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ABSTRACT: For instructional guidance of the learner’s personal mathematical

development, the most basic tool is perhaps the instructor’s selection of a point-by-

point flow of mathematical information that the learner is to encounter — herein
called the mathematics syllabus. Despite decades of recurrent “reforms”, core-

curricular (K-calculus) instruction in mathematics continues to rely on mathematics

syllabi whose instructional effectiveness is woefully inadequate. The primary cause

of such misjudgments has been the non-availability of a scientifically reliable

technology (1) that discloses that, how, and why the “normal” syllabi are so
ineffective, and (2) that also reveals how to achieve mathematics syllabi that are

maximally effective.

Accordingly, the science of syllabus methods is being developed as a foundation

for improving the instructional effectiveness of mathematics syllabi. Thereby,

science can provide invaluable guidance for future reforms of curricular instruction

in mathematics. The methods are adapted from the critical path methods that long

have been used in the managerial science of operations analysis. The
adaptation is made possible by the (constructivistic) state-transition theory of
psycho-mathematical development. The empirical aspect of the methods

consists of superposing clinical research and development activities onto an
ongoing program of clinical instructional services in mathematics.

[In accord with the conventions of axiomatic mathematics, this paper invokes many

phrases — including “learner” and “instructor” and “progression” and

“mathematical points” — in relatively abstract senses. Those notions can be applied

with alternative specific meanings, within various particular contexts, according to

the users’ respective needs and purposes.] .

INDIVIDUAL, MEAN, AND NATIONAL MATHEMATICS SYLLABI

The scientific methods pivot around a very specialized concept of “mathematics

syllabi” — which must not to be confused with other meanings of “syllabus”.

Throughout the practices of curricular education, various kinds of syllabi often are
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used for diverse purposes: a table of contents, a list of topics or of textbook

sections, a “scope and sequence chart” or even a good catalog description of a

course. Even of such global syllabi, critical examinations often shed some light on

how to improve effectiveness of the instructional guidance of learning. But for

purposes of discerning where and why multitudes of students have difficulty

with curricular mathematics — and of perceiving how to improve instructional
effectiveness — focus must be on the intricate details of precisely what

mathematical information the learner is to encounter, in what order.

For preliminary illustration, simplistically consider the case of an oriental immigrant

who will be newly learning the (geometric) capital letters of the English alphabet.

The minimal instructional intent thus targets 26 mathematical points for the

learner to encounter, ingest, digest, assimilate, and accommodate. It is conceivable

that the instructor-selected syllabus might begin by introducing any randomly

selected letter, and then randomly proceed to introduce any second one, and so on,

until all are learned. There are 26! progressions that introduce each of those letters.

To invoke mathematics syllabus methods would be to research the alternative

syllabi that cover the targeted mathematical points with regard for what
progressions might be optimal choices. It is conceivable that some of those paths

might be (geometrically) easier for the learner — as with O before C before G …
or K before R before P before B … or I before L and T ... or F before P, and E

before B. A “best choice” progression might be made strictly on the basis of the
instructor's own theory (or deliberations) about the geometric constructions of

those letters. Moreover, that choice might also be clinically scrutinized (e.g. if there
were to be a continuing flow of such learners).

The preceding considerations also might be expanded to include possible use of

some non-targeted ‘auxiliary’ mathematical points such as circle, arc, vertical, and
slant. Still other, potentially useful mathematical points might be of a less formal
nature — such as awareness that, for the letter, K, it is more reliable to start the

sloped lines on the vertical line, than to start them at their outer ends (its a statistical
theorem!). However, a learner with severe dyslexia might not be able to follow a

syllabus that the instructor had judged to be quite adequate.

That "ALPHABET" scenario roughly outlines what mathematics syllabus methods
are about. It also illustrates how this concept of a mathematics syllabus (as a

progression of mathematical points) invokes a highly technical meaning — one that
is substantially different from most commonplace meanings of “syllabus”. More

specifically, a mathematics syllabus is a progression of mathematical points
that are specific ingredients of a mathematic theory or of a mathematical process.

