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Abstract

Standard textbooks in introductory differential equations (see [1],
[2], [3], [4], [5]) expose the subject by emphasizing more on the tech-
niques and applications and cutting out most of the theoretical ex-
posure. As a result, many of the theoretical results are presented
without proofs. A collection of class lecture notes have been written
to examine whether including the proofs will be suitable for the begin-
ning sophomore students taking a course in introductory differential
equations. (See [8] and [9]) Surprisingly, we found out that the proofs
provide a wealth of information very useful for students in mathemat-
ics and the applied sciences. In this paper, we take an excerpt from
these notes. We investigate the conditions on the coefficients of an
nth order linear differential equation for which a reasonable proof of
existence and uniqueness of solutions can be established.

1 Introduction

When teaching an introductory course in differential equations one notices
that most theorems of the theory are almost always stated without proofs in
elementary differential equations textbooks following calculus. In this paper,
we discuss the importance of including the theoretical justifications of the ma-
jority of the theorems. A collection of class lecture notes have been written
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to examine whether including the proofs will be suitable for the beginning
sophomore students taking a course in introductory differential equations.
(See [8] and [9]). For references, we used the books [1], [2], [3], [4], [5], and
[6]. The first five are relatively suitable to students at the sophomore level
who had a calculus course. They are ”suitable” because they avoid going
through the justification of most of the theorems that they discuss and they
stress more on the drilling aspect of differential equations rather than the
reasoning and the drilling that follows from it. The last fits the bill but is
more designed for advanced students.
In writing the notes mentioned earlier, we found out, to our surprise, that
most of the proofs are relatively constructive and understandable, and pro-
vide a wealth of information that can be useful for both instructors and
students:
(1) From the instructor side, knowing the theory behind the results will en-
hance the teaching of the topics.
(2) From the student side, knowing the theory prepare them to be more re-
search oriented individuals and thus more creative and with strong reasoning
skills compared to individulas whose only interest is just to apply a collection
of techniques.
To emphasize the importance of theoretical discussion, we consider the ques-
tion of existence and uniquenss of solutions to linear differential equations.
Typically, one starts by discussing this question for first order linear differ-
ential equation. A method of proof is the integrating factor method which
we describe next.

2 The Method of Integarting Factor for First

Order Linear Differential Equations

One way to establish the existence of a unique solution to the initial value
problem

y′ + p(t)y = g(t), y(t0) = y0 (1)

where p(t) and g(t) are continuous in a < t < b is by applying the method
of integrating factor.
For the existence of a solution we proceed as follows: Since p(t) is continuous
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then by the Second Fundamental Theorem of Calculus the function∫ t

t0

p(s)ds

is differentiable with derivative

d

dt

∫ t

t0

p(s)ds = p(t), a < t < b

Let
µ(t) = e

R t
t0

p(s)ds

From this, one can notice that Equation (8) can be written as

(µ(t)y)′ = µ(t)g(t)

Integrating this last equation to obtain

µ(s)y(s)|tt0 =

∫ t

t0

µ(s)g(s)ds

Thus,

µ(t)y(t) − µ(t0)y(t0) =

∫ t

t0

µ(s)g(s)ds

or

µ(t)y(t) − y0 =

∫ t

t0

µ(s)g(s)ds

Divide the last equation by µ(t) to obtain

y(t) =
1

e
R t

t0
p(s)ds

∫ t

t0

µ(s)g(s)ds +
y0

e
R t

t0
p(s)ds

(2)

As for the uniqueness, we suppose that y1(t) and y2(t) are two solutions of
(8). Let w(t) = y1(t) − y2(t) for any a < t < b. We will show that w(t) ≡ 0
for all a < t < b. First, we show that w(t) satisfies the homogeneous equation

w′ + p(t)w = 0 (3)

Indeed,

w′ + p(t)w = (y′1 + p(t)y1) − (y′2 + p(t)y2) = g(t) − g(t) = 0.
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Multiply Equation (3) by e
R t

t0
p(s)ds

to obtain(
e
R t

t0
p(s)ds

w
)′

= 0

Now integrate both sides and then solve for w(t) to obtain

w(t) = Ce
−
R t

t0
p(s)ds

(4)

But w(t0) = y1(t0)− y2(t0) = y0 − y0 = 0 so that C = 0. Hence, w(t) ≡ 0 for
all a < t < b or y1(t) = y2(t) for all a < t < b.

