
1. If a polygon has both an inscribed circle and a circumscribed circle, then de�ne the halo of that polygon to be
the region inside the circumcircle but outside the incircle. In particular, all regular polygons and all triangles
have halos.

(a) What is the area of the halo of a square with side length 2?

(b) What is the area of the halo of a 3-4-5 right triangle?

(c) What is the area of the halo of a regular 2016-gon with side length 2?

Solutions to Problem #1.

Part (a)

Area of the halo is �
�p
2
�2 � �(1)2 = �

Part (b)

The hypotenuse is a diameter of the circumscribed circle. So its radius is 52 : To �nd the radius of the inscribed
circle, compute the area of the triangle in two ways:

Area of triangle is
1

2
(4 � 3) =

1

2
r(3 + 4 + 5)

6 = 6r

1 = r

Hence the area of the halo is �
�
5
2

�2 � �(1)2 = 21
4 �

Part (c).

Consider a regular polygon with n sides each of length 2.
Let R denote the radius of the circumscribed circle and let r denote the radius of the inscribed circle. By the
Pythagorean theorem, r2 + 1 = R2: Hence the area of the halo is

�R2 � �r2 = �
Note that the area of the halo is independent of n: Hence, the area of the halo of a regular 2016-gon with side
length 2 is �:



2. Let s1; s2; s3; s4; : : : be a sequence (in�nite list) of 1�s and 0�s. For example 1; 0; 1; 0; 1; 0; : : :, that is, sn = 1 if n
is odd and sn = 0 if n is even, is such a sequence. Prove that it is possible to delete in�nitely many terms in
s1; s2; s3; s4; : : : so that the resulting sequence is the original sequence. For the given example, one can delete
s3; s4; s7; s8; s11; s12; : : :.

Solutions to Problem #2. If the sequence has �nitely many 1�s, then there exists an m such that ai = 0
for all i � m; thus we can delete even i�s when i � m. Similarly if the sequence has �nitely many 0�s. Thus
we may assume that the sequence contains in�nitely many 0�s and in�nitely many 1�s. We prove the claim by
construction. It is easier to describe the algorithm by �rst creating an identical sequence qn, that is, qi = si for
all i. We keep q1. The next step is to delete q2; : : : ; qj where j > 2 such that qj+1 = b2. This is possible because
the sequence has in�nitely many 0�s and 1�s. In general, after deleting terms from qn�s so that the initial k terms
of the resulting sequence match the ones in sn�s, delete at least one term after the kth term in the revised qn�s
until the next term is the same as bk+1. This is possible because the sequence has in�nitely many 0�s and 1�s
and up to this point we have only deleted �nitely many terms. Since we delete at least one term in each step,
in�nitely many terms will be deleted.



3. This problem is about pairs of consecutive whole numbers satisfying the property that one of the numbers is a
perfect square and the other one is the double of a perfect square.

(a) The smallest such pairs are (0; 1) and (8; 9), Indeed 0 = 2 � 02 and 1 = 12; 8 = 2 � 22 and 9 = 32. Show
that there are in�nitely many pairs of the form (2a2; b2) where the smaller number is the double of a
perfect square satisfying the given property.

(b) Find a pair of integers satisfying the property that is not in the form given in the �rst part, that is, �nd a
pair of integers such that the smaller one is a perfect square and the larger one is the double of a perfect
square.

Solution to Problem #3.

(a) We say that the pair (2a2; b2) is associated to the pair (a; b). From the relation 2a2 + 1 = b2 it follows that
2a2 = b2 � 1 = (b� 1)(b+ 1). This implies �rst that b has to be an odd number, and this further implies
that a has to be an even number, because (b � 1)(b + 1) is a multiple of 4. Let a = 2s and b = 2t + 1.
Introducing these in the relation above, we get: 8s2 = 4t(t+ 1), or 2s2 = t(t+ 1). The product of the two
consecutive numbers suggest that we could use for t the value 2�2 from one of the already known pairs
associated to (�; �). Substituting in the previous equation, we get 2s2 = 2�2�2, or s = ��. The outcome of
these observations is that from a pair associated to (�; �) we obtain another such pair, this time associated
to (2��; 4�2 + 1). For example, if we start with the pair (8; 9) associated to (2; 3), we obtain the new pair
(288; 289), associated to (12; 17). Finally, we note that when passing from (�; �) to (2��; 4�2 + 1) the �rst
component of these pairs is increasing, so we do obtain inductively an in�nite sequence of pairs with the
desired property.