So, the methods are most concretely, effectively, and beneficially used point-wise
with a very specific mathematics syllabus — such as the one that a particular
instructor is currently using for a specific class-course over a specific mathematical

subject.
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The label suggests that the methods are for use with progressions of mathematical

points that are intended for a learner to internalize. But the same methods can be
used also on progressions that already have been presented to a learner — or are

encountered by a learner — or are actually acquired or assimilated by a learner —
or any combinations or variations of such occurrences. For example, the

mathematics syllabus that an instructor actually uses in an interactive setting
(especially a clinical setting) is best detected through post-facto review of a

videotape of the instructional proceedings.

It is even much easier to perceive and dissect a point-wise syllabus when it is
woven through a particular mathematics textbook. In a sense, text-embedded

syllabi also are more important, in that they normally are intended for use by a large
number of instructors, with an even much larger number of learners. For brevity,
our primary concern, herein, is with text-embedded mathematics syllabi.

Every mathematics textbook uses, as its mathematical skeleton, its own progression

of mathematical points — its own intrinsic mathematical syllabus. A first
approximation of that syllabus can be gleaned by critically examining the textbook’s

development, page by page, phrase by phrase, and word by word — to generate a
report on the point-by-point progression that is used in that text. Almost any

teacher capable of teaching from that book can generate at least gross reports of
that kind. Thereby, mathematics-syllabus methods can be used, even very roughly,

for selecting a “best choice” textbook, or for deciding how best to use or
supplement a pre-determined textbook.

However, such reports would vary in accuracy and in detail, depending on the

reporters’ respective expertise in mathematics, in psycho-mathematics, in the
semantics and grammar of formal mathematical rhetoric, in the philosophy of
mathematics, and in meta-mathematics. In fact, the mathematical points that occur

within a text-embedded mathematics syllabus often are invoked so subtly, tacitly or
obscurely, that those points are non-discernable even to most who teach from that

book — often being unrecognized even by the textbook's authors. So, the most
reliable identifications of the intrinsic mathematics syllabus would come

fromindividuals or teams having expertise in all of the fields cited, above.

Of course, the above method for examining a single textbook can be used also for
comparing and contrasting two or more textbooks on the same mathematical
subject. Similar methods can be used on a specified collection of particular syllabi,

for surmising the mean syllabus for that collection — and the nature of each

sample's deviation from that mean. Especially when comparing several textbook

syllabi, it becomes quite evident that a realistic and reliable “mean” syllabus must be
of the “best fit” kind — having minimal variance from the various samples in that

collection.

The extreme in that direction would be to discern such a (best fit) mean-syllabus for

a lengthy curriculum in mathematics — by compiling the syllabi from a very large
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selection of textbooks and comparable instructional media. A viable model of that

kind is the U.S.A.’s core-curriculum in mathematics — grade K through calculus,

including elements of probability, statistics, finite mathematics, and other material
that is required in popular college degree programs. The U.S.A. does not have a

nationally prescribed mathematics syllabus for its core-curriculum in mathematics.

But most American core-curriculum teachers of mathematics follow commercially

published textbooks — and in any one core-course, the nation's curricular
instruction is dominated by only a relatively small number of textbooks. So a

realistic portrait of the nation's de facto mean-syllabus can be estimated by

examining the prevailing textbooks.

In the above manner, even the national-mean mathematics syllabus for the

core-curriculum becomes subject to the use of syllabus methods, for purposes of

improving instructional effectiveness, nationwide. By improving national professional
knowledge about curricular mathematics syllabi, the methods can lead to elevation

of national standards for the instructional quality of prevailing textbooks. Of course,

identifying a mean-syllabus for such a global educational complex can be so costly

that it is justified only by its promise of yielding major, lasting, beneficial
improvements in the instructional effectiveness of the curricular program.

