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1. Let P 6= (0, 0) be a point on the parabola y = x2. The normal line to the parabola
at P will intersect the parabola at another point, say Q. Find the coordinates of P so that
the average of the y-coordinates of P and Q is a minimum.

Solution.

Let P = (p, p2) and Q = (q, q2). The slope of the tangent line to the parabola at P is
2p, so the slope of the normal line to the parabola at P is −1/2p. Thus, the equation of
the normal line to the parabola at P is

y − p2 = − 1

2p
(x − p).

Since Q = (q, q2) lies on the normal line,

q2 − p2 = − 1

2p
(q − p) or q + p = − 1

2p
.

Solving for q, we obtain

q = −p − 1

2p
.

Now the average of the y-coordinates of P and Q is

A =
p2 + q2

2
=

p2 + (−p − 1/2p)2

2
= p2 +

1

2
+

1

8p2
.

Differentiating this quantity with respect to p, we obtain

dA

dp
= 2p − 1

4p3
=

1

4p3
(8p4 − 1).
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Setting this quantity equal to 0, we arrive at

p = 2−3/4.

Therefore, the coordinates of P so that the average of the y-coordinates of P and Q is a
minimum are (2−3/4, 2−3/2).

From Mathematical Gems II by Ross Honsberger, Dolciani Mathematical Exposition,
1976, pp. 90–97.

2. A tetrahedron is called isosceles if the members of each pair of opposite edges are
equal. This means, for tetrahedron ABCD, that AB = CD, BC = AD, and AC = BD.

(a) Prove that all four faces of an isosceles tetrahedron are congruent.
(b) Prove that if all four faces of a tetrahedron have the same perimeter, then the tetra-

hedron is isosceles.
(c) Prove that a tetrahedron is isosceles if and only if the sum of the face angles at each

vertex is 180◦.

Solution.

(a) Side-Side-Side
(b) Denote opposite edges by a, a′, b, b′, and c, c′. Then from equal perimeters,

a + b + c = a + b′ + c′ = a′ + b + c′ = a′ + b′ + c

Eliminate a from the first two equations and a′ from the last two. Solve each resulting
equation for b − b′, giving c − c′ = c′ − c, which means c = c′. Similarly, a = a′ and
b = b′. Thus the tetrahedron is isosceles.
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(c) Imagine cutting ABCD along the three edges that meet at D and flattening the tetra-
hedron out. This gives a hexagon AD1BD2CD3.

Assume the sum of the face angles at each vertex is 180◦. Then in the hexagon the
angles at A, B, and C are each straight angles, making the hexagon really a triangle
D1D2D3 with A, B, and C as the midpoints of the sides. Thus, AB = CD2 = CD3,
etc. and the tetrahedron is isosceles.
Assume the tetrahedron is isosceles. Then the faces are congruent, and so the face

angles at a vertex are the same as the angles in a face triangle, which sum to 180◦.

3. Let {xn} be the following sequence involving alternating square roots of 5 and 13:

x1 =
√

5, x2 =

√

5 +
√

13, x3 =

√

5 +

√

13 +
√

5, x4 =

√

5 +

√

13 +

√

5 +
√

13,

and so on. Prove that limn→∞ xn exists and determine its value.

Solution.

We see that x1, x2 < 4; assume also that x2k−1, x2k < 4. Then,

x2k+2 =

√

5 +
√

13 + x2k <

√

5 +
√

13 + 4 < 4.

The argument is identical for x2k+1. Hence, for each n, xn < 4 by mathematical induction
on n. In addition, the sequence increases monotonically. Therefore, by a standard limit
theorem on sequences

lim
n→∞

xn
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must exist.
Let

L = lim
n→∞

xn.

Then we have

L =

√

5 +
√

13 + L

or
L4 − 10L2 − L + 12 = 0.

One root is L = 3. Of the three remaining roots, one is positive (between 1 and 2) and the
other two are complex. It follows that

lim
n→∞

xn = 3.

