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 ABSTRACT: In the subject of vector algebra, the scalars traditionally constitute a field. But when it is allowed

that the scalars constitute merely a system of whole numbers, the so modified space yields a bona fide vector

theory of arithmetic calculations – suitable as one mathematical cornerstone for re-forming the (k-calculus)

core curriculum in mathematics. Its vector spaces are the familiar numerals-vocabularies – for wholes,
integers, fractions, rationals, reals, and complexes. The algebraic theory opens the way (1) for improving the

effectiveness of instruction in arithmetic, and (2) for giving all students a comfortable, but thorough grounding in

selected aspects of linear algebra, by the time they fully achieve basic literacy in arithmetic. That is because the

theory of whole-scalars vector spaces integrates all of the usual, but traditionally separated numerals-
vocabularies – while fully clarifying most (if not all) of the traditionally hazy or mathematically absurd arithmetic

notions within the core-curriculum – including “place values”, “borrowing”, “carrying”, “bring down”, “proper”,

and “reduced”, “ratios”, “proportions”, “imaginary”, and more.

[Part 1 of this survey, sketches the vector algebra of calculations up through the Arabic numerals. Its sequel, Part

2, extends that vector theory to cover the arithmetic of whole-scalars (vector) numerals for the other kinds of

number systems. For brevity, this two-part paper is written to professional mathematicians who already are well
versed in vector spaces. For other educators and students, more casual presentations of the same mathematical

theory are intended for publication in The Mathsense Library at http://www.mathsense.org.]

THE ARABIC CONSTRUCTION OF WHOLE-NUMBERS LINES

Development of the whole-scalars vector theory requires immediate access to systems of whole numbers – and

to their standard numerals-vocabulary, the (Euro-Hindu-) Arabic Numerals. For curricular purposes in early

childhood education, systems of whole numbers cannot be merely postulated – they must be constructed in the
most natural, simplest and most expedient way. So, the first step in developing the algebra of arithmetic is the

Arabic construction of the whole numbers.

 The Arabic numerals are finite strings of Euro-Arabic digits, 0-9 – with the simple Arabic numerals being

0 and all digit-strings that start with non-0 digits. (The non-simple ones use more than one digit and start with 0).

As a string, each Arabic numeral is pronounced, digit-by-digit, from left to right.

The family of all simple Arabic digit-strings is ordinally alphabetized by the following rule: (a) shorter strings are

before longer strings, and (b) same-length strings are alphabetically ordered. That kind of alphabetical ordering

is a linear ordering, and the resulting line is of the Peano kind. Every Peano line is discretely ordered, has a

minimum point, and has no maximum point. [That concept of a Peano line is a common-sensible equivalent to the

three classical versions of “finite mathematical induction”.]
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Every system of whole numbers uses a Peano line of points. Since all whole-numbers systems are isomorphic,

any one Peano line can be used as a representation for each of the others. The Arabic-numerals vocabulary is

the ten-digit case of an infinitude of ordinal-alphabetic vocabularies for systems of whole numbers –

constituting an infinitude of systems of whole numbers. Included, of course, are the familiar binary, octal,

duodecimal, and hexadecimal systems.

Alphabetics is a mathematical topic that properly belongs in the early-school mathematics curriculum – if only

as a context for comprehending the Arabic and decimal-point numerals. Moreover, the alphabetic constructions
of Peano lines reveal that the fundamental meaning of an Arabic numeral is simply its position as a line-point – a

meaning that in no way depends on the elusive curricular notion of “place values”. Actually, place-values

and polynomial expansions (as “expanded notations”) are relatively advanced vector-theoretic concepts. So,

PREMATURE encounters with those notions overly complicate the work of teaching or learning

arithmetic.

VECTOR DEFINITION OF WHOLE NUMBER OPERATIONS

Every Peano line can be upgraded, to become a system of whole numbers – by imposing two classes of

operations: “additions” and “multiplications”. In particular, the line of simple Arabic numerals thus becomes an

(Arabic) system of whole numbers – in which the whole-numbers are digit-strings. That happens as soon
as the learner achieves, and owns, appropriate definitions for those two numeric operations – which might be

long before he or she knows how to calculate the results of such combinations.

A vector-looking “slide rule” representation of the needed operations already is being used the schools – where
a length-n arrow is drawn upward from a number-line point, m, to specify the value of m+n, also as a line-point.