Next, comes the question of existence and uniqueness for nth order linear
differential equation with initial conditions. Here, most books avoid provid-
ing a proof because it’s beyond the scope of a course in elementary differential
equations. So, it makes sense to think about whether the method of integrat-
ing factor discussed for first order linear differential equation can be extended
to higher order equations, a topic that we discuss next.

3 Extended Integrating Factor Method

We consider the following nth order linear differential equation

y(n) + pn−1(t)y
(n−1) + · · · + p1(t)y

′ + p0(t)y = g(t) (5)

with initial conditions

y(t0) = y0, y′(t0) = y′0, · · · , y(n−1)(t0) = y
(n−1)
0 , a < t0 < b (6)

where the functions p0(t), p1(t), · · · , pn−1(t), and g(t) are continuous in an
open interval a < t < b.
The above initial value problem can be transformed into a first order system.
This is done by introducing the variables

x1 = y, x2 = y′, · · · , xn = y(n−1).

In this case, we have

x′1 = x2

x′2 = x3
... =

...
x′n−1 = xn

x′n = −pn−1(t)xn − · · · − p1(t)x2 − p0(t)x1 + g(t)



5

Thus, we can write the problem as a system:
x1

x2

x3
...

xn


′

+


0 −1 0 0 · · · 0
0 0 −1 0 · · · 0
...

...
...

... · · · ...
0 0 0 0 · · · −1
p0 p1 p2 p3 · · · pn−1




x1

x2

x3
...

xn

 =


0
0
...
0

g(t)


or in compact form

x′(t) + A(t)x(t) = b(t), x(t0) = y0 (7)

where

A(t) =


0 −1 0 0 · · · 0
0 0 −1 0 · · · 0
...

...
...

... · · · ...
0 0 0 0 · · · −1
p0 p1 p2 p3 · · · pn−1



x(t) =


x1

x2

x3
...

xn

 , b(t) =


0
0
...
0

g(t)

 , y0 =


y0

y′0
...

y
(n−1)
0


Note that if y(t) is a solution of (5) then the vector-valued function

x(t) =


y
y′

...
y(n−1)


is a solution to (7). Conversely, if the vector

x(t) =


x1

x2

x3
...

xn
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is a solution of (7) then x′1 = x2, x′′1 = x3, · · · , x(n−1)
1 = xn. Hence, x

(n)
1 =

x′n = −pn−1(t)xn − pn−2(t)xn−1 − · · · − p0(t)x1 + g(t) or

x
(n)
1 + pn−1(t)x

(n−1)
1 + pn−2(t)x

(n−2)
1 + · · · + p0(t)x1 = g(t)

which means that x1 is a solution to (5).
To carry out the method of integrating factor successfully to equation (7)
requires that we have(

e
R

A(t)dtx(t)
)′

= e
R

A(t)dtx′(t) + A(t)e
R

A(t)dtx(t) (8)

where for any square matrix A(t) = (aij(t)) we define∫ t

t0

A(s)ds =

(∫ t

t0

aij(s)ds

)
.

