 2| < 1

5
ǫ (how to get it).

Now many texts explain that because we have equivalences, we found our δ. But
this is not a good strategy if we look ahead to nonlinear functions, next comes a
stand-alone proof.

1It was recently pointed out to me that we should make some distinction between equivalence by
definition and regular logical equivalence. This suggest a possible third standard, that ≡ be only
used for definitions, which is similar to its use when we say, for instance, f(x) ≡ 0 in other contexts.

(f continuous at x = a) ≡ (∀ǫ > 0)(∃δ > 0)(∀x)[ |x − a| < δ → |f(x) − f(a)| < ǫ],
(

lim
x→a

f(x) = L
)

≡ (∀ǫ > 0)(∃δ > 0)(∀x)[0 < |x − a| < δ → |f(x) − L| < ǫ].
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Proof: For any ǫ > 0 choose δ = 1

5
ǫ. Then δ > 0 exists and satisfies

|x − 2| < δ =⇒ |f(x) − f(2)| = |(5x − 9) − 1|

= |5x − 10| = 5|x − 2| < 5δ = 5 · 1

5
ǫ = ǫ, q.e.d.

Suppose instead we wish to prove that f(x) = x2 is continuous at x = 4. We
can attempt the same strategy but it quickly falls short, until we remember which
direction of “ ⇐⇒ ” we actually need.

Scratch-work: Here a = 4 and f(a) = 16. We therefore want to choose δ > 0 such
that

|x − 4| < δ =⇒ |f(x) − 16| < ǫ.

Working backwards as before we get

|f(x) − 16| < ǫ

⇐⇒ |x2 − 16| < ǫ

⇐⇒ |x + 4||x − 4| < ǫ.

Of course |x + 4| is not constant, so we are stuck until we realize the direction we
really need is ⇐= in the above i.e., |x − 2| < δ =⇒ |f(x) − 4| < ǫ. We can
also have statements before and after our antecedent if the arrows continue to flow
the correct direction. Of course we accomplish our implication by employing some a

priori assumption that δ ≤ 1, for instance. Then

|x − 4| < δ =⇒ |x − 4| < 1 =⇒ x ∈ (3, 5)

=⇒ x + 4 ∈ (7, 9)

=⇒ |x + 4| < 9

=⇒ |x + 4||x − 4| < 9|x − 4|.

If this last quantity is less than ǫ when |x − 4| < δ, we will have our proof, and that
can happen if 9|x− 4| < 9δ ≤ ǫ, and the last part is true if δ ≤ ǫ/9. We note that we
keep thinking, “that can happen if,” and so we are in fact working backwards again
from |f(x) − f(a)| < ǫ, except (1) we do not have equivalence, but our “arrows” are
pointing towards |f(x)−f(a)| < ǫ, and (2) we in fact require two things to be present
to accomplish |f(x) − f(a)| < ǫ. Indeed, we need δ to accomplish both, δ ≤ 1 and
δ ≤ ǫ/9, and we do this by taking δ = min{1, ǫ/9}. From there we have our proof.

Proof: For ǫ > 0, choose δ = min
{

1, 1

9
ǫ
}

. Then δ > 0 exists and satisfies

|x − 4| < δ =⇒ |f(x) − 16| = |x + 4||x − 4| < 9|x − 4| < 9δ ≤ 9 · ǫ

9
= ǫ, q.e.d.
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The level of sophistication required of calculus students for understanding such a
proof, and moreover reproducing such a proof, is unremarkable when put so precisely
and concisely with the aid of symbolic logic. That tone of sophistication can be sorely
missed in later topics if ǫ-δ definitions and proofs are omitted. This is one context in
which the symbolic logic can arguably enhance the sophistication of our students.

However, there are pitfalls to avoid when introducing symbolic logic into, say, a first-
semester engineering calculus course. First, it should be done with some complete-
ness; a piecemeal introduction, particularly “on the fly,” will cause more confusion
with most students than it is worth. Second, while most students will enthusiasti-
cally embrace symbolic logic, they will also need some correction, as the instructor
reads “ =⇒ ” where what is meant is “=,” for instance, so some patience will be
required, as always, but in that sense symbolic logic is no different from other topics.
Third, some theorems and arguments instructors take for granted can have surpris-
ingly sophisticated logical structure when forced into symbolic form. While students
can learn to produce an ǫ-δ proof of continuity for a linear case reasonably quickly
(though not immediately), it becomes much more interesting for the nonlinear cases,
where δ must be restricted a priori. Part of the solution is to keep the “scratch-work”
seeking δ = δ(ǫ) and the actual ǫ-δ proof of continuity separate, which is less neces-
sary but still a good practice for the linear case. Fourth, some rewriting of lecture
notes, and some reshuffling of order and priorities may be required to take full advan-
tage of the notation. For instance, I have had reasonable success by introducing the
more intuitive topic of continuity before the less intuitive limits, requiring some ǫ-δ
proofs of continuity at points (the hardest part of the entire semester for some), then
defining continuity on intervals and giving the usual theorems there (including the
Intermediate Value Theorem and using it to solve inequalities), and then “breaking”
the continuity and introducing limits to describe the behavior of discontinuous func-
tions, as well as the continuous ones, but mostly excluding ǫ-δ proofs for limits in the
exercises. Finally, some time is lost initially by including a primer on logic, so some
consolidation may be required. For instance, I introduce some easily grasped calculus
facts in earlier contexts, for instance the fact that f ′ > 0 on an interval implies f is
(strictly) increasing on the interval while f ′ < 0 implies decreasing, and use these for
some simple graphing problems long before the Mean Value Theorem is introduced
to prove them. In other words, introducing logic does not have to turn calculus into
rigorous analysis. An instructor can judge the level of rigor appropriate for individual
classes.

In the end, an introduction to logic symbols and their manipulations can help students
to clarify their own thinking, help illuminate the flow of a mathematical argument,
and better illustrate the idea that mathematics is a language of sorts. This is assuming
the logic is introduced in a somewhat complete and coherent fashion. It would also
help if it were “portable,” i.e., standardized, as well. Simply using ↔ and → as
connectives, and ⇐⇒ and =⇒ when the respective connectives would return
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tautologies, and between quantified statements where appropriate, can do a lot toward
standardizing the classroom-level use of symbolic logic, with the potential to make
symbolic logic a powerful tool for mathematics instruction.

One criticism of this approach is that we can not expect students to perform the
calculations better if they are constantly worrying if they should connect them with
⇐⇒ or =⇒ . This criticism has some merit. A possible relaxation of the approach
would be to use =⇒ throughout the process, until the problem is more or less
complete, and then to step back and notice where we in fact have ⇐⇒ . Even if
⇐⇒ is never used in a particular classroom, =⇒ can give some road map to the
given argument. When useful, the standard presented here gives the instructor some
structure to fall back upon.
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