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H
ow can a computer program developer
ensure that a program actually 
implements its intended purpose? This
article describes a method for checking
the correctness of certain types of com-

puter programs. The method is used commercially
in the development of programs implemented as
integrated circuits and is applicable to the devel-
opment of “control-intensive” software programs
as well. “Divide-and-conquer” techniques central 
to this method apply to a broad range of program 
verification methodologies.

Classical methods for testing and quality control
no longer are sufficient to protect us from commu-
nication network collapses, fatalities from medical
machinery malfunction, rocket guidance failure, or
a half-billion dollar commercial loss due to incor-
rect arithmetic in a popular integrated circuit. These
sensational examples are only the headline cases.
Behind them are multitudes of mundane programs
whose failures merely infuriate their users and cause
increased costs to their producers.

A source of such problems is the growth in 
program complexity. The more a program controls,
the more types of interactions it supports. For 
example, the telephone “call-forwarding” service
(forwarding incoming calls to a customer-designated
number) interacts with the “billing” program that
must determine whether the forwarding number or
the calling number gets charged for the additional
connection to the customer-designated number. At
the same time, call-forwarding interacts with the
“connection” program that deals with the issue of

what to do in case the called number is busy, but
the ultimate forward destination is free. One prop-
erty to check is that a call is billed to the customer
if and only if the connection is completed. If the call
connection and billing programs interact incorrectly,
a called number that was busy and then became 
free could appear busy to one program and free 
to the other, resulting in an unbilled service or 
an unwarranted charge, depending upon their 
order of execution.

If a program includes n interrelated control func-
tions with more than one state, the resulting pro-
gram may need to support 2n distinct combinations
of interactions, any of which may harbor a potential
unexpected peculiarity. When n is very small, the
developer can visualize all the combinations and
deal with them individually. Since the size of a pro-
gram tends to be proportional to the number of
functions it includes (one program block per func-
tion), the number of program interactions as a 
function of program size may grow exponentially.
As a result, the developer can use only a very small
proportion of the possible program interactions to
guide the development and testing of the program.
When some unconsidered combination produces
an eccentric behavior, the result may be a “bug”.

While a computer could be programmed to
check a program under development for eccentric
behavior by searching exhaustively through all
combinations of program interactions, the
exponential growth could soon cause the com-
puter to exceed available time or memory. On ac-
count of the potential for interactions, adding a few
functions to a program can substantially alter its
testability and thus viability. From the program de-
veloper’s perspective, this is unsatisfactory. If the
program is developed carefully, however, the cor-
rect behavior of each of the n individual control
functions of the program can be checked in a way
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such that the complexity of the checks grows more
or less proportionally to the size of the program.

Overview
This article presents some key ideas of “program
verification”. It focuses on the “reduction and 
decomposition” process, which addresses the prob-
lem of how to verify a program automatically in a
way that the computational complexity scales
tractably with increasing program size. It does not
attempt to survey the field. A survey of automa-
ton-based verification is included in [9]; for a sur-
vey of logic-based verification, see [4], [7].
Reduction and Decomposition
Reduction and decomposition circumvent the ex-
ponential cost of checking correctness. Checking
each control function separately, reduction refers
to an algorithm1 through which the program to 
be checked is replaced, relative to the respective
control function, with a simpler program that it 
is sufficient to check. For example, to check the 
operation of call-forwarding, the part of the pro-
gram that performs billing may be largely ignored,
except to the extent that it may interfere with 
call-forwarding. The reduced program is checked
through an algorithm that analyzes every possible
program state. In order for a computer to imple-
ment this effectively, the reduced program must
be sufficiently simple.

Decomposition refers to checking that a given
control function is correctly implemented by 
splitting the function into several simpler-to-check
“subfunctions”. Taken together, the subfunctions
implement the original function. A subfunction is
simpler to check if it gives rise to a simpler re-
duction than the original function. Decomposition
and reduction thus are used together as divide-and-
conquer techniques. As an example, call-forward-
ing may be decomposed into its “setup”, where the
customer designates the new destination for in-
coming calls, and “execution”, where an incoming
call gets forwarded to the designated destination.
In verifying setup, the reduced program can, in 
addition, ignore most of the parts of the original
program that perform the execution subfunction.
Likewise in the verification of the execution sub-
function, most parts of the program that deal with
setup can be ignored. A computer program can
check that these subfunctions collectively imple-
ment the original function. In general, it is a man-
ual step to decide how to decompose a function.
Conventional Testing vs. Program Verification
Suppose one wanted to check the C program in 
Figure 1, whose stated purpose is to read a non-

negative binary integer from standard input and
convert it to a decimal integer printed to standard
output. For example, entering “11001” followed by
a carriage return should produce “25”.

#include <stdio.h>
main()
{

unsigned x=0;
int input;
while((input=getchar())!=EOF) {
if(input==’0’)x=x*2;
else if (input==’1’)x=x*2+1;
else if (input==’\n’) {
printf(“%u\n”,x);
x=0;

}
}

}

Figure 1. A program for converting binary to
decimal.

Program verification could demonstrate that
this program fails to fulfill its stated purpose.
Readers who are C programmers are invited to
stop reading this article now and find the bug in
this trivial program.

In fact, the bug is nowhere to be found in the text
of the program. Computers commonly truncate
“integer” variables to 32 bits (in binary represen-
tation), thus performing integer arithmetic modulo
232. In the application of program verification, this
truncation would be inferred from knowledge of
the type of computer on which the program is run.
The catastrophic failure of the European Space
Agency’s Ariane 5 Flight 501 has been traced to a
numerical overflow like the one in this example.

To check the program completely for the stated
purpose, one would need to confirm that it is ful-
filled at every program state. If the program is tested
for billions of “typical” inputs, all of which happen
to have fewer than 32 bits, the bug would be missed.