But that is not actually a construction of the whole-numbers addition functions – since it presumes a continuous
“number line” with continuous arrows. However, the usual geometric model for vectors – wherein, arrows are

vector-added to each other, or scalar-multiplied by numbers – can be adapted for use with Peano lines. That
yields a “measuring tape” definition of the operations – by counting spaces.

Along Peano lines, each non-empty interval is finite if it has both a lower endpoint and an upper endpoint. A

space for that line is an interval that has two distinct endpoints, but nothing in between them. The corresponding
Peano scale is the alternation of line-points (called the marks on that scale) and line-spaces (or “places” on that

scale ):   0,[0,1],1,[1,2],2,…

Along such a Peano scale, an arrow consists of a finite interval (of marks and spaces) that has two endmarks –
together with one of the two inverse directions: “upward” (or “plus”), and “downward” (or “minus”). Depending
on the arrow’s direction, one endmark is its notch and one is its tip. An arrow's length is the (cardinal/ordinal)

number of spaces that it comprises.

Those "space-counting" arrows yield the needed definitions for whole-number additions and multiplications.
Following the usual mode for developing geometric vectors, the arrows are organized into equivalence classes,

called vectors. Each (upward) plus-class has one original arrow whose notch is at 0, but also has an up-
arrow from every other mark. The usual “notch to tip” composition of arrows onto original arrows – to get

original arrows – constitutes a space-counting model for whole-number additions. The geometric vectors present
each whole-number multiplication as a repeated application of an addition.

Those (geometric) vector operations thus upgrade the Peano line of Arabic numerals into a line of whole
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numbers. In the process, that "Peano vectors" model also integrates the cardinal, ordinal, and arrow

developments of the whole-number translations. The values of the combinations can initially be got by using
measuring tapes and/or calculators – long before the learner has access to “the tables” or to Arabic arithmetic.

INVENTORY SPACES

Vector algebra is intuitively used by all young children (and by all adults) – albeit a very informal use of the most

primitive kind of vector algebra. The basic ingredient is the (whole amount) quantity – as with “2shoes” or
“4hearts”. Those are collected into inventories – as with {2shoes, 2boots, 1hat, 1coat} or {2S, 2B, 1H, 1C}

or even 2S+2B+1H+1C. Since such combinations can be vector-added, and multiplied by scalars, they
constitute a whole-scalar vector space. Despite their primitive nature, such spaces present many important

ingredients of the algebra of vectors (which covers a very substantial part of introductory algebra). They also
provide many vector elements that are basic to the arithmetic of numerals.

Inventory algebra begins as a “kindergarten algebra” that relies on naming and counting various kinds of things.

But the greater conceptual importance of the inventory theory is that it allows quantities whose denominations
do not have numeric values. 

Kinds: Any “thing” whose nature is of much mathematical interest can be abstractly described in terms of one or
more of its properties. A property is an abstract, in the sense that it speaks only about some aspect of an

object – and that property might be shared also by other objects.  A property thus identifies the collection of all
things to which it refers. Accordingly, a list of properties (all of which are shared by some things) defines

a kind of things – and the listed properties serve as the defining postulates for things of that kind.  Through
use of such postulational definitions, the objects of a universe of discourse become classified into various

kinds-of-things – imposing a taxonomic structure onto the semantics for that universe. All of that intuitively begins
to happen whenever a learner begins to a acquire names for things.

 Denominations: “ Nomen” means “name”, and a “denomination” is a name for things of a kind – as with

“cow”. (In contrast, a denominator is something that identifies what denomination is being considered – as might
“Bossie”.) In accord with convention, we reserve the term, “poly-nomial”, for multi-denomination combinations

that admit also to polynomial multiplication.

An inventory space normally invokes several denominations (kinds-of-things). Built into the meaning of
“inventory” is that those denominations must be independent of each other, in the sense that an object that is

covered by one of the so-used denominations is not also covered by another denomination.  Any initial selection
of independent denominations defines a whole-scalars vector space – by constituting its basis. The basis-
denominations also classify the objects of the discourse-universe into “equivalence classes”. Although each
inventory-denomination is “a variable” in that it refers to EACH object within its “domain” of things (rather than

to a particular example, thereof) – inventory denominations are not numeric variables, because their domains are

not sets of numbers.