Any scientifically rigorous mode of so discerning the de facto national-mean

syllabus would require very powerful (and expensive) resources. But even very
gross estimates of the nation’s mean-syllabus (by highly qualified experts)

immediately disclose that the nation's mean-syllabus has many mathematical

flaws that seriously suppress the instructional effectiveness of the national
core-curriculum in mathematics. Such flaws, and the ease of mathematically

correcting those flaws, prompted a MALEI Institute initiative that is represented by

The Mathsense Library website at http://www.mathsense.org.

STATE-TRANSITION OF THE LEARNER

The scientific heart of syllabus methods is the psychological state-transition

theory of mathematical growth. Mathematical aspects of that theory are
perceived through various models. The simplest version is a topological model in

which a learner occurs within a domain (a set) of “learnable points”. (For

simplicity and generality, no particular properties are assigned to the “learnable

points” or “domain” until the topological model is applied for specific purposes.)

Within that domain, the learner is a point-set — one that continually (perhaps even

continuously) changes through combinations of expansions and contractions. More

precisely, the learner is a time-indexed family of point-sets, called
developmental states, which are contained within the learning-domain — with the

“growth” proviso that the closer the learner’s states are to each other, with regard

for time, the closer they are with regard for their learnable-point contents. The
state-changes over time thus constitute the learner’s state-transition. [Syllabi

describe what state-changes did, do, or are intended to occur.]

http://www.mathsense.org/
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Within a learning-domain, the learner’s state-transition looks much like how an

expanding layer of water or rocks can progressively cover a geographic surface,

when fed by an inflowing stream of water (the continuous-case) or of rocks (the
discrete-case). [Syllabus methods are used for managing the inflow of information.]

However, that same growth also can be viewed within the learning-domain’s

power set — which serves as the learning-lattice for that domain. Along that
lattice, the learner’s state-transition is seen to constitute an evolutionary path of

time-indexed (lattice) points. Evolutionary changes that are strictly expanding

over time are upward along that lattice, and changes that are strictly contracting
over time are downward. It is important to note that, within the learning-domain,

the state-transition appears as a progressive warping of a point-set — while on that

domain's learning-lattice, the same state-transition appears as a progressive

movement of a lattice-point. [Syllabus methods are concerned with how to “steer”
such movements, by managing the inflow of information.]

The learner's present progress-track is the time-ordered (so linearly ordered)

progression of instantaneous developmental states that were previously achieved —
a bit like the visible trail of an aircraft or watercraft. That past-progression

converges to, and includes, the learner's present developmental state. But from that

state onward, into its future, the learner's present potentials fan out (like the

headlight beam of a moving vessel) as the myriad of all viable state-transition paths
leading from the present state, into the future.

Along such a learner-evolution, any two of its states, together with all of the
learner's interim states, constitute the learner’s path of progress during that time-

interval. Each pair of distinct developmental states along a progress-path also

identifies a differential — the coupling of (1) the symmetric difference of the two

point-sets, and (2) the associated time-interval. Best seen on the lattice is that, by
fixing one instant of time (and the corresponding state), and attending all later times

as a variable, the associated convergent nest of (“right-side” or “forward looking”)

time-intervals defines a corresponding convergence of (the symmetric-difference)

point-sets. That convergence describes, for time-forward motion along the
progress-path, the learner’s instantaneous thrust (for continuous lattice-paths) or

incremental thrust (for the discrete case), at that (fixed) point in time — giving

such a (thrust) point-set for each instant of time. Over the full time-span, the
progress-path’s forward-differentials thus converge to its “outside” derivative —

as a time-entries function that gives, for each point in time, a point-set that

describes “what was learned next”.