Convergence is fairly rapid; x6 is already 2.999971.

From From Erdős to Kiev by Ross Honsberger, Dolciani Mathematical Exposition,
1995, pp. 177–179.

4. Does the set X = {1, 2, . . . , 3000} contain a subset A of 2000 integers in which no
member of A is twice another member of A?

Solution.

Since twice any integer in the interval P = [1501, 3000] is too big to belong to X , we
could put these 1500 integers in A without worrying about doubling up on any of them.
On the other hand, A certainly can’t get more than 1500 integers from P since it only has
1500 altogether. Obviously, we have to be careful not to pick any integer in the interval
Q = [751, 1500] which is one-half an integer that is chosen from P . Clearly, each integer
taken from Q negates the eligibility of its double in P , and it follows that, if k integers are
taken from Q, then not more than 1500− k can be selected from P , for a total of not more
than 1500 altogether from the entire interval Q ∪ P = [751, 3000]. Thus, in order to build
up to 2000 integers in A, at least 500 must come from [1, 750], the initial quarter of X .

Repeated applications of this reasoning give the following results. In order to build up to
2000 integers in A, at least 125 must come from [1, 187]; at least 31 must come from [1, 46];
at least 8 from [1, 11]; and at least 2 from [1, 2].
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However, the proposal is not outrageous, for clearly A can be built up to

1500 + 375 + 94 + 23 + 6 + 1 = 1999 integers.

This suggests that two-thirds the number of integers in X is a sharp cut-off point for
the size of A, that is, that |A| can be any number up to two-thirds the size of X , but not
actually as big as 2

3
|X |. Applying our analysis to X = {1, 2, . . . , 300}, however, reveals

that A can have as many as 200 members:

A = {1, 3, 4
︸ ︷︷ ︸

3

; 10, 11, . . . , 18
︸ ︷︷ ︸

+9

; 38, 39, . . . , 75
︸ ︷︷ ︸

+38

; 151, 152, . . . , 300
︸ ︷︷ ︸

+150=200.

}.

But, this set is as fully packed as possible, suggesting that the general result is rather
|A| ≤ 2

3
|X |.

From the above procedure, we can obtain the recursive formula

|A(N)| =

⌈
N

2

⌉

+

∣
∣
∣
∣
A

(⌊
N

4

⌋)∣
∣
∣
∣
,

where | · | denotes the number of elements in a set and A(N) is a subset of X = {1, 2, . . . , N}
with the no doubling property and having the largest number of elements.

Bruce Resnick (University of Illinois at Urbana-Champaign) has recently found the
following pretty formula for the maximum size fr(n) of a subset of {1, 2, . . . , n} in which
no element is r times another. Converting n to its representation in base r,

n = amam−1 · · · a0,

then

fr(n) =
1

r + 1

(

rn +

m∑

k=0

(−1)kak

)

.

5. Two right circular cylinders of radius r intersect at right angles to form a solid. This
solid has four curved faces. Imagine one of these faces “rolled out flat”. Find equations of
the boundary curves of this flattened face and also find its area.

Solution.
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Let the x-axis be the axis of one cylinder and the y-axis be the axis of the other cylinder
so that the center of the sold is the origin. Cross-sections perpendicular to the z-axis are
squares with side s = 2

√
r2 − z2. Place the flattened face with its axis of symmetry on

the horizontal axis, call it the w-axis, with the left end of the figure at the origin. This
makes the range of w the interval 0 ≤ w ≤ πr, and the distance from the w–axis to the top
boundary curve is

√
r2 − z2. To relate z and w, note that if θ is the angle through which

the solid has rolled, then cos θ = z/r and w = rθ, yielding

√

r2 − z2 = r sin
w

r
.

The boundary curves, then are

f(w) = r sin
w

r
and g(w) = −r sin

w

r
.