Quantities:  A quantity is the "of" coupling of a number with a denominated kind-of-things, as with "3Cows"

meaning 3 of the cow things. The denomination bespeaks the kind of that quantity – and its numerical

coefficient is the amount or numerator of that quantity. The quantity, 3cows, illustrates why we are reluctant

to regard the coefficients as always being “multipliers” of the denominations.  For, “3 cows” speaks of the
cardinal class, 3, from the power-set of “cows” – which would be a rather remote meaning for “multiplying” the

cows-class, by 3. 
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Evaluations: Arithmetic is largely about operating with combinations of quantities in various denominations. The

inventory theory does not presume any numeric values for its denominations. But neither does it exclude the

possibility of assigning numeric values (e.g. “prices”) to things of various kinds. Any denomination-values are
assigned to each its constituents – resulting in numeric values for the quantities and for the inventories – just as

routinely is done in grocery stores and in introductory algebra. But when numeric values are assigned to the

denominations, vector equations naturally emerge. So, even the primitive inventory algebra can lead into some

algebraic operations with equations.

“Dependence” of basis vectors: To constitute a basis, the denominations must be independent of each other.

But arithmetic often requires that some basis-vectors are scalar multiples of other basis-vectors.  That need is

nicely met by partitioning the vector space into equivalence classes – wherein some basis vectors become
equivalent to combinations of other basis vectors. However, that kind of extension goes beyond the scope of

inventory theory. Instead, one nicety of the inventory theory is that its pursuit does not necessarily entail

equivalence classification of vectors – so allowing for the vector-algebraic operations to be learned within the
simplest possible context.

Vector descriptions: As a combination of quantities, a vector may be described in alternative forms – 

including the (non-ordered) quantity-set form for the vector, {4B, 5C, 3A} – and the (commutable) additive
form for the same vector 3A+4B+5C. The sequential forms – as with (3A, 4B, 5C) – tacitly assign a place to

each quantity. Although their permutations present the same combinations, they hint at the possibility also of

locking each denomination into one sequential place.

So arises a matrix format format for the vectors – which is nicely seen through the context of inventories.

Therein, it is common practice (e.g. in MSExcel) to post the (basis) denominations as headings for rows or

columns. In the resulting “inventory matrix”, each inventory appears only as a (non-permutable) string of whole-

number amounts, one coefficient (or “numerator”) for each of the specified denominations.  [Even within the
primitive context of whole-scalar inventories, vector operations with the rows of coefficients lead toward the

development of matrix algebra. But that would be a digression from developing the arithmetics of numerals.]

For reasons that stem from English rhetoric, curricular preference is for writing inventories as rows of coefficients

– under a basis-row of column-heading denominations. For reasons that stem from current financial practices,

preference is for expressing those tuples in box-strings of the kind often seen in daily life – [   |   |   |   ].

 Thus, relative to an [ A | B | C | D ] basis of column-heading denominations, the {2B, 3C, 4D} vector is matrix-

presented as the row,  [ 0 | 2 | 3 | 4 ].  In coordinate form, the same row-vector is (0,2,3,4). Either way, the

total matrix of all such number-strings also is a whole-scalar vector space – and the algebra of such spaces yields

an arithmetic of calculations.

Arithmetic of inventories: In matrix format, inventory-vectors are represented by number-strings. Those tuples

usually are not used as “numerals”, but in very specific cases, they are. Either way, the vector operations with the

rows of coefficients do constitute a rudimentary form of arithmetic – one that paves the way for the arithmetics of
numerals. Those row operations include: (1) place-wise scalar addition; (2) where possible, place-wise scalar

subtraction; (3) distributive multiplications of number-strings, by scalars (4) where possible, factor-division of

number-strings, by scalars; and always (5) remainder-division of number-strings, by scalars.

The conceptual importance of whole-scalar inventory arithmetic lies in the logic for processing the number-

strings – rather than in immediate mental fluency with calculations. The educational goal for very young children
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is fully met if they can perform those row operations, through some mode of counting or through assistance from

some kinds of calculators.