The program above is utterly trivial, giving no
inkling of the complexities to be found in routine
programs, which could be hundreds of pages long.
Nonetheless, if one tried to test this program for
the stated purpose by executing the program from
the keyboard, entering the binary integers con-
secutively, it would take about one hundred years
to hit the bug. This time could be reduced to a cou-
ple of hours by writing an automated tester. For a
program not so trivial, even an automated tester
would be unable in any lifetime to execute the
program under test to reach all its states. The au-
tomated tester would need to make “educated
guesses” at input sequences likely to uncover er-
rors. Since programming errors tend to be unin-
tentional, they can hide in hard-to-guess corners
of a program.

1An algorithm is a precisely specified succession of steps
to obtain a desired result, such as Euclid’s gcd algorithm.
In this article the term refers to a procedure that gener-
ally is an automatic step in the verification process (a step
implemented by a computer program).
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Tailoring a tester to the program under test is a
nontrivial programming burden that adds signifi-
cantly to the cost of program development and de-
lays the onset of testing. This task can be simplified
by generating inputs randomly. While easier (and
faster) to set up, random testing often is nearly
worthless. For the example above, if input strings
of 0’s, 1’s, and carriage returns were randomly gen-
erated with respective probabilities .25, .25, and .5
(biased in favor of “typical” shorter input strings), the
expected time to hit the bug would be more than
the time required to execute the program for each
successive input string with value increasing from
0 to 232. For less trivial programs the probability of
hitting a bug in a reasonable amount of time with
randomly generated inputs may be close to 0. For
each less trivial program to be tested, the “prob-
lematic” regions of its state space must somehow be
predicted, and a “test bench” must be built to guide
the tests to these regions and capture errors.

By contrast, a program verification algorithm can
find this bug in a few seconds on a modern com-
puter. No problematic regions need be predicted,
and no test bench need be built. Instead, it is nec-
essary only to give a precise definition of what is
to be checked. For the example program, this can
also be done in a few seconds using a user-
interface aid like the one pictured in Figure 2 to
specify the property that the decimal output always
is equal to the binary input. To express this prop-
erty, a user of the Figure 2 aid first sets the Type

to Always, causing the qualifier of the Fulfilling
Condition to change from Eventually (as shown) to
Always, and then the user enters the Fulfilling
Condition that expresses in program variables the
condition decimal (inputbits) = output (leaving
the other two fields blank). The user interface aid
will automatically generate an “automaton” that de-
fines this property. This automaton is described
below. (Hardware verification tools such as [11] op-
erate on hardware description languages instead
of C code, but the principle is the same.)

If the purpose of the example program is mod-
ified, requiring that it work only for input strings
of length 32 or less, then the program can be ver-
ified to be correct through an algorithmic check,
described below, that takes a few seconds as well.

Conventional testing with either selectively 
generated input scenarios or random inputs can 
determine what happens only in selected cases. 
Especially in case of the presence of unknown bugs,
a program’s state space may not conform to expec-
tations. A definitive test would need to include every
possible input sequence. Since general input 
sequences are unbounded, there are an infinite num-
ber of sequences that should be tested. Executing
the program for an infinite number of input 
sequences is not possible, so testing such a program
by executing it is intrinsically incomplete.
Formal Verification
Program verification is also called “formal verifi-
cation” to contrast it with conventional testing,

Figure 2. In the commercial model-checking tool FormalCheck [11], required program operation is specified in
terms of an enabling condition that determines the onset of a requirement specified by a fulfilling condition that

must hold unless released by a discharging condition, ad infinitum. Each such specification is represented
internally by an ω-automaton. Any property expressible with an ω-automaton can be expressed by a collection

(logical conjunction) of such specifications.
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which lacks a precise description of what was
tested. Formal verification begins with a formal
statement of some high-level purpose of the pro-
gram and determines whether that purpose is sup-
ported in every possible execution of the program.
This is accomplished by analyzing the logic of the
program, not by executing it. Since formal verifi-
cation can account for every possible program ex-
ecution, it is more reliable than conventional test-
ing. There are numerous accounts of bugs that
could have caused significant commercial dam-
age had they remained but that were found quickly
with formal verification after having been missed
by conventional testing.

As a program’s purpose evolves, the influence of
one part on another grows, so correcting defects 
becomes increasingly costly. A common observa-
tion is that the cost of fixing a bug doubles with each
successive stage of development. Finding and 
correcting program errors early in the design cycle
thus can decrease development time and cost 
significantly. Conventional testing requires the 
creation of program-specific test benches, so it tends
to be deferred until late in the program develop-
ment cycle, when the program development has 
stabilized. By contrast, formal verification algo-
rithms are independent of the program to be verified.
Therefore, formal verification can be applied early
in the program development cycle.

Within the last ten years research in formal ver-
ification has found its way to commercial products
that implement program verification algorithms. For
the present these products are specialized mainly
for industries that manufacture integrated circuits.
However, the program verification methodologies
described here can be applied to significant por-
tions of general software development, and this is
the direction of the industry.
Verification Methodologies
Formal verification refers not just to a single
methodology but to a spectrum of methodologies.
In this spectrum there is a tradeoff between 
expressiveness—what program properties can be
described and analyzed—and degree of automa-
tion—the extent to which the verification can be
automated with an efficient algorithm.

The most expressive form of formal verification
could be said to be mathematical argument. However,
the reliability of mathematical argument is based
upon peer review [5]. It is unlikely that too many
peers could be mustered to check a 100-page proof
of the correctness of an integrated circuit. More-
over, it is unlikely that the circuit manufacturer
would be willing to wait for the years it might take
to produce such a proof in the first place.

This latter problem is shared by automated 
theorem-proving [2]. The dream of writing a com-
puter program capable of automatically proving
marvelous theorems never was completely realized.
Instead, the “automatic theorem provers” are in fact

proof checkers. While often quite sophisticated,
powerful, and useful, automatic theorem provers
mainly require the user to come up with the proof,
which must be entered into the “theorem-proving”
program using the special notation accepted by the
program. Theorem provers thus do not at present
support a methodology that can keep up broadly
with a commercial development cycle.

