
THE SIXTY-SECOND ANNUAL MICHIGAN MATHEMATICS PRIZE
COMPETITION

Part II
Solutions

1.i. When x = 1, E coincides with B, and |AG| = |BG| = 1 = |AB|; so △ABG is
equilateral and ∠GBA = ∠GAB = 60◦. Consequently, ∠GBC = ∠GAD = 30◦,
and ∠FAB = 30◦ by symmetry; then ∠FAG = 90◦ − 30◦ − 30◦ = 30◦. It follows
that Region I and Region II are congruent, and therefore r(1) = 1.

1.ii. We show that r(x) = 1
x2 (0 < x ≤ 1). In fact, we have ∠GAB = ∠AGB

because △GAB is isosceles with base GA; hence ∠GAB = 1
2(180

◦ − ∠GBA) =
1
2(180

◦ − (90◦ − ∠GBC)) = 45◦ + 1
2∠GBC. Then ∠FAB = ∠GAD = 90◦ −

∠GAB = 45◦ − 1
2∠GBC. It derives that ∠GAF = 90◦ − ∠FAB − ∠GAD =

90◦−2(45◦− 1
2∠GBC) = ∠GBC. Therefore the chords GC and GF correspond to

equal central angles in circle Γ1 and Γ3, respectively. It follows that the two regions
are similar, and the ratio r(x) of their areas equals to the square of |GC|/|GF |.
Noticing that |GC|/|GF | equals to the ratio of the radii of circle Γ1 and circle Γ3,
we obtain r(x) =

(
1
x

)2
= 1

x2 .

2.i. Because deg(v3) = 3, v3 knows v1, v2, and v3, and v1 only knows v3 because
deg(v1) = 1. It follows that v2 knows v3 and v4 due to deg(v2) = 2. Then v4
knows v2 and v3 only, and hence deg(v4) = 2.

2.ii. We use the mathematical induction on k with n = 4k. The base case k = 1 is
true by the previous question. Suppose that the result holds for some k ≥ 1,
and consider a party V = {v1, . . . , v4k+4} with n = 4(k + 1) and deg(vi) = i
for all i = 1, . . . , 4k + 3. Note that v4k+3 knows everyone else in the party, and
then v1 only knows v4k+3; so if we drop out v4k+3 and v1 from the party, the
degrees for v2, . . . , v4k+1, v4k+2 becomes 1, 2, . . . , 4k, 4k + 1 in the party V ′ =
{v2, . . . , v4k+2, v4k}. Now v4k+2 knows everyone else in V ′, and therefore v2 only
knows v4k+2 in V ′. We further drop out v2 and v4k+2 from V ′, then the degrees
for v3, . . . , v4k+1 become 1, 2, . . . , 4k − 1 in V ′′ = {v3, . . . , v4k+1, v4k}. Now apply
the induction assumption on V ′′, we derive that v4k knows 4k/2 = 2k people in
V ′′; so deg(v4k) = 2k + 2 = n/2 in the original party V because v4k also knows
v4k+2 and v4k+3; hence the conclusion holds for n = 4(k + 1). By mathematical
induction, the result holds for any n = 4k.

3.i. Any ordered pair (a, b) in the regions {(a, b) | a > 1, b ≥ 2a +
√
5} or {(a, b) |

a < −1, b ≤ 2a −
√
5} works. But since we only need an example, we could

choose those that are easier to justify. For example, pick (a, b) = (2, 7); then
0 < a+ cosx ≤ 3, b+ sinx ≥ 6, and f(x) ≥ 6/3 = 2.
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3.ii. First solution. We regard f(x) as the slope of the line passing the point
P (−a,−b) and a moving point (cosx, sinx) on the unit circle. Since a > 1,
P lies outside the unit circle to the left side of the vertical line x = −1. Let
PA, PB be the tangent lines from P to the unit circle with points of tangency
A and B, respectively; as illustrated in the graph below. Then the range of the
function f(x) is exactly the set of numbers between the slopes (inclusive) of the
lines PA and PB. Therefore PA has slope −1, and PB has slope 1. It derives
that OAPB is a square with side length 1, and P must be on the x-axis with
|OP | =

√
|PA|2 + |OA|2 =

√
2. Therefore the coordinate of P is (−

√
2, 0), or

a =
√
2, b = 0.

Second solution. Let y = b+sinx
a+cosx , we have that y cosx− sinx = b− ay or√
1 + y2 sin(x+ θ) = b− ay (1)

with θ some angle depending on y. It follows that |b− ay| ≤
√
1 + y2 or, equiva-

lently,
(a2 − 1)y2 − 2aby + b2 − 1 ≤ 0 (2)

We see that if y is given and (2) holds, then we can always find x to satisfy (1),
and conversely, if (1) holds for some x, then (2) holds. It follows that the solution
set to (2) is the range of the function f(x), which is [−1, 1] as given in the problem.
Since a2−1 > 0 due to a > 1, the solution set to (2) is the closed interval bounded
by the two roots of (a2 − 1)y2 − 2aby + b2 − 1 = 0. Therefore the two roots are
±1; so 2ab/(a2 − 1) = 1 + (−1) = 0, and (b2 − 1)/(a2 − 1) = (1)(−1) = −1. We
then get a =

√
2 and b = 0.
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4.i. If 120 = a2 − b2 for some positive odd numbers a and b, then a > b and 120 =
(a − b)(a + b). Because a − b, a + b are both even, and a−b

2 + a+b
2 = a is odd,

one of a−b
2 and a+b

2 must be odd. So one of a− b and a+ b is of the form 4k + 2
for some nonnegative integer k. We then find the qualified factorizations of 120
as 120 = 2 · 60 = 6 · 20 = 10 · 12 = 4 · 30, and obtain correspondingly that
120 = 312 − 292 = 132 − 72 = 112 − 12 = 172 − 132. So f(120) = 4.

