2011 Missouri Collegiate Mathematics Competition Session I

1. Consider the parabola $x^{2}=4 p y$, with vertex at the origin, focus at $F(0, p)$, and directrix $y=-p$. Let $P(x, y)$ be a point on the parabola and let $R(x,-p)$ be the intersection of the vertical line through P with the directrix. Determine P so that the triangle $P F R$ is equilateral.

Solution.

By the definition of a parabola,

$$
\operatorname{dist}(F, P)=\operatorname{dist}(P, R)=\frac{x^{2}+4 p^{2}}{4 p}
$$

$\operatorname{dist}(F, R)=\sqrt{4 p^{2}+x^{2}}$, so we need

$$
\frac{x^{2}+4 p^{2}}{4 p}=\sqrt{4 p^{2}+x^{2}}
$$

which is equivalent to

$$
\sqrt{4 p^{2}+x^{2}}=4 p
$$

making $x=2 \sqrt{3} p$ and $y=3 p$.
2. Prove that the inequality $\sin x+\arcsin x>2 x$ holds for all values of x such that $0<x \leq 1$.

Solution I.

The Maclaurin series for $\sin x$ and $\arcsin x$ are given by

$$
\begin{aligned}
\sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
\arcsin x & =x+\left(\frac{1}{2}\right) \cdot \frac{x^{3}}{3}+\left(\frac{1}{2} \cdot \frac{3}{4}\right) \cdot \frac{x^{5}}{5}+\left(\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6}\right) \cdot \frac{x^{7}}{7}+\cdots .
\end{aligned}
$$

Therefore, for each $0<x \leq 1$, there exists a θ_{1} and θ_{2} between 0 and x such that

$$
\begin{aligned}
\sin x & =x-\frac{x^{3}}{3!}+\frac{\theta_{1}^{5}}{5!} \\
\arcsin x & =x+\left(\frac{1}{2}\right) \cdot \frac{x^{3}}{3}+\left(\frac{1}{2} \cdot \frac{3}{4}\right) \cdot \frac{\theta_{2}^{5}}{5} .
\end{aligned}
$$

Therefore,

$$
\sin x+\arcsin x=2 x+\frac{\theta_{1}^{5}}{5!}+\left(\frac{1}{2} \cdot \frac{3}{4}\right) \cdot \frac{\theta_{2}^{5}}{5}>2 x
$$

Solution II.
Let $f(x)=\sin x+\arcsin x$ and note that $f(0)=0$. Then $f^{\prime}(x)=\cos x+\frac{1}{\sqrt{1-x^{2}}}$ and $f^{\prime}(0)=2$, making $y=2 x$ the tangent line to the graph of f at the origin. Because $f^{\prime \prime}(x)=-\sin x+\frac{x}{\left(1-x^{2}\right)^{3 / 2}}$, and $\frac{x}{\left(1-x^{2}\right)^{3 / 2}}>x>\sin x$ for $0<x<1$, the graph of f is concave up on $(0,1)$, and thus above the tangent line at $(0,0)$, giving the required inequality.

This problem is from How do you Figure? Math Challenges, M283, Quantum, 10.3 (Jan/Feb 2000), 21, 46-47.
3. For what non-negative integers n does there exist a polynomial P_{n} of degree n with integer coefficients satisfying $P_{n}(k)=2^{k}$ for all integers $k, 0 \leq k \leq n$? Find all such polynomials.

Solution.
Suppose that $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$. First assume that $n>1$. Since $P(0)=1, a_{0}=1$. Then, since $P(2)=4$, we have $2^{n} a_{n}+2^{n-1} a_{n-1}+\cdots+2 a_{1}=3$. Since the parity of the left-hand-side and right-hand-side are different, no such polynomial exists. Now assume that $n \leq 1$. When $n=0$, the polynomial $P_{0}(x)=1$ does the trick. When $n=1$, the polynomial $P_{1}(x)=x+1$ satisfies both $P_{1}(0)=1$ and $P_{1}(1)=2$. Moreover, since $P_{n}(0)=1$ when $n=0,1$ and $P_{1}(1)=2, P_{0}$ and P_{1} are the only such polynomials.
4. Let a and b be real numbers with $b \neq 0$ and let $C(\mathbb{R})$ denote the set of continuous functions from the reals to the reals. Define $T: C(\mathbb{R}) \rightarrow C(\mathbb{R})$ by $(T f)(x)=$ $a x+b \int_{0}^{x} f(t) d t$. Find all fixed points of T^{2}, where T^{2} denotes the composition of T with itself.