This disappointment led researchers to investi-
gate the other end of the spectrum: methodologies
that sacrifice expressiveness in favor of automa-
tion. Among the first to discuss this strategy were
E. M. Clarke and E. A. Emerson, who, in 1980, pro-
posed a limited but completely algorithmic form of
verification they called “model checking” [3]. Their
mode of verification was founded in a logic that sup-
ported a very simple model-satisfaction check.
Around the same time and independently, J.-P.
Quielle and J. Sifakis made a similar proposal.

In 1982, ignorant of the above work, I proposed
a verification method based on automata. Eventually
(ten years later!) the method was implemented in
a commercial tool (Figure 2) that is marketed to 
manufacturers of integrated circuits. Since for the
moment at least this is the dominant commercial
model-checking tool, I will exercise a certain 
prerogative and restrict my discussion of 
model-checking to automata. There is no loss of 
generality in using automata, as logic-based model
checking can be reduced to automaton-based model
checking (and vice versa).

Models
There is a substantial literature reporting the im-
pressive benefits of formally verifying systems for
everything from communication to safety-critical
devices. It may come as a surprise then (cf. [1]) that
there is no mathematical sense in which these can
be verified. The thinking is that the mathematical
model of a computer system can be the exact and en-
tire computer program itself. That is, the 
computer’s programming language may be given a
formal semantics,2 and one may then reason 
formally about the actual program. So it may seem
that if the formal model is the entire system pro-
gram, then any formal proof about the behavior of
the model must be a proof about the actual system,
since they are one and the same.

2A computer programming language has the formal at-
tributes of “syntax” and “semantics”. Syntax is a set of rules,
such as those checked by a program compiler, governing
when a string of characters defines a “well-formed” ex-
pression. Semantics is a map of syntax to a well-understood
mathematical model, such as an automaton, which gives
meaning to a computer program. The semantics masks
both “uninteresting” variations in syntax and “irrelevant”
details of the computer program execution, such as tran-
sient states ignored by the computer operating system.
Program semantics gives a basis to determine whether two
computer programs are “essentially” equivalent.
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The fallacy is that a computer program by itself
embodies no physical behavior. Physical behavior
is manifest when the program is entered into a
computer and executed. The observable physical
behavior thus is not of the computer program but
of the computer. The computer’s behavior is related
to its hardware, to whether the computer is plugged
in and operated properly, and to the nature of
other programs, such as the compiler. Conceptually
(but definitely not realistically), mathematical mod-
els of all these could be taken into account too.
Physical models of even wires and transistors are
imperfect predictors, however, depending on un-
certainties like model inaccuracies, manufacture
process, and defects. The important point here is
that there is no absolute value in formally verify-
ing a program, such as a guarantee that its execu-
tion on a physical computer will behave correctly.

Moreover, an insurmountable deficiency of 
formal verification and conventional testing alike
is the inability to know that the operational defini-
tion of “behave correctly” is “correct”. My computer
has two implementations of the Unix “word count”
utility wc(1). They disagree on whether a final string
terminated without white space or a newline counts
as a word. In the fall of 1999 another incompatibil-
ity in software minutiae led to the destruction of
NASA’s Mars Climate Orbiter. Even had the derelict
NASA software been formally verified module by
module, the mismatch in measurement units 
between modules could have gone unnoticed un-
less the entire system had been verified as a single
entity. To do this may have been impossible within
the time available. If the navigation table, erroneously
expressed in English units rather than metric units,
was preexisting or otherwise deemed “external” to
the verification process—and one must draw the
boundary somewhere—then the mismatch in any
case could have been overlooked.

While all this uncertainty may seem to cast a cloud
over the entire enterprise of program verification, the
uncertainty should be taken in perspective. There 
can be no absolute guarantee that a program will
behave correctly, even in principle. As long as a ver-
ification process improves the reliability of pro-
grams or shortens the program design cycle more
than other methods, it is worthwhile. Model check-
ing turns out, above all, to be an uncommonly ef-
fective debugging tool.

To apply a program verification algorithm to the
C program in Figure 1, the first step is to translate
the C program to a simple representation with a
clear semantics, like automata described below,
on which the verification algorithm has been 
designed to operate. Commercial model checkers
use a general automated translator to do this for
“suitable” programs. Not all C programs are
amenable to algorithmic verification. The C 
language supports unbounded constructs like char-
acter pointers that can be incremented to point to

an unspecified range of memory locations. Each 
location in effect defines (an unnamed) program
variable, and the possible extent of this is deter-
mined by the memory configuration of the partic-
ular computer on which the program is run.

The synergy between programs that define in-
tegrated circuits and program verification derives
in part from the fact that programming restrictions
sufficient to derive an automaton model from a
program—a finite number of states, and a well-
defined state-transition structure—are necessary
to generate an integrated circuit automatically
from a program. Unlike most C programmers, 
circuit designers thus intrinsically write programs
that also can be verified. Nonetheless, many por-
tions of C programs like the example in Figure 1
are finite-state and thus can be translated auto-
matically to an automaton model. An infinite-state
C program that implements a “control” function
like call-forwarding typically has core components
that can be formally abstracted to a finite-state 
program. It is an open problem of software 
engineering to identify such translatable portions
automatically.

For translatable programs the translation process
is fraught with pitfalls. A given input program may
compute different results on different computers.
For example, incrementing an integer variable on a
computer with a 32-bit or a 64-bit architecture is
implicitly modulo 232 or 264 respectively. There are
myriad unpublished conventions concerning the
transparency to the user of transient program states,
and yet there is no universal convention concern-
ing what constitutes a stable program state. All such
issues must be covered by the translator.
Program State
In the von Neumann stored program model,
“instructions” update “data” stored in “memory
registers” in a sequential fashion. “Program 
variables” designate memory locations and their 
data contents and also define via “assignment
expressions” the rules by which the data stored 
in the variables get modified.

