1.i.

THE SIXTY-SECOND ANNUAL MICHIGAN MATHEMATICS PRIZE
COMPETITION

Part 11

Solutions

When z = 1, E coincides with B, and |AG| = |BG| = 1 = |ABJ; so AABG is
equilateral and /GBA = Z/GAB = 60°. Consequently, /GBC = Z/GAD = 30°,
and ZFAB = 30° by symmetry; then ZFAG = 90° — 30° — 30° = 30°. It follows
that Region I and Region II are congruent, and therefore (1) = 1.

ii. We show that r(z) = % (0 < x < 1). In fact, we have ZGAB = ZAGB

because AGAB is isosceles with base GA; hence ZGAB = 1(180° — ZGBA) =
£(180° — (90° — LGBC)) = 45° + 3/GBC. Then LFAB = ZGAD = 90° —
LGAB = 45° — %AGBC. It derives that ZGAF = 90° — LFAB — LGAD =
90°—2(45°—1ZGBC) = ZGBC. Therefore the chords GC and GF correspond to
equal central angles in circle I'; and I'3, respectively. It follows that the two regions
are similar, and the ratio r(z) of their areas equals to the square of |GC|/|GF|.
Noticing that |GC|/|GF| equals to the ratio of the radii of circle I'; and circle I's,
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we obtain r(x) = (5)2 = 5.

i. Because deg(vs) = 3, vs knows vy, v, and v3, and v; only knows vs because

deg(v1) = 1. Tt follows that vy knows vs and vy due to deg(ve) = 2. Then wvy
knows vg and vz only, and hence deg(vy) = 2.

ii. We use the mathematical induction on k with n = 4k. The base case k = 1 is

true by the previous question. Suppose that the result holds for some k > 1,
and consider a party V. = {v1,...,v4p44} with n = 4(k + 1) and deg(v;) = ¢
for all i = 1,...,4k + 3. Note that vy;+3 knows everyone else in the party, and
then v; only knows wvyry3; so if we drop out vsr.3 and vy from the party, the
degrees for wva, ..., V4511, V4512 becomes 1,2,... 4k 4k + 1 in the party V' =
{va, ..., V412, Var}. Now vgrio knows everyone else in V', and therefore vg only
knows vyxyo in V/. We further drop out vy and vggio from V', then the degrees
for vs, ..., v4pr1 become 1,2,... 4k — 1 in V" = {vs, ..., v4g11,v4r}. Now apply
the induction assumption on V", we derive that vy knows 4k/2 = 2k people in
V": so deg(var) = 2k + 2 = n/2 in the original party V because vy also knows
V4g+2 and vggys; hence the conclusion holds for n = 4(k + 1). By mathematical
induction, the result holds for any n = 4k.

i. Any ordered pair (a,b) in the regions {(a,b) | a > 1,b > 2a + +/5} or {(a,b) |

a < —1,b < 2a — +/5} works. But since we only need an example, we could
choose those that are easier to justify. For example, pick (a,b) = (2,7); then
0<a+cosz <3, b+sinz > 6, and f(z)>6/3 =2.



3.ii. First solution. We regard f(z) as the slope of the line passing the point
P(—a,—b) and a moving point (cosz,sinz) on the unit circle. Since a > 1,
P lies outside the unit circle to the left side of the vertical line z = —1. Let
PA, PB be the tangent lines from P to the unit circle with points of tangency
A and B, respectively; as illustrated in the graph below. Then the range of the
function f(z) is exactly the set of numbers between the slopes (inclusive) of the
lines PA and PB. Therefore PA has slope —1, and PB has slope 1. It derives
that OAPB is a square with side length 1, and P must be on the z-axis with
|OP| = \/|PAJ]2 + |OA]?2 = /2. Therefore the coordinate of P is (—+/2,0), or
a= ﬂ, b=0.

P—a,—b)

b+sin x
a+cosz’

V14 y?sin(x+0)=b—ay (1)

with 6 some angle depending on y. It follows that |b — ay| < /1 + y? or, equiva-
lently,

Second solution. Let y = we have that ycosx —sinx = b — ay or

(a? = 1)y* — 2aby + 0> —1 <0 (2)

We see that if y is given and (2) holds, then we can always find x to satisfy (1),
and conversely, if (1) holds for some x, then (2) holds. It follows that the solution
set to (2) is the range of the function f(z), which is [-1, 1] as given in the problem.
Since a® —1 > 0 due to a > 1, the solution set to (2) is the closed interval bounded
by the two roots of (a? — 1)y? — 2aby + b?> — 1 = 0. Therefore the two roots are
+1; 50 2ab/(a®> —1) =1+ (1) =0, and (b> —1)/(a®? — 1) = (1)(-1) = —1. We
then get a = V2 and b = 0.



4.1.

4.1ii.