Note. There is no implication that the method presented above �nds all the pairs (2a2; b2).

(b) (49; 50) is such an example. The simplest way to �nd this is probably by writing a few terms of the two
sequences fn2gn and f2n2gn:

fn2gn�0 : 0; 1; 4; 9; 16; 25; 36; 49; 64; 81; 100; : : :

f2n2gn�0 : 0; 2; 8; 18; 32; 50; 72; 98; 128; 162; : : :
One can now easily observe the two examples mentioned in the statement and the new one (49; 50).



4. It is a fact that every set of 2016 consecutive integers can be partitioned in two sets with the following four
properties:
(i) The sets have the same number of elements.
(ii) The sums of the elements of the sets are equal.
(iii) The sums of the squares of the elements of the sets are equal.
(iv) The sums of the cubes of the elements of the sets are equal.

Let S = fn+ 1; n+ 2; : : : ; n+ kg be a set of k consecutive integers.
(a) Determine the smallest value of k such that property (i) holds for S.

(b) Determine the smallest value of k such that properties (i) and (ii) hold for S.

(c) Show that properties (i), (ii) and (iii) hold for S when k = 8.

(d) Show that properties (i), (ii), (iii) and (iv) hold for S when k = 16.

Solutions to Problem #4.

Part (a) Property (i) holds for the partition fn+1g and fn+2g, so k = 2 su¢ ces. Furthermore, if k = 1; then
property (i) cannot hold for S: So k = 2 is minimal. Note that the sum of the elements for the second set is 1
larger than in the �rst set, which lends itself nicely to. . .

Part (b) Properties (i) and (ii) hold for the partition fn + 1; n + 4g and fn + 2; n + 3g; so k = 4 will su¢ ce.
Furthermore, if k = 1 or 3; then property (i) cannot hold, and if k = 2; then property (ii) cannot hold. So k = 4
is minimal. Note that the sum of the squares of the elements of the �rst set is exactly 4 bigger than in the
second set, which lends itself nicely to. . .

Part (c) Properties (i), (ii), and (iii) hold for the partition fn+1; n+4; n+6; n+7g and fn+2; n+3; n+5; n+8g,
so k = 8 su¢ ces. Note that the sum of the cubes of the elements of the �rst set is exactly 48 smaller than the
second set, which lends itself nicely to. . .

Part (d) Properties (i), (ii), (iii), and (iv) hold for the partition fn+1; n+4; n+6; n+7; n+10; n+11; n+13; n+16g
and fn+2; n+3; n+5; n+8; n+9; n+12; n+14; n+15g; so k = 16 su¢ ces. It is noteworthy that this process
extends quite nicely into higher powers of 2. In fact, because 2016 is divisible by 32, we could extend this all
the way up to �sums of fourth powers of elements�.



5. Consider four real numbers x, y, a, and b, satisfying x + y = a + b and x2 + y2 = a2 + b2. Prove that
xn + yn = an + bn, for all n 2 N.

Solutions to Problem #5.

Method 1. Fix a and b and try to understand what values x and y could possibly get. Are there in�nitely
many such numbers? Well, the disappointing answer is �No." We will show that they can only take the values a
and b, that is, either x = a and y = b, or x = b and y = a. In either case, it follows that the relation that needs
to be proved is trivially satis�ed. Square x+ y = a+ b and use the second given relation to obtain xy = ab. This
means that x and y are the solutions of the same quadratic equation that a and b satisfy, z2� (a+ b)z+ ab = 0.
Consequently x and y have to equal the only roots possible, namely a and b.

Note. The above proof shows that the problem is actually less interesting than the statement may indicate! The
next proof shows the identity without questioning what numbers x; y; a; b could possibly satisfy the hypothesis
of the problem.

Method 2. Proof by generalized induction. Let P (n) be the statement that we have to prove, xn+yn = an+bn.
The �rst given relation shows that P (1) holds. As above, we also have xy = ab. Now assume P (k) holds for all
1 � k � n. Raise x+ y = a+ b to power n+ 1 and use the symmetry of the binomial coe¢ cients to write:

xn+1 + yn+1 +

�
n+ 1

1

�
xy(xn�1 + yn�1) +

�
n+ 1

2

�
x2y2(xn�3 + yn�3) + � � � =

= an+1 + bn+1 +

�
n+ 1

1

�
ab(an�1 + bn�1) +

�
n+ 1

2

�
a2b2(an�3 + bn�3) + : : :

By the induction hypothesis, all the terms, except the �rst two, cancel. So P (n+ 1) also holds.