The program state is the vector of simultaneous
values of all program variables. It captures the 
entire instantaneous condition of the program, in-
dependent of its history. A program’s behavior is
captured by its succession of states. However, the
computer or integrated circuit that implements the
program makes it effectively impossible (on pur-
pose)—or renders it unnecessary—to discern the
precise sequential evolution of certain “transient”
states. The program model should reflect this and
moreover can exploit it to reduce the computational
complexity of verification. For example, for vari-
ables x, y, and z, suppose x is assigned to take the
value of y+1 after y is assigned to take the value of
z+1. An analysis of the program may reveal that with
regard to its implementation, x effectively is or can
be treated as a “macro” or synonym for y+1 and
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likewise y for z+1, simplifying the two successive
assignments to a simultaneous assignment of the
value of z+1 to y and of z+2 to x.

Deciding which assignments are to be modeled
as simultaneous must be done with great care in
order to preserve the semantics of the implemented
program. Commercial model checkers perform
this task algorithmically. In the program model 
a sequential variable is one that attains its value 
after (rather than simultaneously with) the 
value attained by its assignment expression.
Typically, if a variable x is assigned the value of an
expression that depends on x—for example, if x is
assigned the value of x+1—then x would be 
designated a sequential variable. The new value of
x would then be modeled as succeeding the prior
value of x.

Limiting the number of sequential variables in a
program is very important for the performance of
an integrated circuit and for the performance of
model checking too. There is a multibillion-
dollar industry for “synthesis” tools that help create
an integrated circuit layout automatically from its
defining program, focused in important part on this
partitioning problem.

The nonsequential program variables are called
combinational variables (to use the hardware term).
These hold the values of respective “transient”
steps in a computation, such as the value of y
used in x above. They include the primary inputs,
which are variables whose values are assigned ac-
cording to decisions made outside of the program,
e.g., which keyboard key a human pushes. Typically,
program outputs also are represented by combi-
national variables.

In the program model the program state is 
partitioned into the sequential state, defined by 
the values of the sequential variables, and the 
combinational state, defined by the remaining (com-
binational) variables. The combinational state vec-
tor C is given as a function C = f(S) of the sequential
state vector S. The sequential state S is initialized, 
and each successive value

(1) S′ = F(S,C)

is expressed in terms of its current value S and the
combinational state.
Nondeterminism
In a model of the program the assignment of pri-
mary inputs must be abstracted to account for all
possible assignments. Abstraction is used more
generally in program verification to simplify parts
of a program whose detailed function is irrelevant
to the verification objective. Abstracting duration
in respective asynchronous parallel processes can
result in a simpler model that is useful when the
required behavior is independent of the relative 
execution speeds of the processes.

An effective way to abstract a program is 
through the use of nondeterminism in program 

variable assignments. If the function f(S) is 
allowed to be multivalued, at each sequential state
S a combinational variable may assume several 
values in its range. This gives rise to a set of 
program behaviors or “lifetimes”. Each nondeter-
ministic assignment splits the execution of the 
program model into separate respective behaviors,
ad infinitum.

Without nondeterminism a program would have
only one behavior, and its analysis would be 
simple. Although it is the nondeterminism that
makes program analysis difficult, there is no real
alternative with regard to the primary inputs. It also
may be simpler and sufficient to model with a non-
deterministic assignment certain variables that
are assigned within the actual program. Imagine a
program subroutine that performs a complex com-
putation producing a nonzero result, writing the
result to the program variable v. Suppose the pro-
gram is required to perform some task unrelated
to the computation each time the subroutine com-
pletes its calculation, the completion indicated by
v 6= 0. In order to verify the property P that when-
ever v 6= 0 the task is correctly performed, the com-
putation that assigns v is irrelevant. To verify P, it
is sufficient to have the program model assign v
nondeterministically to 0 or 1, where v=1 is an ab-
straction that stands for all the nonzero values of
the variable v in the original program. In this ab-
straction, the verification routine can determine,
through a localization reduction described below,
that the complex computation is irrelevant and
exclude it from the analysis leading to the verifi-
cation of P. (That computation will be relevant to
other properties, with respect to which other por-
tions of the program may be irrelevant.) If P is ver-
ified in the abstract model and the computation that
assigns v in the original program is subsequently
altered, it is unnecessary to reverify P.

If w 6= 0 signals the conclusion of another pro-
gram, then the order in which v and w assume
nonzero values indicates the relative speeds of 
the associated programs. Assigning v nondeter-
ministically allows it to become nonzero both 
before and after w does. A property verified with
this abstraction will hold for alternative implemen-
tations that vary the relative speeds of the programs.

Nondeterministic assignment may introduce
additional behaviors not present in the original
program (while retaining all original behaviors).
In case several variables are assigned nondeter-
ministically, not all combinations of assignments
may be possible in the original program. On the
other hand, nondeterministic assignment can 
reduce program complexity by masking relative
execution speeds and program structure (as above).
This makes it a vital tool in program verification.
Automata
The automaton is a fundamental structure in com-
puter science, useful for much analysis and proof
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concerning “regular” sequential behavior. In the
translation of a program to an automaton, defined
next, the program’s sequential state becomes the
automaton “state”, and the program’s combina-
tional states define automaton state transition
conditions. For the C program in Figure 1, the
states of the corresponding automaton are the 232

values of the program’s sequential variable x. The
program’s combinational variable input defines
the state transition conditions as follows. For each
value of x there are transitions to the states

(2) 2x, 2x + 1, 0

and back to x, conditioned respectively on
input = 0, input = 1, input = \n (carriage return),
and every other value of input. Program behaviors
are modeled by the sequences of combinational
states consistent with successive automaton state
transitions (cf. a discrete Markov process). The set
of all such sequences forms the language of the
automaton, which provides the basis for model
checking as defined here. The combinational states
of the C program in Figure 1 are its respective
input/output pairs (input, output), where output
is the value imparted by the print statement
(namely, the value of x , or “nothing”, encoded by
some distinct designated value).