Of course, the analogous construction yields an “inside derivative” of the

progress-path — representing “what was just learned”. The “two-sided”

derivative represents the current boundary along which changes in the evolving

point-set define the current state-transition. Along that boundary is where the
“Pacman™” learner progressively “eats” or “spits out” learnable points from the

domain. (Of course, all of the above warrants very precise formal mathematical



7/24/13 SYLLABUS METHODS: MATHEMATICAL INTEGRITY

file:///C:/~research/MAA website/old/news/okarproceedings/OKAR-2005/clgreeno-part2.html 6/12

exposition — but the purpose of this paper precludes such a formalistic digression.)

Thus, the progress-path’s derivative, too, is a time-indexed family of point-sets,
each contained in the underlying domain of learnable points. On the domain, the

derivative portrays how the “stages” of the learner’s boundary edge across the

terrain. But on the learning-lattice, the derivative appears (like discrete stepping

stones in a garden, or like a continuous walkway) as the “boundary-path” of
lattice-points (the boundary-sets) that the learner progressively acquires within the

learning domain — while the learner's state-transition concurrently progresses,

elsewhere along the learning lattice. [Syllabus methods focus on such boundary-
paths. When the state-transition's outside derivative consists only of single domain-

points, the boundary-path on the lattice consists only of single-point sets — and the

derivative/boundary-path (of lattice-points) is essentially synonymous with a point-

succession within the domain. The methods are applied to such point-progressions
within the domain.]

Every domain-point that occurs in at least one of the learner’s developmental states

occurs also in at least one “stage” of the progress-path’s derivative — as an
incoming boundary point, or an outgoing one (perhaps even as an “in-again, out-

again” point). In fact, the progress-path, itself, is the progressive accumulation of

such boundary changes. In effect, “from that (beginning) time forward” (or
backward), the learner’s evolution is the result of how it adsorbs, absorbs,

internalizes, retains, discards, etc., the progression of learning-domain “items” that it

encounters. Accordingly, from any developmental state that is selected as a

beginning state for a path of progress, the progress path (of the evolving state)
is the integral, over time, of its own derivative (also over time).

REALIZATIONS: ALEKS AND MACS

Except for the vocabulary, the proceeding topological model abstractly describes

the “evolution” of any “complex” whose instantaneous states can be characterized
as point-sets. So, any effort to apply that model within a particular context begs for

evidence that such application is realistic, perhaps even useful. The state-transition

theory’s applicability to the context of education in mathematics is demonstrated by

the two realizations aired below — the latter of which led to mathematics-

syllabus methods.

ALEKS: At present, the most visible practical application of the state-transition
theory is the widely used ALEKS System of internet-tutoring. Its learning-domain is

a battery of skills that commonly are curriculum-prescribed for students to achieve.

The learner’s current state of know-how consists of whatever of those skills the

learner already owns. The learner’s evolution along the learning-lattice is through

progressive acquisition of additional skills. Via the internet, computers are used for

assessing the learner’s present (such) state, and for providing performance-training

activities for learning additional skills.

That tutorial system clearly is intended for use with students who are expected, by

http://www.aleks.com/?ref=ad


7/24/13 SYLLABUS METHODS: MATHEMATICAL INTEGRITY

file:///C:/~research/MAA website/old/news/okarproceedings/OKAR-2005/clgreeno-part2.html 7/12

various curricula, to gain the know-how for performing those tasks. Within current
realities of curricular education, there is a growing market for improved

technologies for performance testing and for performance training. Were it not for

the marketability of some ALEKS-like practical service, scientific advancement of

the academic state-transition theory of learning probably would be very lethargic.

Fortunately for mankind, the financial viability of ALEKS is an important stimulus

for the associated scientific progress.

Underlying the ALEKS tutorial system is a corresponding particularization of the

above topological model. Doignon and Falmagne describe their mathematical

model in detail in their (1999) book, Knowledge Spaces — an elaborate extension

of their original paper (1985) by the same title. Their learning-domains are

hierarchies of “questions”, and their “states” are of know-how for producing

“correct answers”. Although their mathematical theory is the foundation for

ALEKS, it also has broad potentials for other applications.