The area is given by a simple integral:

area =

∫ πr

0

2r sin
w

r
dw = 4r2.

This solid and its circumscribed cube have the same properties that Archimedes admired
concerning the sphere and its circumscribed cylinder, namely, both the volumes and the
surface areas are in the ratio 2 : 3.
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1. Seven golf balls, labeled 1 through 7, are correctly placed in corresponding boxes
(one to a box), also labeled 1 through 7. The balls are now removed and then randomly
returned to the boxes, one ball to a box. What is the probability that no ball will find its
correct box?

Solution.

Let Wn denote the number of ways that n golf balls can be returned to n boxes with
no ball finding its correct home. Suppose box 1 contains ball N (N 6= 1). There are then
two cases.

CASE 1. Box N contains ball 1. Hence, the remaining n−2 balls are to be distributed
among n − 2 boxes, with no ball finding its correct home. There are Wn−2 ways for this.

CASE 2. Box N doesn’t contain ball 1. Then n−1 balls are to be similarly distributed
among n − 1 boxes; there are Wn−1 ways here.

Since the choice of box 1 was arbitrary among the n − 1 balls 2, 3, . . . , n, the total
number of ways is

Wn = (n − 1)(Wn−2 + Wn−1).

We have, clearly, W1 = 0 and W2 = 1. The recursion formula then gives, successively,
W3 = 2, W4 = 9, W5 = 44, W6 = 265, and finally W7 = 1854. But the number of
permutations of 7 balls in 7 boxes is 7! = 5040, so the desired probability is

P7 =
W7

7!
=

1854

5040
=

103

280
= 0.3679.

2.
(a) Prove that, for any positive integer n,

sin nθ =

(
n

1

)

sin θ cosn−1 θ −
(

n

3

)

sin3 θ cosn−3 θ +

(
n

5

)

sin5 θ cosn−5 θ − · · ·

and

cosnθ = cosn θ −
(

n

2

)

sin2 θ cosn−2 θ +

(
n

4

)

sin4 θ cosn−4 θ − · · · .
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(b) Prove that, for all x in the interval [−1, 1] and any positive integer n, the function

Tn(x) = cos(n cos−1 x)

is a polynomial in x of degree n and leading coefficient 2n−1.

Solution.

For part (a), from DeMoivre’s Theorem

(cos θ + i sin θ)n = cosnθ + i sinnθ,

we expand the left side using the binomial theorem and equate real and imaginary parts.
For part (b), use part (a) with θ = cos−1 x, cos θ = x, and sin θ =

√
1 − x2 to get

cos(n cos−1 x) = xn −
(

n

2

)

(1 − x2)xn−2 +

(
n

4

)

(1 − x2)2xn−4 − · · · .

It is clear that Tn(x) is a polynomial of degree n, and that the leading coefficient is

1 +

(
n

2

)

+

(
n

4

)

+ · · · +
(

n

2k

)

where

2k =

{
n, if n is even

n − 1, if n is odd.

Now, since

2n = (1 + 1)n = 1 +

(
n

1

)

+

(
n

2

)

+ · · · +
(

n

n

)

and

0 = (1 − 1)n = 1 −
(

n

1

)

+

(
n

2

)

− · · · + (−1)n

(
n

n

)

we can add and get the leading coefficient above equal to 2n−1.
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From Mathematical Gems II by Ross Honsberger, Dolciani Mathematical Exposition,
1976, pp. 18–20.

3. Suppose three equal circles, each of radius r, pass through a common point O and
have three other pairwise intersections at P1, P2, and P3. Prove that the circle containing
P1, P2, and P3 also has radius r.

Solution.

Label the three circles 1, 2, 3, with centers C1, C2, C3, respectively. Denote the point
of intersection common only to circles i and j as Pk, i, j, k = 1, 2, 3, i 6= j 6= k. The circle
through points C1, C2, C3 has center O and radius r since the distance from O to each Ci

is r.
C1OC2P3, C1OC3P2, and C2OC3P1 are rhombi whose all four sides are equal to r.