To facilitate reduction and decomposition, the
modeling automaton is “factored” into component
automata, in emulation of the program’s modular-
ity. This factoring requires a means to correlate 
factor automata transition conditions that mediate
the respective automaton state transitions. For 
example, if one program component reads the value
of a variable set by another program component,
the corresponding automata must have a mecha-
nism to reflect a common view of the value of that
variable. For reduction there also must be a means
to “abstract” transition conditions. If a state transi-
tion is conditioned on a variable v being nonzero
and the nonzero values of v are abstracted to the
value “1” as above, then the corresponding au-
tomaton transition condition must be abstracted in
a consistent well-defined manner. To meet these
needs, the set of valuations of combinational pro-
gram variables is given the structure of a Boolean
algebra.3 In this context the correlation of transi-
tion conditions is captured by their conjunction in
the Boolean algebra, and abstraction is obtained

through a Boolean algebra homomorphism. The
principal role of the automaton defined next is to
serve as a “scaffolding” to carry this Boolean alge-
bra: the factorization (5) needed for the decompo-
sition (6) appears as a matrix tensor product on the
automaton state transition matrices, and the sim-
plification needed for reduction is given as a Boolean
algebra homomorphism that acts on these matri-
ces elementwise, in (12) below. The details are now
explained.

In the context of program verification the most
useful type of automaton is the ω-automaton,
whose behaviors are (infinite) sequences. The au-
tomaton is defined in terms of a directed graph
with a finite set of vertices called states, some of
which are designated initial; a transition condition
for each directed edge or state transition in the
graph; and an acceptance condition defined in
terms of sets of states and state transitions. Each
transition condition is a nonempty set of elements
called letters drawn from a fixed set called the 
alphabet of the automaton. There are several 
different equivalent definitions of acceptance 
conditions in use. The acceptance condition of an
ω-automaton can capture the concept of some-
thing happening “eventually” or “repeatedly” (ad
infinitum), “forever” or “finally” (forever after).
The set of all subsets of the alphabet forms a
Boolean algebra L in which the singleton sets are
atoms. The set of atoms of L, denoted by S(L) , 
determines L when L is finite.

How are automaton transition conditions asso-
ciated with the program’s combinational states? If
v and w are states of the automaton A , let A(v,w )
denote the transition condition on the directed edge
(v,w ) . Expressing conjunction (set intersection) in
L by ∗ , we see for a letter a that a ∈ A(v,w ) if and
only if the atom {a} satisfies {a} ∗A(v,w ) 6= 0. In
the context of L, we refer to the atom {a} as a “let-
ter” and S(L) as the “alphabet” of A . We say the au-
tomaton A is overL. L is associated with the Boolean
algebra generated by all valuations of combinational
program variables: terms of the form x = c for a
value c in the range of the combinational variable x.
Thus, L is all Boolean expressions in these terms.
Each letter is a conjunction of terms of the form
x = c , the conjunction over all the combinational
variables x . This corresponds to the combinational
state C with x -th component c. Thus, we associate
combinational states with letters, i.e., atoms of L.
Automaton transition conditions are nonzero ele-
ments of L. For example, a transition condition
x = 0 corresponds to the set of all letters (i.e., dis-
junction of atoms) of the form · · ·∗ (x = 0) ∗· · ·.
Referring to (1), we have

(3) A(v,w ) =
∑

F(v,C)=w
C,

the summation expressing disjunction in L.

3A Boolean algebra [8] is a set with commutative, asso-
ciative, idempotent binary operations conjunction and dis-
junction and the unary operation negation, which satisfy
DeMorgan’s Law; the set contains a universal element and
its negation (called zero) and satisfies the natural rela-
tions for these. Every Boolean algebra can be represented
by a set of subsets of some set—with the operations in-
tersection, union, and set complement—and universal el-
ement consisting of the set. An atom is a nonzero element
that is minimal in the sense that its conjunction with any
nonzero element is itself or zero.
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A sequence (vi) of states of A is a run of a 
sequence of letters (si) ∈ S(L)N provided v1 is an
initial state and for all i, si ∗A(vi, vi+1) 6= 0. A run
is accepting if its infinitely repeating states and
transitions satisfy the automaton acceptance 
condition.

The set of sequences of letters with respective
accepting runs in an automaton A is the language
of A , denoted L(A).

The stated purpose of the C program in Fig-
ure 1 can be expressed by a 2-state automaton P
that uses its state to remember whether the cur-
rent output is the decimal equivalent of the last
binary input. The state of P can be represented
with the program variable y, having initial state
y = 0 and transition condition for the state tran-
sition from y = 0 to y = 1 represented by the ex-
pression in program variables that expresses the
failure

(4) decimal(inputbits) 6= output

The acceptance condition accepts runs that re-
main forever in the state y = 0 .
Program Factorization
The automaton model of a program is “built” from
smaller automaton models of program components.
A program component may comprise a single 
variable or a group of closely related variables. The
program consists of its components. For example,
the call-forwarding program may be implemented
by respective components that define its setup and
execution, as described earlier. A program is trans-
lated component by component to respective 
“component” automaton models. The component
automata are combined as a “product” to form a
single automaton that models the original program.
This “factoring” of the program model into compo-
nents follows the natural program structure and
aids in translation as well as in reduction and de-
composition. All component automata are over one
fixed Boolean algebra L determined by the program.

The combinational variables of a program com-
ponent may be interpreted as the “outputs” of that
component. The simultaneous valuations of the 
outputs of a program component get translated to
elements of L that generate a subalgebra of L, the
“output subalgebra” of the corresponding compo-
nent automaton. (In this context, program primary
inputs translate to outputs of trivial automata.) The
call-forwarding setup component p may have as 
outputs the variables m and n that designate the
called and forward numbers respectively. If there
are no other outputs of p, then the output subalge-
bra of the automaton that models phas as its atoms
all expressions of the form (m = m0) ∗ (n = n0), for
m0, n0 in the range of m and n respectively. The 
(interior) product of the respective output subalge-
bras of all the component automata is L. Each letter
(atom of L) is a conjunction of atoms from the 
respective output subalgebras.