MACS: A less visible realization of the topological model has been used, since

1978, as a theoretical backdrop for operations of The (MACS) Project for

Teaching and Learning Mathematics As Common Sense (to the learners,

themselves) — sponsored, since 1980, by the MALEI Mathematics Institute. The

MACS-use of the state-transition theory invokes the above topological model

within the psychological science of psycho-mathematics — i.e. of the

development of functional personal mathematical intelligence within the human mind.
The learning-domain is any mathematical arena of mathematical content and

mathematical power. The content “points” constitute any identifiable mathematical

theory within which the learner is growing. The power “points” are mental

processes that enable learner-growth within that theory. Each developmental state

includes a content-component within the mathematical theory, and also includes a

power-component of currently functional processes. In that sense, each is the

learner’s current state of functional mathematical intelligence within that
mathematical arena.

The MACS model comes from this author's (1963) document, The Physiology of

Mathematical Concept Development, composed at Illinois Institute of Technology,

as an unpublished graduate thesis. As an initial mathematical venture into the

psychology of theoristic learning of mathematics — more simply called

mathematical learning — it presented a partial topological description of how

mathematical intelligence grows, through use of mental “operators” that are well
known and routinely used by all professional mathematicians. Soon thereafter, that

description of mathematical growth was further developed into a lattice-theoretic

mathematical model of mathematical learning. Its preliminary description was

presented at a 1968 national conference on the psychology of mathematics

cognition, and soon after was published in The Journal of Structural Learning, as A

State-Transition Model for the Mathematical Study of Learning and Instruction.

In those days, the state-transition theory of theoristic learning of mathematics

http://www.mathsense.org/MALEI/MACS_Project.htm
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already was being used at IIT, for purposes of teacher education — both in a
formal seminar in mathematics curriculum, and within an experimental “mathematics

remediation clinic” conducted as a teacher-internship program. (That experiment is

described in Innovative Practices in Teacher Education, an ERIC-published report

of proceedings of the NCTM’s first national conference for mathematics teacher-

educators.) However, it still was a state-transition theory only of mathematical

learning. It did not yet extend to include a mathematical model of how

mathematics instruction works — i.e. of how instruction does, could, or
“should” guide development of the learner’s functional personal mathematical

intelligence. Nonetheless, that teacher-education experiment set the stage for

subsequent clinical development of the MACS model — and its use of syllabus

methods.

During the next decade, the state-transition model was used as a backdrop for

innovations in the areas of mathematics curriculum and program management —
which eventually revealed the essence of a mathematical state-transition theory

of learning-guidance, and how it could lead to the advent of a bona fide science

of mathematics instructology. That revelation led to the author’s 1978 creation

of the MALEI Mathematical-Learning Clinic, where the state-transition model still

serves as a learning-theoretic basis for clinical instruction — and serves also for

clinical R&D, including the model’s extension into a theory of learning-guidance.

Early findings were profound and compelled prompt creation (1980) of the MALEI

Mathematics Institute, for continued pursuits along those lines. Ever since, MALEI
has sponsored the MACS Project’s clinical use and development of its psycho-

mathematics version of the state-transition model of learning-guidance. Throughout,

syllabus methods have been used as one of the major tools — for clinical

instruction, as well as for R&D.

INSTRUCTIONAL GUIDANCE OF LEARNER TRANSITION

In the initial topological model, above, the learner's state-transition is viewed as

though it already were past history — which is why the learner's progress-path is

the integral of its own derivative. But instruction normally focuses more on the

future, than on the past. The learner’s track and present state are pre-established

— but branching out from the present state are numerous present-potential

progress-paths, and the learner will follow only one of those. The function of

instruction is to exert managerial influences for which of those future paths will be

realized.