Solution.

A function f is a fixed point of T^{2} if and only if for all real x

$$
\begin{aligned}
& f(x)=\left(T^{2}\right)(f)(x) \\
& f(x)=a x+b \int_{0}^{x}(T f)(t) d t \\
& f(x)=a x+b \int_{0}^{x}\left\{a t+b \int_{0}^{t} f(s) d s\right\} d t .
\end{aligned}
$$

Since f is continuous, the right-hand side is a differentiable function of x; thus the left-hand side is also. Differentiating gives

$$
f^{\prime}(x)=a+a b x+b^{2} \int_{0}^{x} f(s) d s
$$

Again, both sides are differentiable. Differentiating gives

$$
f^{\prime \prime}(x)=a b+b^{2} f(x)
$$

This is a constant coefficient differential equation; the general form of the solution is $f(x)=c_{1} e^{b x}+c_{2} e^{-b x}+k$, for some constants c_{1}, c_{2}, and k. Substituting in the differential equation gives $k=-\frac{a}{b}$. From the above, the initial conditions are $f(0)=0$ and $f^{\prime}(0)=a$. Since $f^{\prime}(x)=b c_{1} e^{b x}-b c_{2} e^{-b x}$, we have

$$
\left\{\begin{array}{c}
c_{1}+c_{2}-\frac{a}{b}=0 \\
b\left(c_{1}-c_{2}\right)=a
\end{array}\right.
$$

so that $c_{1}=\frac{a}{b}$ and $c_{2}=0$. Thus, the unique fixed point is

$$
f(x)=\frac{a}{b}\left(e^{b x}-1\right) .
$$

5. Let the function F be given by

$$
F(x)=e^{-x}-\left(1-\frac{x}{n}\right)^{n} .
$$

Show that, for $n \geq 2$,

$$
0 \leq F(x) \leq \frac{e^{-1}}{n} \quad \text { on } \quad[0, n]
$$

Solution.

The function F is continuous and differentiable on $[0, n]$, and so has both a maximum and a minimum there, either at an end point or at a critical number. We have $F(0)=0, F(n)=e^{-n}$, and

$$
F^{\prime}(x)=-e^{-x}+\left(1-\frac{x}{n}\right)^{n-1} .
$$

To show $F(x) \geq 0$, we need to show

$$
\left(1-\frac{x}{n}\right)^{n} \leq e^{-x} \quad \text { on } \quad[0, n]
$$

or

$$
\left(1-\frac{x}{n}\right)^{n} \leq\left(e^{-\frac{x}{n}}\right)^{n} \quad \text { on } \quad[0, n]
$$

or

$$
0 \leq\left(1-\frac{x}{n}\right) \leq e^{-\frac{x}{n}} \quad \text { on } \quad[0, n]
$$

This is equivalent to showing

$$
0 \leq(1-t) \leq e^{-t} \quad \text { on } \quad[0,1]
$$

which is clear, because $y=1-t$ is the tangent line to $y=e^{-t}$ at the point $(0,1)$, and the graph of $y=e^{-t}$ is concave up everywhere and thus is above all its tangent lines. So the minimum is 0 , which is attained at $x=0$.

Because $F^{\prime}(n)=-e^{-n}<0$, the maximum does not occur at $x=n$ and so must be at a point x_{0} in $(0, n)$ where $F^{\prime}\left(x_{0}\right)=0$. This means

$$
e^{-x_{0}}=\left(1-\frac{x_{0}}{n}\right)^{n-1}
$$

and

$$
\begin{aligned}
F\left(x_{0}\right) & =e^{-x_{0}}-\left(1-\frac{x_{0}}{n}\right)^{n} \\
& =e^{-x_{0}}-\left(1-\frac{x_{0}}{n}\right)^{n-1}\left(1-\frac{x_{0}}{n}\right) \\
& =e^{-x_{0}}-e^{-x_{0}}\left(1-\frac{x_{0}}{n}\right)=\frac{x_{0} e^{-x_{0}}}{n} .
\end{aligned}
$$

Now let $g(x)=x e^{-x}$. Basic calculus shows that g has a maximum of e^{-1} at $x=1$, and so

$$
F\left(x_{0}\right) \leq \frac{e^{-1}}{n}
$$

This problem is a lemma in the article by Levrie and Daems, Evaluating the probability integral using Wallis' product formula for π, The American Mathematical Monthly 116, (2009) 538-541. Later in the paper, x is replaced by x^{2} and $n \rightarrow \infty$.