A program component is modeled by an L-process
P: an ω-automaton over the Boolean algebra Lwith
an identified “output” subalgebra LP ⊂ L that 
models the combinational states of the program
component. The atoms S(LP ) of the subalgebra LP
are the “output values” of P . By (3), the output 
values f(v) represented above (cf. 1), possible at the
state v of P , are the elements of S(LP ) that have
nonzero conjunction with the transition condition
of some state transition leaving v . (The “inputs” to
P are the simultaneous collective output values of
the various L-processes, i.e., the alphabet S(L) . The
transitions of P may be independent of any partic-
ular outputs, of course.)

If P and Q are L-processes modeling respective
program components p and q, the productP ⊗Q is
an L-process that models the program component
formed by taking p and q together. (This sometimes
is called the “synchronous product” of p and q , 
subsuming their “asynchronous” or “interleaving”
product [9].) The set of states of P ⊗Q is the 
Cartesian product of their respective state spaces,
and the output subalgebra of the product is the (in-
terior) product of the component output subalgebras.

If P (v,w ) is the transition condition for the 
transition (v,w ) from state v to state w of P and
Q(v′, w ′) is likewise for Q , then the transition 
condition for the transition ((v, v′), (w,w ′)) of the
product P ⊗Q is P (v,w )∗Q(v′, w ′). Some program
variables that define a component automaton’s 
transition conditions may come from program 
components other than the one modeled by the 
automaton. This allows automata to share condi-
tions on the sequences they accept and reflect 
coordination among the program components. For
example, the call-forwarding execution component
modeled by L-process Q refers to the setup com-
ponent’s output variable n that designates the 
ultimate call destination number. In this way Q
coordinates with the setup established by the setup
component. The products of their respective tran-
sition conditions define the coordinated behavior
of the two automata. If C,D ∈ L, then the product
of the setup transition condition P (v,w ) =
(n = n0) ∗C and Q(v′, w ′) = (n = n1) ∗D is nonzero
only if n0 = n1 . Thus, the transition condition
(P ⊗Q)((v, v′), (w,w ′)) of the product automaton
is nonzero only when the two numbers agree.

The coordination thus defined by automata
transition conditions supports the automaton 
“factoring” mentioned earlier. For any L-process
we define its state transition matrix to be the 
matrix over L whose ij-th element is the transition
condition for the state transition from the i-th
state to the j-th state. By the above definition of
process product, the matrix for the product process
P ⊗Q is the tensor product of the matrices for P
and Q .
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In general, if M is the state transition matrix for
an L-process that is factored into component 
L-processes with respective matrices Mi, then

(5) M =M1 ⊗ · · · ⊗Mk.
Moreover, if each process is designated by its 
respective matrix,

(6) L(M) = L(M1)∩ · · · ∩ L(Mk).

The intuition for (6) is that each component Mi
imposes certain restrictions on the behaviors of 
the product M , and the behaviors of M are the 
“simultaneous solutions” for behaviors of the re-
spective components. If M1 restricts the setup of
the call-forwarding number n to numbers in a
specified area code and M2 permits execution only
if the designated number n is not busy, then the
product pertains to numbers n in the specified
area code that are not busy.
Model Checking
We model as respective L-processes the program,
its components, and the property to be verified.
The program model is the product of its compo-
nents (5).

It is convenient to use the same symbol to 
denote a process and its matrix, and henceforth
the term program will be used to designate both
the syntactic computer program and the L-process
automaton model into which it gets translated.

Our formal definition of verification of property
P for a program M is the automaton language 
containment check

L(M) ⊂ L(P ).

In words, this says that all behaviors of the pro-
gram are behaviors “consistent with” (i.e., “of”)
the property. This is equivalent to checking that

L(M)∩L(P̂ ) =∅

where P̂ is the “complementary” automaton satis-
fying L(P̂ ) = S(L)N \ L(P ) . By (6) verification is
transformed into the automaton language empti-
ness check

(7) L(M ⊗ P̂ ) =∅ .
If M models the C program in Figure 1 accord-

ing to (2) and P is the automaton that expresses
its desired behavior, defined by (4), then verifica-
tion consists of analyzing the composite system
M ⊗ P̂. Here P̂ is P with a complementary accep-
tance condition that accepts runs for which even-
tually y = 1. The state of this system is the value
of the pair (x, y) , where x is the program variable
of Figure 1. The verification algorithm checks
whether any state (x, 1) can ever be reached through
a succession of state transitions that begins at the
initial state (0,0). The analysis concludes when ei-
ther a violation of the property is found (i.e., (x, 1)
is reached) or all reachable pairs (x, y) have been

examined. The latter entails an examination of 232

states, which could be costly were it not for a sym-
bolic technique described below.

The foregoing is an automata-theoretic 
formulation of model checking. There are other
formulations of model checking, expressed in
terms of “temporal” logic formula satisfiability
[7]. Each of these formulations can be transformed
into (7) for some class of automata. In some cases
the best way known to perform the check is first
to construct an automaton corresponding to the
temporal logic formula and then to check (7). See
[4], [7], [10] for a way to express the original and
widely practiced form of model checking for the
logic CTL, without reverting to automata. The 
automata-theoretic formulation of model checking
was developed with a somewhat different 
perspective from the one presented here by M. Y.
Vardi and P. Wolper [12] in the early 1980s and by
this author independently around the same time.

Algorithms
A general method to check whether L(A) =∅ for
(7) is based on the finite structure of A . L(A) is non-
empty (and the required property fails) if and only
if A has an accepting run. This is equivalent to the
graph of A ’s having a cycle “consistent” with the
acceptance structure, since A ’s state space is finite.
The path from an initial state to such a cycle may
be retraced, and this “error track” provides a step-
by-step account of how the property can fail in the
program.

One way to check for an accepting run involves
an explicit enumeration of the states of A reach-
able from an initial state. Since the number of
states can be exponential in the size of the program
description (5), explicitly enumerating the states
has severe computational limitations. Fortunately,
explicit enumeration is not necessary.