Thus, C1P3 and OC2 are equal and parallel, as are OC2 and C3P1. This implies C1P3 and
C3P1 are equal and parallel, so that C1P3P1C3 is a parallelogram, and thus, C1C3 and P1P3

are equal and parallel. Similarly, C1C2 and P1P2, as well as C2C3 and P2P3, are equal and
parallel.

Therefore, 4C1C2C3 and 4P1P2P3 are congruent which implies the circumcircles of
each are equal, and each circle has radius r.

4. ABCDE is a regular pentagon of side s, and P is any point in the interior of
ABCDE. Line segments are drawn from P perpendicular to each of the five sides. Denote
the sum of the lengths of these five perpendiculars by S. Prove that S is independent of
the location of P , and find S in terms of s.
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Solution.

Let P be an arbitrary point in the interior. Then

area 4PAB =
1

2
· s · h1,

where h1 is the length of the perpendicular from P to AB. Similarly,

area 4PBC =
1

2
· s · h2,

where h2 is the length of the perpendicular from P to BC. Continue this process for
4PCD, 4PDE and 4PEA. The sum of the areas of these triangles is the area of the
pentagon, that is,

1

2
s(h1 + h2 + h3 + h4 + h5) = area of pentagon.

Therefore,
S = h1 + h2 + h3 + h4 + h5

is independent of the position of P because P was arbitrary.
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To compute S, let P = O = center of the pentagon. Let L be the point on side AB so that
OL is perpendicular to side AB. Then S = 0.5L and

6 AOB = 72◦, 6 AOL = 36◦,
AL

OL
= tan 36◦,

AL = OL tan 36◦, OL = AL cot 36◦ =
s

2
cot 36◦.

Therefore,

S = 5OL = s

(
5

2
cot 36◦

)

.

From the 1980 All-Union Russian Olympiad.

5. Let p(n) denote the product of the (decimal) digits of the positive integer n. Consider
the sequences, beginning at any arbitrary positive integer, in which succeeding terms are
obtained by adding to the previous term the product of its digits:

n0 = n, and for r ≥ 0, nr+1 = nr + p(nr).

Is there an initial integer n for which the sequence continues to increase indefinitely?

Solution.

The answer is no.
Note that a digit equal to zero anywhere in nr results in p(nr) = 0, leading to nr+1 = nr

and to nr repeating indefinitely; otherwise, p(nr) is positive and the sequence increases.
The list of consecutive numbers containing a 0 at the beginning of the set of integers

that contain a given number of digits is

{100, 101, . . . , 109}
{1000, 1001, . . . , 1099}.

In general, for k ≥ 3, the k-digit integers begin with 10k−2 consecutive numbers containing
a 0 (actually there are more than this but we do not need greater accuracy). Now if p(nr)
were to increase nr to any value in this initial segment of k-digit numbers containing a 0,
the sequence would never get any bigger.
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For a (k− 1)-digit number nr, p(nr) cannot exceed 9k−1. If it should ever happen that
the initial segment of 10k−2 k-digit numbers containing a 0 were too great for p(nr) to get
over, that is, if ever 10k−2 > 9k−1, then all sequences with terms containing k − 1 or fewer
digits could never muster the increment necessary to reach any k-digit integer that did not
contain a zero – those that managed to survive to the k-digit level would remain in one of
our 10k−2 consecutive k-digit integers containing a 0. Starting with

10k−2 > 9k−1

and taking logs, we see that

k − 2 > (k − 1) log 9

k >
2 − log 9

1 − log 9

.
= 22.85.

Thus, no sequence that starts below 23-digit numbers can survive beyond our 1021 consec-
utive 23-digit integers containing a 0, and sequences that start at m ≥ 23-digit numbers
cannot get past the first 10m−1 integers with m + 1 digits.

13