2011 Missouri Collegiate Mathematics Competition Session II

1. For $0<r<1$, let n_{r} denote the line that is normal to the curve $y=x^{r}$ at the point $(1,1)$, and let S_{r} denote the region in the first quadrant of the $x y$-plane bounded by the x-axis, the curve $y=x^{r}$, and the line n_{r}. Find the value of r that minimizes the area of S_{r}.

Solution.

From $y^{\prime}=r x^{r-1}$, the slope of the curve $y=x^{r}$ at $(1,1)$ is r; hence the equation of line n_{r} is

$$
y-1=-\frac{1}{r}(x-1),
$$

or equivalently,

$$
x=r(1-y)+1 .
$$

The area of S_{r} is given by

$$
\begin{aligned}
A(r) & =\int_{0}^{1}\left[r(1-y)+1-y^{1 / r}\right] d y \\
& =\left.\left(r y-\frac{1}{2} r y^{2}+y-\frac{1}{\frac{1}{r}+1} y^{\frac{1}{r}+1}\right)\right|_{0} ^{1} \\
& =r-\frac{1}{2} r+1-\frac{r}{r+1} \\
& =\frac{1}{2} r+\frac{1}{r+1} .
\end{aligned}
$$

The only critical value of $A(r)$ for $0<r<1$ is the unique solution in that interval to $\frac{1}{2}-\frac{1}{(r+1)^{2}}=0$, namely, $r=\sqrt{2}-1$. Since $A^{\prime \prime}(r)=\frac{2}{(r+1)^{3}}, A^{\prime \prime}(\sqrt{2}-1)>0$, implying that the unique local minimum of $A(r)$ is at $r=\sqrt{2}-1$. We have $A(\sqrt{2}-1)=\sqrt{2}-\frac{1}{2}$. Since $\lim _{r \rightarrow 0^{+}} A(r)=1$ and $\lim _{r \rightarrow 1^{-}} A(r)=+\infty, A(r)$ has a global minimum at $r=\sqrt{2}-1$.
2. A rectangular strip is divided into n bands of equal width as in the following figure.

Each band is colored by one of m colors. Two patterns are considered identical if one is a (left-to-right) mirror reflection of the other. Determine the number of distinct patterns with m colors and n bands.

Solution.

If a color assignment is not altered by a mirror reflection, then for any i, bands i and $n+1-i$ must have the same color. If n is even, we can assign arbitrary colors to bands $1,2, \ldots, n / 2$, in which case there are $m^{n / 2}$ color schemes invariant under a mirror reflection. If n is odd, then the bands $1,2, \ldots,(n+1) / 2$ can be given an arbitrary coloring scheme and hence there are $m^{(n+1) / 2}$ color schemes invariant under mirror reflection.

Since there are a total of m^{n} coloring schemes, and since we can put in pairs, the schemes which are not invariant under mirror reflection, there are a total of $m^{n / 2}+\frac{1}{2}\left(m^{n}-m^{n / 2}\right)=\frac{1}{2}\left(m^{n}+m^{n / 2}\right)$ distinct patterns when n is even and $m^{(n+1) / 2}+$ $\frac{1}{2}\left(m^{n}-m^{(n+1) / 2}\right)=\frac{1}{2}\left(m^{n}+m^{(n+1) / 2}\right)$ distinct patterns when n is odd.
3. Let M be an arbitrary 3×3 matrix, each of whose entries $m_{i j}$ is drawn from the set $\{-1,1\}$, and let $\operatorname{det} M$ be the determinant of M. Prove that $|\operatorname{det} M| \leq 4$.

Solution I.
A 2×2 matrix with entries ± 1 necessarily has determinant 0 or ± 2. Expansion of the $3 \times 3 \operatorname{det} M$ in minors of the elements in the first row gives

$$
\operatorname{det} M=m_{11}\left|\begin{array}{ll}
m_{22} & m_{23} \tag{1}\\
m_{32} & m_{33}
\end{array}\right|-m_{12}\left|\begin{array}{ll}
m_{21} & m_{23} \\
m_{31} & m_{33}
\end{array}\right|+m_{13}\left|\begin{array}{ll}
m_{21} & m_{22} \\
m_{31} & m_{33}
\end{array}\right| \text {, }
$$

so the left-hand side must be even. Also, it is apparent from (1) that $|\operatorname{det} M|$ cannot exceed 6. It can be 6 only if none of the minors is 0 . But in the 2×3 matrix

$$
\left(\begin{array}{lll}
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right),
$$

where the entries are 1's and -1 's, it is always possible to find a 2×2 submatrix (by striking out some particular column) whose determinant is 0 , regardless of the distribution of 1's and -1 's. Thus, at least one of the terms in (1) must vanish, and we have $|\operatorname{det} M| \leq 4$.