In some cases, the instructor actually targets some mathematical points, with the

instructional intent that the learners encounter, adsorb, absorb, assimilate, and

accommodate, each point in the target set. Within the domain, where the learner's

present developmental state is a point-set, the instructional intent is for that state-

set to be progressively re-shaped so that it eventually will encompass the target-

set. That scenario looks much like any dynamic geographic map of growth or of
conquest.
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On that domain's learning-lattice, however, the target-set appears as a single

target-point — and there may be many other lattice-points that cover the target-

point. Each of those target-covering lattice-points is, in the domain, a point-set that

includes the target-set. So, achievement of any one of the target-covering lattice-

points suffices for achievement of the target-point on the lattice. Those target-

covering lattice-points constitute a (target-zone) sub-lattice. The instructional goal

is met if the learner enters that zone. In that context, the instructional intent is to

"shepherd" the learners so as to "herd" them into that target zone.

In effect, the instructor strives to navigate the learner's transition along the

lattice — so that its evolving progress-path eventually will reach the targeted

“harbor” zone. One means of doing so is reminiscent of “Pacman™” — wherein

the learner encounters a linear progression of mathematical points (within the

domain), and absorbs and assimilates those points, in that order. Thereby, within

the domain, the state-set progressively expands (hopefully to encompass the target-
set) — while the state-point climbs upward on the learning-lattice (hopefully into

the target zone). In navigational perspective, the point-progression within the

domain is an itinerary of points for the learner to acquire — and the point-

progression along the learning-lattice is a course for the learner's state-transition.

When such an itinerary is instructor-prescribed for purposes of (lattice) steering the

learner-transition into a target zone, that progression of mathematical points (in the

domain) is a mathematics syllabus. So, the instructor-prescription of a
mathematics syllabus (within the domain) tacitly prescribes also a flow of

mathematics growth of the learner, both as an expansion of a state-set within

the domain, and as a movement of a state-point along the learning-lattice. Typically,

a mathematics syllabus covers all points of an instructor's target-set — but also

typically, it also covers many auxiliary mathematics points. However, instructor-

prescribed or not, any such progression of mathematical points likewise defines a

possible progressive expansion of the state-set, and a corresponding movement of
the state-point along the learning lattice. So arises the syllabus problem of which

of those progressions is an “adequate;” or “optimal” or “best;” choice for a

syllabus.

In that context, instruction is seen to have three distinct functions. One is

instructional decision-making — about what progression of mathematical points

to use as a syllabus, and what actions are needed in order to implement that

syllabus. One is research/analysis — for purposes of attaining a reliable basis for
such decision-making. One is execution of those decisions. Those same functions

also are the three components of any managerial effort. The “head” makes the

decisions; the “executive arm” carries out the head's directions; and the “intelligence

arm” provides the head with the information it needs for making good decisions.

Instruction, then, is a specialized form of learning-management — and the science

of learning-guidance is an aspect of the managerial sciences.

Syllabus methods are research/analysis tools of the intelligence arm of (learning-

http://www.neave.com/games/pacman/
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management) instruction. Locally, mathematics-syllabus methods can be used by

the individual instructor, for improving personal intelligence about instruction in a

specific topic or subject. That is how The MACS Project's MALEI Mathematical

Learning Clinic has progressively developed the nation's most effective program of

clinical mathematics instruction. More globally, mathematics-syllabus methods can

be used by agencies or organizations, for improving national professional

intelligence about instruction in specific topics or subjects — which is a major

purpose of the MACS Project.

Regardless of who uses them for what purposes, mathematics-syllabus methods

always are used within some particular context of whatever dimensions of

instructional concern constitute the orientation of the particular syllabus-

research effort. Identifying those dimensions can greatly facilitate analysis of

whatever syllabi are being considered. It also can enable selection of criteria for

the acceptability of any syllabus. Of course, substantial differences in orientation
can call for widely differing criteria — and even for notable differences in what

syllabus methods are appropriate for use.