The axes: Within any vector space, a unit-vector has 1 in exactly one place, and 0 in all other places. Within

the inventory theory, their primary importance is that the family of all whole-multiples of a unit vector is an axis

or dimension of the space. On ancient Arabian counter-boards, the axes were parallel vertical grooves into

which calculi (i.e. stones) could be placed. Thereby, a whole-scalar inventory appeared as a vertical bar-graph.
Today, such Arabian calculator counting-boards can enable children to digest the inventory algebra of number-

strings.

Proportional inventories:  Among the subspaces of an inventory space are its proportions, each of whose
vectors are the ratios in that proportion. A reduced whole-scalar vector is one for which the GCF of its

coefficients is 1.  The set of all whole multiples of a reduced vector constitute a proportion (subspace) – for

instance, each of the spaces axes.

Every vector thus belongs to exactly one proportion – except that the 0-vector belongs to every proportion. But

the space’s vectors become ratios only when they are classified into that space’s proportions. That shift in

context is often indicated by expressing the vectors in “ratio mode” – as with 2B: 3C: 4D, or with [ 0 : 2 : 3 : 4 ].
As with any vector space, an inventory space's proportions constitute a starburst of “straight lines” that radiate

from the origin. Each non-proportion line in the space is a vector-offset of a proportion. [The essence of

coordinate “linearity” is proportionality – whence the descriptor, “linear combinations”.]

So, even the lowly, "early childhood" vector algebra of (multi-dimensional) inventories fully reveals that a

ratio is NOT merely a single-number quotient – and that a proportion is NOT merely an equation of

quotient-formulas.  [The curricular tradition of focusing on only 2−dimensional ratios long has led to

widespread confusion of binary ratios with quotients, fractions, and rationals.]

MEASUREMENT SPACES

While all kindergartners intuitively venture into inventory spaces, all primary students intuitively venture also into
the more advanced arena of measurement-algebra – well before they are mathematically ready to perceive the

common-sensibility of arithmetic calculations with Arabic numerals.  The vector algebra of measurements is

informally used throughout modern family life, and invokes such denominations as: nickels, cups, pounds,
minutes, (temp-)degrees, miles, watts, and now, bytes.

The conceptual importance of measurement algebra is that it is a natural extension of inventory algebra, in the

direction of Arabic arithmetic – so serving as an algebraic bridge between those arenas. Most of the conceptual
difficulties with Arabic arithmetic are with elements that are not intrinsic to inventory-algebra – but whose

common-sensibility becomes obvious within the algebra of measurements. However, that common-sensibility is

obscured by the slickness of traditional “shortcuts” of Arabic arithmetic.

As with inventories, measurement-denominations speak of kinds of things. But unlike with more rudimentary

inventory spaces, measurement-spaces are partitioned into equivalence classes – and that difference is the

algebraic bridge from inventory-arithmetic, to Arabic arithmetic.

Consider a set of “rainbow” poker chips in 7 colors – RΩY G BIV.  (The “colored chips” concretely provide an

abstract model that can be adjusted to fit almost any commonplace system of measurement.) In that context,
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every inventory of chips is a 7-dimensional rainbow-vector – a combination of 7 quantities, one amount in each

color.  That rainbow-inventory space can be converted into measurement spaces of numerous kinds. For

brevity, we consider only the simplest kind.

Now, suppose that “a sandbox-containers game” uses fluid measurement containers: gal., qt., pt., c., oz. tbs.,

tsp. – represented on the tabletop by the RΩY G BIV game chips, and also by number-rows. From the sandbox

come the quantity-conversion equations, as follows:  1R=4Ω;  1Ω =2Y;  1Y=2G;  1G=8B;  1B=2I;  1I=3V.
Those equations align the RΩY G BIV rainbow denominations, by establishing the adjacent pairs in that line –

with R as the “highest” denomination and V as the “lowest”.  Each of those adjacency equations also presents

a whole-number conversion factor for the lower denomination in that equation. 

The adjacency equations also imply conversion equations/factors between every pair of unit vectors.  In

particular, each of the rainbow units equates with a corresponding V(iolet) quantity. That comes very close

to assigning numerical values to each denomination. The difference is that those V-quantities are not numbers.
However, assigning a numeric value to the V-unit (e.g. 5 per tsp.) would immediately yield a value for each of the

vectors.