But Equation (8) is valid only if

d

dt

(
e
R t

t0
A(s)ds

)
= A(t)e

R t
t0

A(s)ds

and this last equation is valid when

A(t) ·
∫ t

t0

A(s)ds =

∫ t

t0

A(s)ds ·A(t)

and this equation leads to the following system of integral equations∫ t

t0
p0(s)ds = p0(t)(t − t0)∫ t

t0
p1(s)ds = p1(t)(t − t0)

...
...∫ t

t0
pn−1(s)ds = pn−1(t)(t − t0)

A solution to the above system is when the functions p0(t), p1(t), · · · , pn−1(t)
are constant functions. Thus, one can prove the existence and uniqueness of
solutions to nth order linear differential equations with constant coefficients
using the method of integrating factor. The closed form of the solution is

x(t) = e−(t−t0)Ax(0) + e(t−t0)A

∫ t

t0

e−(s−t0)Ab(s)ds.
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4 Illustration

We next apply the method of integrating factor described in the above the-
orem to solve the initial value problem

y′′ − y = 0, y(0) = 1, y′(0) = 0

In this problem, n = 2 so that p1(t) = 0 and p0(t) = −1 so that

A =

[
0 −1
−1 0

]
Hence,

−
∫ t

0

Adt =

[
0 t
t 0

]
Now, one can easily see that for any nonnegative odd integer n we have[

−
∫ t

0

Adt

]n

=

[
0 tn

tn 0

]
and for nonnegative even integer n[

−
∫ t

0

Adt

]n

=

[
tn 0
0 tn

]
Thus,

e−
R t
0 Adt =

[ ∑∞
n=0

t2n

(2n)!

∑∞
n=0

t2n+1

(2n+1)!∑∞
n=0

t2n+1

(2n+1)!

∑∞
n=0

t2n

(2n)!

]
=

[
cosh t sinh t
sinh t cosh t

]
Thus,

x(t) =

[
cosh t sinh t
sinh t cosh t

] [
1
0

]
From this we obtain the unique solution y(t) = cosh t.

We conclude from the above discussion that a reasonable proof can be given
for the existence and uniqueness of solutions to nth order linear differen-
tial equations. The proof extends the integrating factor method to a first
order linear system representing the scalar differential equation. Does this
extension works for any first oder linear systems? We tackle this problem
next.
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5 Integrating Factor Method for First Order

Linear Systems

For simplicity of the discussion we limit ourselves to the case n = 2, that is
we consider the initial value problem

y′1 = a11y1 + a12y2

y′2 = a21y1 + a22y2

with initial conditions

y1(t0) = y0
1, y2(t0) = y0

2.

In matrix form we have

Y′(t) = A(t)Y, Y(t0) = Y0

where

A =

[
a11 a12

a21 a22

]
For the integrating factor method to work we need[

a11 a12

a21 a22

]
·

[ ∫ t

t0
a11ds

∫ t

t0
a12ds∫ t

t0
a21ds

∫ t

t0
a22ds

]
=

[ ∫ t

t0
a11ds

∫ t

t0
a12ds∫ t

t0
a21ds

∫ t

t0
a22ds

]
·
[

a11 a12

a21 a22

]
This leads to the system

a11

∫ t

t0
a11ds + a21

∫ t

t0
a12ds = a11

∫ t

t0
a11ds + a12

∫ t

t0
a21ds

a12

∫ t

t0
a11ds + a22

∫ t

t0
a12ds = a11

∫ t

t0
a12ds + a12

∫ t

t0
a22ds

a11

∫ t

t0
a21ds + a21

∫ t

t0
a22ds = a21

∫ t

t0
a11ds + a22

∫ t

t0
a21ds

a12

∫ t

t0
a21ds + a22

∫ t

t0
a22ds = a21

∫ t

t0
a12ds + a22

∫ t

t0
a22ds

The integrating factor is successful here provided that either a11, a12, a21, a22

are constants or a11 = a22 and a12 = a21.
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6 Concluding Remarks

As a conclusion of this presentation, we believe that a more recommended
textbook in differential equations is the one that covers both the detailed-
theoretical and drilling aspects of the subject at the sophomore level. The
theoretical aspect should be included and should be left to the discretion of
the reader to cover it or not.

” I prefer a theorizer for my children education rather than a problem solver.”
-C.G. Rota
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