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1. Let R be the region in the first quadrant bounded by the x-axis and the graph of
y = sin x from x = 0 to x = π. The graph of y = cosx divides R into two regions. Let
R1 be the subregion of R bounded on the left by y = cosx, on the right by y = sin x,
and below by the x-axis. Find a positive number b such that the line y = b divides
R1 into two regions of equal area.

Solution.
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In the figure, the region R1 is KDFHJGK. Note that the regions GEJ and IBD
have equal areas, as do ABC and FED.

Let A1 be the area of region GFH , and let A2 be the area of the region KFG.
Then the area of R1 is A1 +A2.

Let B1 be the area of region GEJ (= area of region IBD), and let B2 be the area
of the region FED (= area of region ABC).
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We thus want to find b such that B1 + (A2 − B2) =
1
2
(A1 +A2).

A1 =

∫ π

π

2

sin x dx =

∫ π

2

0

cosx dx = 1

A2 =

∫ π

2

π

4

(sin x− cosx) dx =
√
2− 1

The coordinates of D are (cos−1 b, b), so that

B1 =

∫ cos−1 b

0

(cosx− b) dx = sin (cos−1 b)− b cos−1 b

B2 =

∫ π

2

cos−1 b

(b− cosx) dx = b
π

2
− b cos−1 b− 1 + sin (cos−1 b)

Thus, the condition B1 + (A2 − B2) =
1
2
(A1 +A2) becomes

sin (cos−1 b)− b cos−1 b+
√
2− 1− bπ

2
+ b cos−1 b+1− sin (cos−1 b) =

1

2
(1 +

√
2− 1).

Several things cancel nicely, giving b =

√
2

π
.

2. Find, with proof, the sum of the series

∞
∑

n=1

sin
1

2n+1
cos

3

2n+1
.

Solution.

Using the identity sinα cos β = 1
2
[sin(α+β)+sin(α−β)], the nth term of the series is

1

2

[

sin

(

1

2n−1

)

+ sin

(−1

2n

)]

=
1

2

[

sin

(

1

2n−1

)

− sin

(

1

2n

)]

This yields a telescop-

ing sum whose nth partial sum equals 1
2
(sin 1− sin 1

2n
). As n approaches infinity, the

second term approaches 0, so the sum of the series is 1
2
sin 1.

From a Michigan MATH Challenge.

3. Find, with proof, all positive integers x satisfying 3(2
x!) = 2(3

x!) + 1.

Solution.

Clearly, x = 1 is a solution. If x > 1, then x! is even and so 3x! ≡ 1 mod 4. If
x > 1 is a solution, then this implies that the last digit of 2(3

x!) + 1 is 3. But this is
impossible since the last digit of an even power of 3 is either 1 or 9. Thus, x = 1 is
the unique solution.
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This problem appeared in the 1985 Romanian Mathematical Olympiad.

4. Find a polynomial with integer coefficients that has 2
1

5 + 2−
1

5 as a root.

Solution.

Let x = 2
1

5 + 2−
1

5 so that

x3 = 2
3

5 + 2−
3

5 + 3(2
1

5 + 2−
1

5 ) = 2
3

5 + 2−
3

5 + 3x,

or
2

3

5 + 2−
3

5 = x3 − 3x.

Also,

x5 = 2 + 2−1 + 5(2
3

5 + 2−
3

5 ) + 10(2
1

5 + 2−
1

5 )

= 5/2 + 5(x3 − 3x) + 10x.

Hence, 2
1

5 + 2−
1

5 is a root of

P (x) = 2x5 − 10x3 + 10x− 5.

It is easy to adapt this argument to find a polynomial with integer coefficients that
has q

1

n + q−
1

n as a root, where q is a nonzero rational and n is an odd positive integer.

Problem 1187 from Crux Mathematicorum, Vol. 14, No. 1 (January 1988), pp.
30–31. Proposed by Stanley Rabinowitz, Digital Equipment Corp., Nashua, New
Hampshire and solution by Bruce Shawyer, Memorial University of Newfoundland,
St. John’s.

5. For each positive integer n, let

Rn =
{

(x, y) : 0 ≤ x ≤ n and 0 ≤ y ≤
√
x
}

.

Let N (n) denote the number of points in Rn whose coordinates are both integers.
Compute

lim
n→∞

N (n)

n3/2
.

Solution.

For each positive integer n, the number of integers y with 0 ≤ y ≤ √
n is ⌊√n⌋ + 1,

so that

N(n) =

n
∑

k=0

(

⌊
√
k⌋+ 1

)

= (n+ 1) +

n
∑

k=1

⌊
√
k⌋.
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Since
√
k − 1 < ⌊

√
k⌋ ≤

√
k, and

∫ n

0

√
x dx ≤

n
∑

k=1

√
k ≤

∫ n+1

0

√
x dx,

we have

1 +

∫ n

0

√
x dx ≤ N(n) ≤ (n + 1) +

∫ n+1

0

√
x dx,

and so

1 +
2

3
n3/2 ≤ N(n) ≤ (n+ 1) +

2

3
(n+ 1)3/2.

Dividing by n3/2 and applying the squeeze theorem gives

lim
n→∞

N(n)

n3/2
=

2

3
.
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1. Evaluate
n

∑

k=1

k2k−1

for n = 1, 2, 3, . . ..

Solution.

Let

f(x) =

n
∑

k=0

xk,

then

f ′(x) =
n

∑

k=1

kxk−1

and

f ′(2) =
n

∑

k=1

k2k−1.