Moreover, the adjacency equations also imply equations among some “rainbow” quantities – as with 6pints =
3quarts (the lower coefficient, for the higher denomination). As a result, those equations also distinguish between

reducible quantities and irreducible quantities – the 6pints quantity is reducible to the 3quarts quantity, but in

the specified rainbow system, the 3quarts cannot be reduced to another single quantity. Notable here is that

reducing a quantity converts it to an equivalent quantity that has a smaller numerator. That criterion for
“reducing” generalizes for use throughout the arithmetic of numerals.

Vector Conversion Classes: We here persist with the simplistic “sand-measurement” space of rainbow
vectors. Because every quantity is equivalent to one and only one V-quantity, every rainbow-vector also is

equivalent to one and only one V-vector – corresponding to one V-quantity.  That V(iolet)-quantity is the

magnitude of that rainbow vector – relative to the basis for that space. 

It means that the preceding adjacency equations partition the inventory-space of rainbow vectors into

equivalence (or equi-magnitude) classes. Two rainbow vectors are equivalent iff both have the same magnitude. 
Within each class, each vector can be “converted” to any equivalent vector – whence the label, "conversion

classes"

Since there is only one Violet‑vector in each class, the ("violet") Peano line of V‑quantities induces a Peano

alignment also of the equivalence classes.  Because that line of measurement classes (of rainbow vectors) is

Peano-ordered, it could be made into a line of whole numbers – if the needed “arrow addition” and

“multiplication” were imposed.  The vector additions among the rainbow-vectors naturally abstracts into

additions among the measurement-classes. But no such abstraction yields also a “multiplication” among the
measurement-classes. So it is not always useful to regard the measurement classes as being “numbers”.

 “Making” and “Breaking” quantities: The quantity-conversion equations also lead to two special kinds of

conversions that are essential for executing the arithmetics of measurements and of numerals, “properly”. In

whole-scalar measurement spaces, a proper quantity is one whose numerator is less than its conversion factor

(to the next higher denomination).  All other quantities are improper.  It is notable that every proper rainbow

quantity is reduced, but not conversely – e.g. 3quarts is proper and reduced; 7pints is reduced, but improper.
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A proper vector is one in which each of its quantities is proper. Every other rainbow vector is improper – and
at least one of its quantities is improper. Each measurement class contains exactly one proper vector. It is the

reduced vector in that class, in the sense that the sum of its coefficients is the lowest such sum from that class.

The reduction of an improper vector to its proper equivalent may be done through repeatedly applying, to its

quantities, remainder-division by their respective conversion factors – as with 7pints = 2·3pints + 1pint.  →

3qt.+ 1pt.  – thereby making quantities of higher denominations. In reference to “stone age” calculator-boards,

educators classically called such quantity-conversions carrying.  In the “reformed” curricular vernacular, that
concept has been lost within a more inclusive (and  even more elusive) formalistic notion of “regrouping”.  

Inverse to the making of quantities is breaking quantities – as with 7pints →  6pt + 2c. →  5pt. + 4c., etc. Also

in reference to “stone age calculators”, educators classically called such conversions borrowing.  In the

contemporary scholastic vernacular, that concept, too, has been buried under the formalistic "regrouping".

The corresponding conversion of vectors by “un-reduction” is used for “expanding” measurement-vectors by

breaking some of their quantities. Judicious vector-conversion by quantity-breaking is what makes it possible to
perform vector subtractions and remainder-division by scalars, “properly”.

The Proper Arithmetic of Measurements: The “proper” arithmetic of measurements can be attended even

while the vectors are represented by quantity-set or additive-forms. [That often is an appropriate medium for

beginners.] But the matrix format of number-string row-vectors is where the “proper” arithmetic of

measurements best foretells the proper arithmetic of the Arabic numerals. (The conversion factors may be posted

between adjacent headings.)

The arithmetic of measurements is done, “properly”, by starting and ending with proper vectors. But the vector-

addition of proper measurements often yields an improper vector, which can be carried into a proper one. Scalar

multiplication of proper measurements often proceeds, likewise. When subtraction of proper measurements is

even possible, it often requires borrowing the minuend vector, into an improper one that admits to vector

subtraction. Likewise, scalar division of a proper measurement often requires borrowing of the dividend.