In 1986 R. Bryant made a seminal observation
that played a major role in spurring the commer-
cialization of model-checking techniques—a role
that resulted in the ACM Kanellakis Prize for Bryant
and his colleagues Clarke, Emerson, and McMillan,
who showed how to use this beneficially for model
checking.

Bryant’s observation was that binary decision
graphs, long used for planning and programming,
could be viewed as automata and thus minimized
in a canonical fashion. The minimized structures
were dubbed “binary decision diagrams” or BDDs.
The idea was to represent the global state as a 
binary vector and represent a set of states by its
characteristic function (having value 1 for each
state in the set), encoded symbolically as a Boolean
function. The set of reachable states could be 
represented as a fixed point of the state set trans-
former that starts with the set of initial states and
repeatedly applies the state transition matrix as an
operator on the state space, adding the new states
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reached in one transition, from the set of states
reached thus far. Since the set of states is finite,
iterating this transformation has a least fixed
point—the set of reachable states—in the lattice
of state sets. For the Figure 1 program, with respect
to checking (7), A =M ⊗ P̂ is expressed as a Boolean
function of x, y (the state variable of P̂), input,
and added variables x′ and y′ that encode the
“next state” of A , as per (1). In terms of a Boolean
function,

M(x, input, x′) = (x′ = x ∗ 2) ∗ (input = 0)
+ (x′ = x ∗ 2 + 1) ∗ (input = 1) + · · ·

and similarly for P̂, where + and ∗ denote the re-
spective arithmetic operations and also the Boolean
operations “disjunction” and “conjunction” in the
Boolean algebra L. As Boolean functions, A =M ∗ P̂ .
If the system starts from the set of initial states de-
fined by the Boolean function I—in this case, the
single state that is the solution to 
I (x, y) = (x = 0) ∗ (y = 0) = 1 (1 being the universal
element of L), the states reachable through a single
state transition from an initial state are the solu-
tions I1(x′, y′) to I (x, y) ∗ A(x, y, input, x′, y′) = 1.
With I1 in place of I, the set of states reachable
through two transitions is determined. Since the set
of all states is finite, this process may be iterated
until no new solutions are found. The cumulative
set of solutions defines the set of reachable states.
Each iteration is expressed symbolically in terms of
the Boolean characteristic functions, reduced to
their canonical form and represented as a BDD. A very
simple Boolean function can express an arbitrarily
large set of states. For example, x1 = 0 defines the
set of all global states whose first bit is 0, repre-
senting half of the global states, no matter how large
the state space. Thus, there is the potential to ma-
nipulate very large sets of states. In practice, the
ability to compute reachable state sets with 1010

states for typical commercial programs is consid-
ered fairly trivial, 1020 states is routine, and 1050

states and higher is not unusual. For the example
of Figure 1, the fixed point of 232 states is reached
very quickly, in 32 iterations. In each iteration the set
of states reached is represented by a computation-
ally simple Boolean function. While the worst-case
complexity of performing state reachability sym-
bolically is the same as for explicit enumeration of
the states, symbolic search lowered the threshold of
acceptability for model checking, leading to its com-
mercialization.
Homomorphic Reduction
A program modeled by an L-process M can be
“abstracted” by a “simpler” program (with fewer
variables or variables with smaller ranges) that is
modeled by an L′-process M′. The relationship 
between M and M′ is given by a Boolean algebra
homomorphism φ : L′ → L. If φM′ is the L-process
with transition matrix obtained by applying φ
elementwise to the transition matrix of M′ and
L(M) ⊂ L(φM′) , then we say M′ is a reduction (or

“abstraction”) of M and M is a refinement of M′.
If this is the case and, moreover,

(8) L(M′) ⊂ L(P ′)

for a property defined by the L′-process P ′ , then
applying φ to both sides gives L(φM′) ⊂ L(φP ′) .
So for P = φP ′ it follows that

(9) L(M) ⊂ L(P ),

which means that verifying the reduction verifies
the refinement.

One type of reduction, localization reduction,
described below, is derived by an algorithm. So M′
and φ are defined algorithmically, and
L(M) ⊂ L(φM′) is guaranteed by construction. Al-
ternatively, a reduction can be “guessed” and then
verified as above, where the “guess” consists of a
definition of M′ and φ. As an example of the lat-
ter, imagine a component adder used in the con-
text of a program for an integrated circuit that com-
putes the norm of an incoming signal. The
correctness of the adder can be established by
considering it in isolation from the rest of the cir-
cuit. M′ in this case could be just the model of the
adder, with φ mapping the adder to the full cir-
cuit with all nonadder variables assigned nonde-
terministically.

In this example a failure of the isolated adder
does not necessarily imply it would fail in the con-
text of the full circuit. If the otherwise-correct
adder had errors in case of negative inputs, but neg-
ative inputs were impossible in the context of the
full circuit, then the failure for negative inputs
would not matter, and this “error” in fact may 
reflect an intentional optimization. In this case
one could constrain the inputs to the adder to be 
positive and prove it correct in that context. This
approach would create a “proof obligation” with
respect to the remainder of the circuit: to verify
that the full circuit does in fact produce only pos-
itive inputs to the adder. In discharging such proof
obligations, one must beware of circular reason-
ing: “the adder is good if the rest of the circuit 
offers it only positive inputs; the rest of the 
circuit offers only positive inputs if the adder is
good” (perhaps a faulty adder gives feedback to the
rest of the circuit that can cause the rest of the 
circuit to offer negative inputs).

In the earlier example of a “complex computa-
tion” all nonzero values of the program variable 
v were abstracted by the value “1”, giving another 
example of a homomorphic reduction. The homo-
morphism maps v = 1 in the abstract Boolean 
algebra to the disjunction of all nonzero assign-
ments to v in the refined Boolean algebra.

In order to verify (9), the reduction (8) may be
simplified by decomposing the property P into
small “subproperties” P1, · · · , Pk, where

(10) L(P1 ⊗ · · · ⊗ Pk) ⊂ L(P ).
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The required check (9) is replaced by

∀i, L(M) ⊂ L(Pi).