THE MATHEMATICAL INTEGRITY CRITERION

Perhaps the most stringent use of mathematics-syllabus methods occurs among

professionals in mathematical research. Their mathematical integrity criterion has

profound, though yet unrecognized implications for future reforms of the core
curriculum in mathematics. Among mathematical researchers, mathematical

comprehension of anything amounts to knowing a mathematical theory that

describes (or “models”) that thing — both through an axiomatic description of all

such things, and through the theoretic concepts and theorems that derive from that

axiomatic definition. Research mathematicians are professional learners — and they

learn partly by engaging in the creation or extension of mathematical theories which

they personally hold. In fact, the mathematical arts consist of the processes and
tools that are used in that kind of learning. Much of their research is done through

learning-processes that are loose, illogical, informal or subconscious. But the

intended end result is absolutely reliable knowledge — about anything that fits the

axiomatic definition.

Their use of syllabus methods is woven into the research effort. They rarely do such

research merely to entertain themselves. More often, they intend to provide

reports of their results to other learners — often to other mathematical researchers
who will be critically scrutinizing the reports. In the final stages of the process, the

reporting researcher so functions as an instructor — and his/her report

includes a progression of mathematical points for the learners to follow — the

mathematics syllabus for that report. The criterion of mathematical integrity

is applied to that syllabus. But the researcher's awareness that the integrity criterion

must ultimately be met has a permeating effect throughout the research effort.

To be professionally acceptable, the research findings must eventually be structured
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for mathematical integrity — i.e. in accord with currently accepted rational

standards for mathematical sensibility. Necessarily, the reporting researcher

presumes that the learner has a basis of a priori knowledge (and in that regard,

professional mathematicians routinely exercise demanding license of authorship).

But beyond that, each mathematical point that is newly appended to the evolving

mathematical theory is mathematically derived from within previous states of that

theory. Accordingly, mathematical learning is theoristic learning in which

mathematical points are newly learned by deriving them from previous states of the
evolving mathematical theory.

Moreover, the mathematical sensibility standards must be met also by the manner in

which the report is presented. The conveying rhetoric need only be effective. But

the mathematics syllabus of that report must meet the mathematical

sensibility criterion of mathematical integrity. The reporter's mathematics

syllabus is instructor-intended to guide the state-transition of the learner's own
mathematical theory until the latter, too, incorporates the research findings. In order

for that to happen, the syllabus must mathematically derive each of its newly

introduced syllabus-points, from within previous theory-states. In reality,

many researchers are relatively insensitive to their readers’ needs for comfortable

digestion of the material — as when asserting a "definition" before providing the

justifying existence theorem, or when asserting the theorems before presenting their

derivations. The nicer ones try to use syllabi that are developmentally continuous
— wherein the syllabus, itself, derives each of its newly injected theory-points, from

theory-states achieved prior to that injection. From the viewpoint of psycho-

mathematics, only a developmentally continuous mathematics syllabus fully qualifies

as being a bona fide mathematical syllabus — because it defines a learner-

progress path whose state-transition is through mathematical learning.

The curricular importance of the mathematical integrity criterion for mathematics

syllabi — and especially of developmental continuity — stems from the fundamental
psycho-mathematics principle on which the MACS Project is based. What

mathematicians know as "mathematical integrity" is but a highly refined version of

what laymen know as "common sense". The primary cause for student difficulties

with curricular mathematics is that the curricular mathematics syllabi often fail to

make common sense to the students, themselves — typically because the mean-

national syllabus is wrought with developmental discontinuities. For a

quarter-century, the MACS Project has consistently confirmed that mathematical
repairs of curricular syllabi — to make them mathematically sensible to the students

— is the most critically needed kind of reform for the core curriculum in

mathematics. That is why MALEI initiated The Mathsense Library website at

http://www.mathsense.org.
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