Solution II.

Hadamard's Determinantal Inequality says that for any $n \times n$ real matrix $M_{n}, n>2$, one has

$$
\left|\operatorname{det} M_{n}\right| \leq \prod_{j=1}^{n}\left\{\sum_{i=1}^{n} m_{i j}^{2}\right\}^{1 / 2}
$$

For matrices of the sort considered here, the right-hand side of the inequality is $3 \sqrt{3} \approx 5.2$. Again, since $\operatorname{det} M_{3}$ must be even, then $\left|\operatorname{det} M_{3}\right| \leq 4$ follows.
4. Calculate

$$
\int_{0}^{2}\left(\sqrt{1+x^{3}}+\sqrt[3]{x^{2}+2 x}\right) d x
$$

Solution.
Consider the rectangle with the vertices $O(0,0), A(2,0), B(2,3)$, and $C(0,3)$ on the coordinate plane. The graph of the function $y=\sqrt{1+x^{3}}$ passes through the points $(0,1)$ and $(2,3)$ and partitions our rectangle into two parts. The area under the graph is

$$
\int_{0}^{2} \sqrt{1+x^{3}} d x
$$

We compute the area of the part of the rectangle that is above the graph. The function $y=\sqrt{1+x^{3}}$ is monotonic on the segment $[0,2]$. Thus, we can express x in terms of y :

$$
x=\sqrt[3]{y^{2}-1}
$$

Therefore, the area we seek is

$$
\int_{1}^{3} \sqrt[3]{y^{2}-1} d y
$$

Make the following change of variable under the integral sign: $y=t+1$. This yields the following expression for the area:

$$
\int_{0}^{2} \sqrt[3]{t^{2}+2 t} d t
$$

Now we see that the given integral is equal to the area of the rectangle $O A B C$, which is 6 .

This problem is from How do you Figure? Math Challenges, M249, Quantum, 9.2 (Nov/Dec 1998), 25, 45-46.
5. Evaluate the series

$$
\sum_{n=0}^{\infty} \frac{1}{2011^{2^{n}}-2011^{-2^{n}}}=\frac{1}{2011^{1}-2011^{-1}}+\frac{1}{2011^{2}-2011^{-2}}+\frac{1}{2011^{4}-2011^{-4}}+\ldots
$$

and express it as a rational number.
Solution.
More generally, let

$$
S(x)=\sum_{n=0}^{\infty} \frac{x^{2^{n}}}{1-x^{2^{n+1}}}, \quad S_{N}(x)=\sum_{n=0}^{N} \frac{x^{2^{n}}}{1-x^{2^{n+1}}}
$$

Note that the series in the problem is equal to $S(1 / 2011)$. We will show that, for any x with $0<x<1$,

$$
\begin{equation*}
S(x)=\frac{x}{1-x} . \tag{2}
\end{equation*}
$$

We use a "telescoping" argument based on the elementary identity

$$
\frac{x^{2^{n}}}{1-x^{2^{n+1}}}=\frac{1}{1-x^{2^{n}}}-\frac{1}{1-x^{2^{n+1}}} .
$$

If we substitute this into the partial sum $S_{N}(x)$, we get

$$
S_{N}(x)=\left(\frac{1}{1-x}-\frac{1}{1-x^{2}}\right)+\left(\frac{1}{1-x^{2}}-\frac{1}{1-x^{4}}\right)+\cdots+\left(\frac{1}{1-x^{2^{N}}}-\frac{1}{1-x^{2^{N+1}}}\right)
$$

which equals $\frac{1}{1-x}-\frac{1}{1-x^{2^{N+1}}}$. As $N \rightarrow \infty$, the second term approaches 1 , thus

$$
S(x)=\lim _{N \rightarrow \infty} S_{N}(x)=\frac{1}{1-x}-1=\frac{x}{1-x},
$$

proving (2).
Therefore, the solution of the problem is $S(1 / 2011)=(1 / 2011) /(1-1 / 2011)=$ 1/2010.
(Similar to a U of I contest problem.)