Also,

f ′(x) =
d

dx

(

xn+1 − 1

x− 1

)

=
(x− 1)((n+ 1)xn)− (xn+1 − 1)(1)

(x− 1)2

and
f ′(2) = 2n(n+ 1)− 2n+1 + 1 = 2n(n− 1) + 1.

2. Evaluate
∫

∞

1

⌊x⌋
x3

dx,

where ⌊x⌋ denotes the greatest integer function.

Solution.

Denoting the integral by I, we have

I =
∞
∑

k=1

∫ k+1

k

⌊x⌋
x3

dx.
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On the interval [k, k+1), we make the substitution x = k+α, with 0 ≤ α < 1. Then

I =

∞
∑

k=1

∫ α=1

α=0

k

(k + α)3
dα

= −1

2

∞
∑

k=1

k

(k + α)2

∣

∣

∣

∣

α=1

α=0

= −1

2

∞
∑

k=1

[

k

(k + 1)2
− 1

k

]

= −1

2

∞
∑

k=1

[

k + 1

(k + 1)2
− 1

k
− 1

(k + 1)2

]

=
1

2

∞
∑

k=1

(

1

k
− 1

k + 1

)

+
1

2

∞
∑

k=1

1

(k + 1)2

=
1

2

∞
∑

k=1

(

1

k
− 1

k + 1

)

+
1

2

∞
∑

k=2

1

k2

=
1

2
+

1

2

(

π2

6
− 1

)

=
π2

12
.

3. Find the smallest positive angle θ in degrees satisfying

sin2(2015θ) + cos2(2016θ) = 1.

Solution.

Using the identity 1 − sin2(2015θ) = cos2(2015θ), the given equation can be rewrit-
ten as cos2(2016θ) = cos2(2015θ) which is equivalent to cos(2016θ) = ± cos(2015θ).
As cosx is decreasing for x ∈ [0, π], we have cos(2016θ) 6= +cos(2015θ) for θ ∈
(0, π/2016]. We find the θ ∈ (0, π/2016] for which cos(2016θ) = − cos(2015θ). Equal-
ity occurs if and only if 2016θ = π/2 + t and 2015θ = π/2 − t for some positive t in
the appropriate range. Solving for θ, we obtain θ = π/4031. Hence, the answer in
degrees is (180/4031)◦.

Similar to a Univ. of South Carolina practice problem for the American Regions
Mathematics Competition.

4. If a and b are the radii of two spheres, tangent to each other and to a plane
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(on the same side of the plane), the radius x of the largest sphere which can pass
between them is given by what formula?

Solution.

This is really a two-dimensional problem, so we replace the spheres by circles and
the plane by a line l. Let C1 be the circle of radius a, C2 the circle of radius b, and
C the circle of radius x. Let A be the point of tangency of C1 and l, B the point of
tangency of C2 and l, and D the point of tangency of C1 and C2. Let Q1 be the center
of C1, Q2 be the center of C2, and O the center of C. Let E be the point of tangency
of C1 and C and F the point of tangency of C2 and C. Let G be the point of tangency
of C and l.

Since D is on Q1Q2, Q1Q2 = a + b. Since E and F are on OQ1 and OQ2,
respectively, OQ1 = a+ x and OQ2 = b+ x. Set u = AG and v = BG.

We have the following system of equations.







(a− x)2 + u2 = (a + x)2

(b− x)2 + v2 = (b+ x)2

(b− a)2 + (u+ v)2 = (a+ b)2
.

Expanding and simplifying gives







u2 = 4ax
v2 = 4bx

(u+ v)2 = 4ab
.
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Substituting u and v from the first two of these into the third gives

(√
4ax+

√
4bx

)2

= 4ab
√
ax+

√
bx =

√
ab

√
x
(√

a +
√
b
)

=
√
ab

√
x =

√
ab

√
a+

√
b

x =
ab

(
√
a+

√
b)2

.

American Mathematical Monthly, E432, ODMPB p. 56.

5. In a regular octagon each side is colored blue or yellow. From such a color-
ing, another coloring will be obtained “in one step” as follows: if the two neighbors
of a side have different colors, the “new” color of the side will be blue, otherwise the
color will be yellow. (Note that the colors are modified simultaneously.) Show that
after a finite number, say N , of moves, all sides will be colored yellow. What is the
least value of N that works for all possible colorings?

Solution.

Consider a coloring of the sides of a regular octagon where each side is colored blue
or yellow. Label the sides of the octagon S1, . . ., S8 and code the colors of the sides
of the regular octagon by the column x = (x1, . . . , x8)

T , where

xi =

{

1 if Si is colored blue,

0 if Si is colored yellow,

for i = 1, 2, . . . , 8. Let

A =

























0 1 0 0 0 0 0 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0

























.

Then Anx is the coded coloring of the sides of the regular octagon after n steps,
where the addition and multiplication in the matrix operations are performed mod
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2. Since A4 = 0 it follows that after 4 steps, all sides will be colored yellow. This
is the least possible value of N that works for all possible colorings, since for x =
(1, 0, 0, 0, 0, 0, 0, 0)T ,

Ax = (0, 1, 0, 0, 0, 0, 0, 1)T , A2x = (0, 0, 1, 0, 0, 0, 1, 0)T , A3x = (0, 1, 0, 1, 0, 1, 0, 1)T .

Problem 7 from the 11th Austrian-Polish Mathematics Competition - December 1989.