By (6), this implies (9). Although one check is re-
placed with k, (9) may entail O(|M|) computations
for a model M with |M| sequential states, whereas
each of the k component checks can engender a 
reduction (8), with Pi in place of P, that entails only
O(|M|1/k) computations. The check (10) can be 
recursively decomposed into a tree of such checks.
At each node of the tree the respective k is small
and the P is checked against the product of the Pi’s
at the successive nodes [9]. If the total number of
nodes is O(log |M|) , i.e., is proportional to the num-
ber of program components, then the complexity
of program verification is proportional to the size of
the program. In some cases, when P refers to a “repet-
itive” structure in M like an array, P can be decom-
posed algorithmically by restricting it to each 
successive array element. In general, a decomposi-
tion is obtained by a manual “guessing” step, and the
guess is verified algorithmically as above.

Reduction and decomposition apply more 
generally to infinite-state program models. The
principles behind them are central to most program
verification methodologies that scale tractably
with increasing program size.

Design by refinement is an application to verifi-
cation of a general “top-down” program design
methodology that has been around for many years
[6], [13]. By evolving a design together with its 
verification, a development methodology that leads
to a tractable verification, as above, may be built
into the design process. Program details are added
incrementally through a succession of program 
refinements:

(11) L(Mi+1) ⊂ L(φiMi).

Here the increasing “level” i indexes progressively
more refined program models, leading ultimately
to the program with all its details elaborated. Since
Mi is a reduction of Mi+1, any property verified for
Mi holds for Mi+1 , and on. Properties of the 
program thus may be verified once and for all at
the most abstract level possible, and each level may
be verified before the next level is defined.

Based on the composition (5) of each level
Mi =Mi1 ⊗ · · · ⊗Miki , the check (11) can be de-
composed into a set of smaller sufficient checks:
for each j ,

(12) L(M(i+1)h1 ⊗ · · · ⊗M(i+1)ht ) ⊂ L(φiMij ),

where the factors M(i+1)h in the successive checks
(12) are factors of Mi+1.
Localization Reduction
The variable dependency graph of a program is the
directed graph whose vertices are the program’s
variables, with an edge (v, w) whenever v appears
in the program’s assignment expression for w. An
automatic way to derive a homomorphic reduction
involves a traversal of the variable dependency
graph to determine which values of which variables
are equivalent, with respect to the property being
checked. A variable v is irrelevant if it has no di-
rected path to the variables that implement the au-
tomaton P that defines the property being checked.
In this case, if we transform the program’s accep-
tance conditions to P , the particular values as-
signed to v can have no bearing on the check (7).
Two values of a variable are equivalent if the as-
signment expressions of the relevant variables do
not distinguish them. A homomorphism may as-
sociate together all equivalent values. Localization
reduction is an iterative algorithm that starts with
a small “active’’ program component that is topo-
logically close in the variable dependency graph to
P (Figure 3). All other program variables are ab-
stracted with nondeterministic assignments. This
renders the values of the variables beyond the
boundary of the active variables equivalent, so op-
erationally these variables may be “pruned” out of
the model. If the property is thus verified, then by
(6) it holds for the full program. On the other
hand, if the property fails for this reduction, the
algorithm attempts to expand the resulting error
track to an error track for the full program. If this

Figure 3. Localization Reduction. In the variable dependency
graph, a program component close to the automaton P that

defines an aspect of the program’s required operation is
designated active. The remaining variables are pruned,

removing their effect. If the required operation is verified for
this reduction, it holds for the full program. If it neither verifies

nor falsifies, the active component is augmented, and the
check is repeated.

P

pruned

pruned
relevant
variables

active
variables

variables

variables
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in iteration
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succeeds, it means the error in fact reveals a “bug”
in the full program. If, however, the expansion
fails, it means the error is an artifact of the local-
ization. In this case the active component is aug-
mented by a heuristically small set of topologically
contiguous relevant program variables whose as-
signments are inconsistent with (and thus invali-
date) the error track. The verification check is re-
peated for the expanded program component, and
the process is iterated until the algorithm termi-
nates with a verification or a genuine program
error.

Conclusion
Program verification can increase the reliability of
a program by checking it in ways that may be 
overlooked in conventional testing. Conventional
testing intrinsically comes at the end of the design
cycle, whereas program verification may be intro-
duced at the beginning, eliminating bugs earlier
than otherwise possible. This can accelerate 
program development.

A principal type of program verification is 
model checking, which may be expressed in terms
of automata. Although the worst-case time 
complexity for model checking is for all practical
purposes exponential in the size of the program
to be verified, model checking often can be 
accomplished in time proportional to the size of
the program, as follows. Define the properties to
be checked, decompose each property into sub-
properties that admit of respective tractable 
reductions, verify each subproperty on its 
respective reduction. This approach is “bottom-up”,
since it begins with the full program.

The alternative “top-down” approach starts with
the same property decomposition, but before the
program exists. Rank the subproperties according
to level of abstraction. For each level define an “ab-
straction” of the program-to-be. This abstraction
corresponds to a reduction in the bottom-up ap-
proach. Program details are added incrementally,
ending with the fully elaborated program. Each
increment is verified to be a refinement of the
previous level. A property verified at one level
thus remains true at all subsequent levels. Since
the program is written and checked incrementally,
debugging starts earlier in the program develop-
ment cycle than with conventional testing, which
requires the fully elaborated program. With the top-
down approach, the program can be designed so
that each required check is tractable.

Reductions can be derived algorithmically in the
bottom-up approach. In either approach a prospec-
tive reduction may be verified to be an actual 
reduction by checking the refined program against
a homomorphic image of the reduced program.

For both the bottom-up and top-down approaches,
property decomposition is a fundamental step. In
special cases, when a property refers to a repetitive

structure, its decomposition can be derived 
algorithmically. In general, decomposition can be
verified—but not derived—by a tractable algorithm.
In fact, it is not tractable to determine whether a
“good” decomposition—one that gives rise to
tractable bottom-up verification—exists. Finding
useful heuristics for decomposition is a foremost
open problem in model checking.
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