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1. Consider the parabola x2 = 4 p y, with vertex at the origin, focus at F (0, p), and
directrix y = −p. Let P (x, y) be a point on the parabola and let R(x,−p) be the
intersection of the vertical line through P with the directrix. Determine P so that
the triangle PFR is equilateral.

Solution.

By the definition of a parabola,

dist(F, P ) = dist(P,R) =
x2 + 4p2

4p
.

dist(F,R) =
√

4p2 + x2, so we need

x2 + 4p2

4p
=

√

4p2 + x2

which is equivalent to
√

4p2 + x2 = 4p

making x = 2
√
3p and y = 3p.

2. Prove that the inequality sin x + arcsin x > 2x holds for all values of x such
that 0 < x ≤ 1.

Solution I.

The Maclaurin series for sin x and arcsin x are given by

sin x = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

arcsin x = x+

(

1

2

)

· x
3

3
+

(

1

2
· 3
4

)

· x
5

5
+

(

1

2
· 3
4
· 5
6

)

· x
7

7
+ · · · .

Therefore, for each 0 < x ≤ 1, there exists a θ1 and θ2 between 0 and x such that

sin x = x− x3

3!
+

θ51
5!

arcsin x = x+

(

1

2

)

· x
3

3
+

(

1

2
· 3
4

)

· θ
5
2

5
.
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Therefore,

sin x+ arcsin x = 2x+
θ51
5!

+

(

1

2
· 3
4

)

· θ
5
2

5
> 2x.

Solution II.

Let f(x) = sin x + arcsin x and note that f(0) = 0. Then f ′(x) = cosx+
1√

1− x2

and f ′(0) = 2, making y = 2x the tangent line to the graph of f at the origin. Be-

cause f ′′(x) = − sin x+
x

(1− x2)3/2
, and

x

(1− x2)3/2
> x > sin x for 0 < x < 1, the

graph of f is concave up on (0, 1), and thus above the tangent line at (0, 0), giving
the required inequality.

This problem is from How do you Figure? Math Challenges, M283, Quantum, 10.3
(Jan/Feb 2000), 21, 46–47.

3. For what non-negative integers n does there exist a polynomial Pn of degree n
with integer coefficients satisfying Pn(k) = 2k for all integers k, 0 ≤ k ≤ n? Find all
such polynomials.

Solution.

Suppose that P (x) = anx
n+an−1x

n−1+ · · ·+a1x+a0. First assume that n > 1. Since
P (0) = 1, a0 = 1. Then, since P (2) = 4, we have 2nan + 2n−1an−1 + · · · + 2a1 = 3.
Since the parity of the left-hand-side and right-hand-side are different, no such poly-
nomial exists. Now assume that n ≤ 1. When n = 0, the polynomial P0(x) = 1 does
the trick. When n = 1, the polynomial P1(x) = x + 1 satisfies both P1(0) = 1 and
P1(1) = 2. Moreover, since Pn(0) = 1 when n = 0, 1 and P1(1) = 2, P0 and P1 are
the only such polynomials.

4. Let a and b be real numbers with b 6= 0 and let C (R) denote the set of continu-
ous functions from the reals to the reals. Define T : C (R) → C (R) by (Tf) (x) =
ax+ b

∫ x

0
f (t) dt. Find all fixed points of T 2, where T 2 denotes the composition of T

with itself.

Solution.
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A function f is a fixed point of T 2 if and only if for all real x

f (x) =
(

T 2
)

(f) (x) ,

f (x) = ax+ b

∫ x

0

(Tf) (t) dt,

f (x) = ax+ b

∫ x

0

{

at + b

∫ t

0

f (s) ds

}

dt.

Since f is continuous, the right-hand side is a differentiable function of x; thus the
left-hand side is also. Differentiating gives

f ′ (x) = a + abx+ b2
∫ x

0

f (s) ds.

Again, both sides are differentiable. Differentiating gives

f ′′ (x) = ab+ b2f (x) .

This is a constant coefficient differential equation; the general form of the solution
is f (x) = c1e

bx + c2e
−bx + k, for some constants c1, c2, and k. Substituting in

the differential equation gives k = −a

b
. From the above, the initial conditions are

f (0) = 0 and f ′ (0) = a. Since f ′ (x) = bc1e
bx − bc2e

−bx, we have

{

c1 + c2 −
a

b
= 0;

b (c1 − c2) = a,

so that c1 =
a

b
and c2 = 0. Thus, the unique fixed point is

f (x) =
a

b

(

ebx − 1
)

.