If 120 = a® — b? for some positive odd numbers ¢ and b, then a > b and 120 =
(a — b)(a +b). Because a — b, a + b are both even, and %% + %2 = g is odd,
one of GT_I’ and “T‘H’ must be odd. So one of a — b and a + b is of the form 4k + 2
for some nonnegative integer k. We then find the qualified factorizations of 120
as 120 = 2-60 = 6-20 = 10-12 = 4 - 30, and obtain correspondingly that
120 =312 - 292 =132 - 72 = 112 — 12 = 172 — 132. So f(120) = 4.

ii. Let x = 8k for some positive integer k. We first show that f(x) is the number of

positive odd factors of x. If 8k = (2r+1)2—(25+1)2 = 4(r+s+1)(r — s) for some
r > s>0,then (r+s+1)(r—s) =2k. Note that r+s+1>r+1>r >r—s, and
r+s—+1, r— s are of different parity, so one of them must be an odd factor of 2k.
Conversely, if we have ab = 2k with a > b and one of a, b odd (the other then is
even), thenr+s+1=a,r—s=bgivesr = (a+b—1)/2, s = (a—b—1)/2, which
are both nonnegative integers that satisfy 8k = (2r + 1)2 — (25 + 1)2. Tt follows
that f(z) is the number of positive odd factors of 2k, which is the same as the
number of positive odd factors of . So f(z) = 1 if  has no odd prime factors,
and f(z) = (e + 1) (q + 1) if & = 2%pT" - p*' with ag > 3, oq,..., 0 > 1,
[ >0 and pq,...,p; are distinct positive odd primes.

Since 8 =1-8=2-4=2-2-2, x has the form QQOpI, 2a0p1pg, or 2%°p1paps
if f(x) = 8, where ag > 3, p1,p2,p3 are distinct positive odd primes. To make
x small, we of course put oy = 3, and choose p1,p2,p3 as small as possible.
Comparing 37, 3-5%, 3% -5, and 3-5- 7, we see that 3-5-7 = 105 is the minimum
among the four numbers, and therefore the smallest possible = for which f(z) =8
is 23-3-5-7 = 840.

oz—l)

By the above formula, we see that f(22-p = « for any odd positive prime p

and o = 1,2,..., which gives the result.

First proof. For any positive integer k, write k = 2% 3, such that 5 is an odd
integer, and oy, is an nonnegative integer; clearly this representation is unique by
the prime factorization theorem.

Sufficiency. Suppose that n = 2" for some integer m > 0, and let 1 <r <n — 1.

Then oy, < m for all 1 < k < 7. Tt follows that "8 = 2725k — 2’”‘;: —Br with

B
the last fraction having both the numerator and the denominator odd (1 < k<

r—1),and 2 = 23TW;T = 2";37%, with the last fraction having an even numerator
and an odd denomlnator It follows that
Co - nn—1)---(n—r+1) _n, n—1 o n—r+1
’ r! r 1 r—1

can be written as a fraction having an even numerator and an odd denominator.
Since C'(n,r) is an integer, it then must be even.



Necessity. Suppose that n > 2 is not a power of 2. We need to show that there
is r with 1 <7 < n — 1 such that Cy,, is odd. Let m > 1 be the largest integer
such that 2™ < n,and let r = n —2". Then 1 < r < 2™ < n —1. We claim

that (), is odd. In fact, for all 1 < k < r, we have a;, < m, and therefore
24k _ 2428, _ 2Tk 4By

with the last fraction having both the numerator

ko T 29By T Bk
and the denominator odd. So
2Mm + 1) - (2M + 1 2m 4+ 1 2mM +
Cn,r=C2m+r,r:( )r'( ): T XX

can be written as a fraction having both the numerator and the denominator odd.
Since (), is an integer, it then must be odd.

Second proof. For two polynomials f(z) = anz™+---+ap and g(x) = bpaz"+- - -+
bp with integer coefficients, we say that f(x) = g(x) (mod 2) if a; = b; (mod 2) for
all 0 < i < n. Then the problem becomes that (1 + )" =1+ z" (mod 2) (n > 2)
iff n is a power of 2. In the following we use the fact that fi(x) = ¢1(z) (mod 2)

and fo(2) = go(x) (mod 2) imply f1(2) f2(x) = g1 (x)ga(x) (mod 2).

Sufficiency. We use the mathematical induction on m when n = 2™. When
m=1,2" =2 and (14 2)? =142z + 22 = 1 + 22 (mod 2), so the result holds.
Now suppose that (1 + z)2" = 1 + 22" (mod 2) for some integer m > 1, then
1+2)2"" =[1+2)2"2=[14+22"P2=14222" + 22" =14+ 22" (mod 2);
so the result holds for n = 2™*+!. By the mathematical induction, the result holds
whenever n > 2 is a power of 2.

Necessity. Suppose that n > 2 is not a power of 2. We need to show that there is
r with 1 <r <mn —1 such that C),, is odd. Let m > 1 be the largest integer such
that 2™ < n, and let r =n — 2. Then 1 < r < 2™. We derive by the sufficiency
that

1+z)" = (142142

= (1+27")(Q Craat)
k=0
= ) Copa® + ) Crpa*?” (mod 2).
k=0 k=0

Since r < 2™, we see that the coefficient of 22" in the last polynomial above is
Cro = 1; s0 Cy 2m = 1(mod 2), which completes the proof.
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