THE ARABIC AND ILLION DENOMINATIONS

The vector-algebraic bridge from (grade 1) inventory spaces, over (grade 2) measurement spaces, to the (grade

3) arithmetic of Arabic numerals is completed when initial intervals of Arabic numerals are recognized as being

row-vectors in the matrix format of a decimal-measurement space – subject to all of the vector-conversions

and operations that apply throughout measurement spaces, in general. For instance, set the RΩY G BIV

measurement space so that all adjacency conversion factors are ten. Such measurement spaces include some

“metric” systems, and also several decimal systems of coins or currency. The rainbow game-chips can so serve

as decimal play-money – occurring in both (decimally) proper and improper combinations.

For every whole-scalars decimal-measurements system, the matrix format's proper row vectors are strings of

Arabic digits – if the space is infinite dimensional. In the finite dimensional cases, only Arabic digits occur in all

places except the highest place – and sometimes there, as well. That might seem to suggest that the natural place

for the first recognition of Arabic numerals as vectors would be within the matrix format for decimal-

measurements spaces. But the vector-structure of Arabic numerals actually is seen in kindergarten, if not before.

Almost as soon as children begin to pronounce Arabic numerals, they are instructionally led to depart from the
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phonics of a digit-by-digit reading of the digit strings, in favor of pronouncing Arabic denominations. In
English, the string, “3945”, is properly pronounced, “3 thousand, 9 hundred, 4T, 5” – which might be written as

3M+9C+4X+5I or as 3K+9H+4T+5S..  In effect, the phonics analyze that digit-string Arabic numeral into a

combination of four quantities – whose coefficients are digits (3, 9, 4, and 5), and whose respective

denominations mostly are spoken.  The very young normally learn to speak in Arabic vectors long before they

seriously tackle Arabic arithmetic. Unfortunately, the English phonics for the first ten-thousand whole numbers

are not totally vector-structured: the Saxon "elev's" and "teens" induce unfortunate wrinkles into the English

phonics vector space. Phonic-vectors are used also for much larger whole-numbers. The English phonics for
123,456,789,876,543 uses a base-thousand formal vocabulary with one-thousand digits –

123T,456B,789M,876t,543. The phonic “illions” vectors use the spoken denominations, “thousand”, “million”,

“billion”, etc.; and the one-thousand coefficients are spoken in Arabic phonics.

Within the context of measurements, the phonics for the first four Arabic denominations speak about kinds-of-

things – NOT about the numbers. It means that development of the algebra of “Arabic phonics” can be

integrated first into the (grade-1) algebra of inventories, and then into the (grade-2) algebra of measurements –
even into the measurement-arithmetic of number-strings, including the make/break conversions. That includes

using Arabic denominations even with improper decimal vectors.

ALGEBRA OF ARABIC ARITHMETIC

The Arabic vector space is the infinite-dimensional decimal-matrix of numerical row-vectors (improper and

proper – organized into decimal conversion classes). Therein, the (proper) Arabic numerals constitute an infinite-

dimensional decimal abacus that has nine “beads” at each place. The rest of the Arabic counting-board consists
of improper base-ten numerals, each of which at least one coefficient that is higher than 9.

The logic of Arabic arithmetic is largely the logic of the Arabic vector space –including conversions between

proper decimal forms (the Arabic numerals) and their improper equivalents. Of course, proper additions and

proper multiplications by numbers usually entail vector reduction (carrying). Proper subtraction often

requires expanding proper minuends to improper ones. Proper division by scalars normally requires converting

proper dividends to improper ones. [“Long” division is division of an Arabic vector by a whole-number scalar –

and “bring down” is borrowing. In the classical format, the improper, divisible vector occurs along the diagonal
of digit-multiples of the divisor.]

Missing from the basic vector theory, however, is the “long” multiplication of vectors by vectors – an operation

that, in many kinds of inventory and measurement spaces, is senseless – but one that is an essential ingredient in

the arithmetics of alphabetic-numerals vocabularies. So extending a vector space is normally done by defining a

multiplication among the unit-vectors – from which follows a multiplication among the axial vectors – which then

allows for a cross-distributive multiplication among the vectors. A special case is the place-shift polynomial
multiplication among unit-vectors. Within the alphabetic- numerals vocabularies, the polynomial multiplication

inherits from scalar multiplication by the base-number – the number of digits in the alphabet. Proper Arabic

multiplication is the polynomial multiplication of Arabic numerals, with reduction (carrying) to proper vector-

products.
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