5. Let the function F be given by

F (x) = e−x −
(

1− x

n

)n

.

Show that, for n ≥ 2,

0 ≤ F (x) ≤ e−1

n
on [0, n].

Solution.



4

The function F is continuous and differentiable on [0, n], and so has both a max-
imum and a minimum there, either at an end point or at a critical number. We have
F (0) = 0, F (n) = e−n, and

F ′(x) = −e−x +
(

1− x

n

)n−1

.

To show F (x) ≥ 0, we need to show

(

1− x

n

)n

≤ e−x on [0, n],

or
(

1− x

n

)n

≤
(

e−
x

n

)n
on [0, n],

or
0 ≤

(

1− x

n

)

≤ e−
x

n on [0, n].

This is equivalent to showing

0 ≤ (1− t) ≤ e−t on [0, 1],

which is clear, because y = 1− t is the tangent line to y = e−t at the point (0, 1), and
the graph of y = e−t is concave up everywhere and thus is above all its tangent lines.
So the minimum is 0, which is attained at x = 0.

Because F ′(n) = −e−n < 0, the maximum does not occur at x = n and so must
be at a point x0 in (0, n) where F ′(x0) = 0. This means

e−x0 =
(

1− x0

n

)n−1

and

F (x0) = e−x0 −
(

1− x0

n

)n

= e−x0 −
(

1− x0

n

)n−1 (

1− x0

n

)

= e−x0 − e−x0

(

1− x0

n

)

=
x0e

−x0

n
.

Now let g(x) = x e−x. Basic calculus shows that g has a maximum of e−1 at x = 1,
and so

F (x0) ≤
e−1

n
.

This problem is a lemma in the article by Levrie and Daems, Evaluating the probabil-
ity integral using Wallis’ product formula for π, The American Mathematical Monthly

116, (2009) 538–541. Later in the paper, x is replaced by x2 and n → ∞.
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1. For 0 < r < 1, let nr denote the line that is normal to the curve y = xr at the point
(1, 1), and let Sr denote the region in the first quadrant of the xy-plane bounded by
the x-axis, the curve y = xr, and the line nr. Find the value of r that minimizes the
area of Sr.

Solution.

From y′ = rxr−1, the slope of the curve y = xr at (1, 1) is r; hence the equation
of line nr is

y − 1 = −1

r
(x− 1) ,

or equivalently,
x = r (1− y) + 1.

The area of Sr is given by

A (r) =

∫ 1

0

[

r (1− y) + 1− y1/r
]

dy

=

(

ry − 1

2
ry2 + y − 1

1
r
+ 1

y
1

r
+1

)
∣

∣

∣

∣

1

0

= r − 1

2
r + 1− r

r + 1

=
1

2
r +

1

r + 1
.

The only critical value of A (r) for 0 < r < 1 is the unique solution in that interval

to
1

2
− 1

(r + 1)2
= 0, namely, r =

√
2− 1. Since A′′ (r) =

2

(r + 1)3
, A′′

(√
2− 1

)

> 0,

implying that the unique local minimum of A (r) is at r =
√
2 − 1. We have

A
(√

2− 1
)

=
√
2 − 1

2
. Since lim

r→0+
A (r) = 1 and lim

r→1−
A (r) = +∞, A (r) has a

global minimum at r =
√
2− 1.

2. A rectangular strip is divided into n bands of equal width as in the following figure.

1 2 n

Each band is colored by one of m colors. Two patterns are considered identical
if one is a (left-to-right) mirror reflection of the other. Determine the number of
distinct patterns with m colors and n bands.

Solution.
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If a color assignment is not altered by a mirror reflection, then for any i, bands i
and n + 1 − i must have the same color. If n is even, we can assign arbitrary colors
to bands 1, 2, . . . , n/2, in which case there are mn/2 color schemes invariant under
a mirror reflection. If n is odd, then the bands 1, 2, . . . , (n + 1)/2 can be given an
arbitrary coloring scheme and hence there are m(n+1)/2 color schemes invariant under
mirror reflection.

