A total of 101 Michigan high school students, from 51 different schools, were honored for their achievements on the 44th Annual Michigan Mathematics Prize Competition at the Awards Day program held on March 10 at Albion College.

Robert Messer(Albion College) is the director of the MMPC this year.

Joan HutchinsonandStan Wagon(Macalester College) gave talks to the "Top 100" and their parents and teachers: "How to Color Maps (and Graphs) When You Have Only Two or Three Crayons" and "Unusual Mathematical Models: From Square-Wheel Bikes to Giant Surfaces in Snow".Joshua Boehme, a student from East Lansing High School, spoke at the awards banquet about his experiences last year with the Michigan All-Stars in the ARML competition, in which teams drawn from the Top 100 compete in mathematics problem solving against other top teams from around the country. This year's contest will take place on June 2 at the University of Iowa, and three spring practice sessions around the state will prepare team members. Michigan teams have consistently done well in this event (see report in the Fall Newsletter).This year's first, second, and third place Gold award recipients were

Mike Asmar(Troy),Chenlu Hou(Ann Arbor Huron), andShailesh Agarwal(Troy), respectively. The First Level Silver winner wasRyan Timmons(Groves); the Second Level Silver awards went toChristopher Battey(Ann Arbor Pioneer),Arrak Bhattacharyya(Dow),Hogyeong Jeong(East Lansing), andDennis Lu(Detroit Country Day); and Third Level Silver awards were captured byCharles Crissman(Dow),Peter Landry(Dow), andMichael Pierfelice(Allen Park). An additional 39 students received Bronze awards, and 51 received Honorable Mentions. Gold award winner Hou also received a certificate from Women and Math as the highest scoring female in the state.The top 50 students received nearly $30,000 in scholarships, in amounts ranging from $450 to $2500, thanks to generous funding of the MMPC by corporate and other donors. The Honorable Mention winners received a copy of the book

Which Way Did the Bicycle Go?byJoseph Konhauser,Dan Velleman, andStan Wagon, courtesy of the Michigan Council of Teachers of Mathematics.Part I of this year's MMPC (a 40-question multiple choice test) was administered to 14,173 students in October. The top 1030 qualified to take Part II in December, and 991 did so.

Make sure to plan on helping to grade the 45th MMPC next January at Albion!

- Top Gold winner Mike Asmar is a senior, having been a Silver winner as a sophomore and a Gold winner last year. Second and third place Gold winners Chenlu Hou and Shailesh Agarwal are juniors.
- Of the eight Silver winners, two are seniors and the rest are juniors, including top Silver winner Ryan Timmons, who makes his fifth straight appearance in the Top 100.
- Among the 39 Bronze winners are 21 seniors, 13 juniors, four sophomores and a freshman.
- Twenty-three seniors, 18 juniors, nine sophomores, and one freshman took Honorable Mentions.
- About 45% of the original contestants were female, as were about 19% of those who qualified for Part II. There were 11 young women among the Top 101 (including one Gold and seven Bronze winners).
- The highest score was 80.0 out of 100. The cutoff score for scholarships was 53.4. It took a 47.6 to make it into the Top 101.
- The cut-off score to qualify for Part II this year was 22.

The top 1000 students had 100 minutes to solve these five problems and compete for scholarships and recognition.

- José, Luciano, and Plácido enjoy playing cards after their performances, and you are invited to deal. They use just nine cards, numbered 2 through 10, and each player is to receive three cards. You hope to hand out the cards so that the following three conditions hold:
Explain why it is impossible to distribute the nine cards so as to satisfy these three conditions, or give an example of one such distribution.

- When José and Luciano pick cards randomly from their piles, Luciano most often picks a card higher than José;
- When Luciano and Plácido pick cards randomly from their piles, Plácido most often picks a card higher than Luciano ;
- When Plácido and José pick cards randomly from their piles, José most often picks a card higher than Plácido.
- Is it possible to fill a rectangular box with a finite number of solid cubes (two or more), each with a different edge length? Justify your answer.
- Two parallel lines pass through the points (0,1) and (-1,0). Two other lines are drawn through (1,0) and (0,0), each perpendicular to the first two. The two sets of lines intersect in four points that are the vertices of a square. Find all possible equations for the first two lines.
- Suppose a
_{1}, a_{2}, a_{3}, . . . is a sequence of integers that represent data to be transmitted across a communications channel. Engineers use the quantity G(n) = (1 - √3)a_{n}- (3 - √3)a_{n +1}+ (3 + √3)a_{n +2}- (1 + √3)a_{n +3}to detect noise in the signal. (a) Show that if the numbers a_{1}, a_{2}, a_{3}, . . . are in arithmetic progression, then G(n) = 0 for all n = 1, 2, 3, . . . . (b) Show that if G(n) = 0 for all n = 1, 2, 3, . . . , then a_{1}, a_{2}, a_{3}, . . . is an arithmetic progression- The Olive View Airline in the remote country of Kuklafrania has decided to use the following rule to establish its air routes: If A and B are two distinct cities, then there is to be an air route connecting A with B if either there is no city closer to A than B or there is no city closer to B than A. No further routes will be permitted. Distances between Kuklafranian cities are never equal. Prove that no city will be connected by air routes to more than five other cities.

of

Budding Mathematicians

This year's MMPC Part II produced the usual collection of humorous remarks which the graders dutifully recorded. Here is a selection from among them.

"It [problem #2] is impossible because no theorem exists that says so."

"Andrew Wiles recently proved that one guy's last theorem. . . . Therefore, one of the two cubes [problem #3] can't be expressed as two smaller cubes."

"The box will never be completely full. It will, however, reach a point where it will appear full to the human eye."

"I know this has nothing to do with problem #3, but please include this sentence as one of the funny remarks you read at the banquet."

"This problem [#3] is very hard to solve without computational aids, if not impossible."

"This [problem #5] is proven by the fact that the ratio of the radius of a circle to its circumference is 6:1."

"Kuklafrania is such a small, remote, underpopulated country that there couldn't possibly be more than 5 routes between each city."

Back to the Spring NewsletterThis page is maintained by Earl D. Fife