Since there are a total of mn coloring schemes, and since we can put in pairs,
the schemes which are not invariant under mirror reflection, there are a total of
mn/2+ 1

2
(mn−mn/2) = 1

2
(mn+mn/2) distinct patterns when n is even and m(n+1)/2+

1
2
(mn −m(n+1)/2) = 1

2
(mn +m(n+1)/2) distinct patterns when n is odd.

3. Let M be an arbitrary 3 × 3 matrix, each of whose entries mij is drawn from
the set {−1, 1}, and let detM be the determinant of M . Prove that | detM | ≤ 4.

Solution I.

A 2 × 2 matrix with entries ±1 necessarily has determinant 0 or ±2. Expansion
of the 3× 3 detM in minors of the elements in the first row gives

detM = m11

∣

∣

∣

∣

m22 m23

m32 m33

∣

∣

∣

∣

−m12

∣

∣

∣

∣

m21 m23

m31 m33

∣

∣

∣

∣

+m13

∣

∣

∣

∣

m21 m22

m31 m33

∣

∣

∣

∣

, (1)

so the left-hand side must be even. Also, it is apparent from (1) that | detM | cannot
exceed 6. It can be 6 only if none of the minors is 0. But in the 2× 3 matrix

(

m21 m22 m23

m31 m32 m33

)

,

where the entries are 1’s and −1’s, it is always possible to find a 2 × 2 submatrix
(by striking out some particular column) whose determinant is 0, regardless of the
distribution of 1’s and −1’s. Thus, at least one of the terms in (1) must vanish, and
we have | detM | ≤ 4.

Solution II.

Hadamard’s Determinantal Inequality says that for any n×n real matrix Mn, n > 2,
one has

| detMn| ≤
n
∏

j=1

{

n
∑

i=1

m2
ij

}1/2

.

For matrices of the sort considered here, the right-hand side of the inequality is
3
√
3 ≈ 5.2. Again, since detM3 must be even, then | detM3| ≤ 4 follows.

4. Calculate
∫ 2

0

(√
1 + x3 +

3
√
x2 + 2x

)

dx.



7

Solution.

Consider the rectangle with the vertices O(0, 0), A(2, 0), B(2, 3), and C(0, 3) on the
coordinate plane. The graph of the function y =

√
1 + x3 passes through the points

(0, 1) and (2, 3) and partitions our rectangle into two parts. The area under the graph
is

∫ 2

0

√
1 + x3 dx.

We compute the area of the part of the rectangle that is above the graph. The
function y =

√
1 + x3 is monotonic on the segment [0, 2]. Thus, we can express x in

terms of y:
x = 3

√

y2 − 1.

Therefore, the area we seek is
∫ 3

1

3
√

y2 − 1 dy.

Make the following change of variable under the integral sign: y = t+ 1. This yields
the following expression for the area:

∫ 2

0

3
√
t2 + 2t dt.

Now we see that the given integral is equal to the area of the rectangle OABC, which
is 6.

This problem is from How do you Figure? Math Challenges, M249, Quantum, 9.2
(Nov/Dec 1998), 25, 45–46.

5. Evaluate the series

∞
∑

n=0

1

20112n − 2011−2n
=

1

20111 − 2011−1
+

1

20112 − 2011−2
+

1

20114 − 2011−4
+ . . .

and express it as a rational number.

Solution.

More generally, let

S(x) =
∞
∑

n=0

x2n

1− x2n+1
, SN (x) =

N
∑

n=0

x2n

1− x2n+1
.



8

Note that the series in the problem is equal to S(1/2011). We will show that, for any
x with 0 < x < 1,

S(x) =
x

1− x
. (2)

We use a “telescoping” argument based on the elementary identity

x2n

1− x2n+1
=

1

1− x2n
− 1

1− x2n+1
.

If we substitute this into the partial sum SN (x), we get

SN(x) =

(

1

1− x
− 1

1− x2

)

+

(

1

1− x2
− 1

1− x4

)

+ · · ·+
(

1

1− x2N
− 1

1− x2N+1

)

which equals
1

1− x
− 1

1− x2N+1
. As N → ∞, the second term approaches 1, thus

S(x) = lim
N→∞

SN (x) =
1

1− x
− 1 =

x

1− x
,

proving (2).
Therefore, the solution of the problem is S(1/2011) = (1/2011)/(1 − 1/2011) =
1/2010.

(Similar to a U of I contest problem.)