4.ii. Let x = 8k for some positive integer k. We first show that f(x) is the number of
positive odd factors of x. If 8k = (2r+1)2−(2s+1)2 = 4(r+s+1)(r−s) for some
r > s ≥ 0, then (r+s+1)(r−s) = 2k. Note that r+s+1 ≥ r+1 > r ≥ r−s, and
r+ s+1, r− s are of different parity, so one of them must be an odd factor of 2k.
Conversely, if we have ab = 2k with a > b and one of a, b odd (the other then is
even), then r+s+1 = a, r−s = b gives r = (a+b−1)/2, s = (a−b−1)/2, which
are both nonnegative integers that satisfy 8k = (2r + 1)2 − (2s + 1)2. It follows
that f(x) is the number of positive odd factors of 2k, which is the same as the
number of positive odd factors of x. So f(x) = 1 if x has no odd prime factors,
and f(x) = (α1 + 1) · · · (αl + 1) if x = 2α0pα1

1 · · · pαl
l with α0 ≥ 3, α1, . . . , αl ≥ 1,

l > 0 and p1, . . . , pl are distinct positive odd primes.

Since 8 = 1 · 8 = 2 · 4 = 2 · 2 · 2, x has the form 2α0p71, 2α0p1p
3
2, or 2α0p1p2p3

if f(x) = 8, where α0 ≥ 3, p1, p2, p3 are distinct positive odd primes. To make
x small, we of course put α0 = 3, and choose p1, p2, p3 as small as possible.
Comparing 37, 3 · 53, 33 · 5, and 3 · 5 · 7, we see that 3 · 5 · 7 = 105 is the minimum
among the four numbers, and therefore the smallest possible x for which f(x) = 8
is 23 · 3 · 5 · 7 = 840.

4.iii. By the above formula, we see that f(23 · pα−1) = α for any odd positive prime p
and α = 1, 2, . . . , which gives the result.

5. First proof. For any positive integer k, write k = 2αkβk such that βk is an odd
integer, and αk is an nonnegative integer; clearly this representation is unique by
the prime factorization theorem.

Sufficiency. Suppose that n = 2m for some integer m > 0, and let 1 ≤ r ≤ n− 1.
Then αk < m for all 1 ≤ k ≤ r. It follows that n−k

k = 2m−2αkβk
2αkβk

= 2m−αk−βk
βk

, with
the last fraction having both the numerator and the denominator odd (1 ≤ k ≤
r − 1), and n

r = 2m

2αrβr
= 2m−αr

βr
, with the last fraction having an even numerator

and an odd denominator. It follows that

Cn,r =
n(n− 1) · · · (n− r + 1)

r!
=

n

r
× n− 1

1
× · · · × n− r + 1

r − 1

can be written as a fraction having an even numerator and an odd denominator.
Since C(n, r) is an integer, it then must be even.
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Necessity. Suppose that n ≥ 2 is not a power of 2. We need to show that there
is r with 1 ≤ r ≤ n − 1 such that Cn,r is odd. Let m ≥ 1 be the largest integer
such that 2m < n, and let r = n − 2m. Then 1 ≤ r < 2m ≤ n − 1. We claim
that Cn,r is odd. In fact, for all 1 ≤ k ≤ r, we have αk < m, and therefore
2m+k

k = 2m+2αkβk
2αkβk

= 2m−αk+βk
βk

with the last fraction having both the numerator
and the denominator odd. So

Cn,r = C2m+r,r =
(2m + 1) · · · (2m + r)

r!
=

2m + 1

1
× · · · × 2m + r

r

can be written as a fraction having both the numerator and the denominator odd.
Since Cn,r is an integer, it then must be odd.

Second proof. For two polynomials f(x) = anx
n+· · ·+a0 and g(x) = bnx

n+· · ·+
b0 with integer coefficients, we say that f(x) ≡ g(x) (mod 2) if ai ≡ bi (mod 2) for
all 0 ≤ i ≤ n. Then the problem becomes that (1 + x)n ≡ 1 + xn (mod 2) (n ≥ 2)
iff n is a power of 2. In the following we use the fact that f1(x) ≡ g1(x) (mod 2)
and f2(x) ≡ g2(x) (mod 2) imply f1(x)f2(x) ≡ g1(x)g2(x) (mod 2).

Sufficiency. We use the mathematical induction on m when n = 2m. When
m = 1, 2m = 2, and (1 + x)2 = 1 + 2x+ x2 ≡ 1 + x2 (mod 2), so the result holds.
Now suppose that (1 + x)2

m ≡ 1 + x2
m
(mod 2) for some integer m ≥ 1, then

(1 + x)2
m+1

= [(1 + x)2
m
]2 ≡ [1 + x2

m
]2 ≡ 1 + 2x2

m
+ x2

m+1 ≡ 1 + x2
m+1

(mod 2);
so the result holds for n = 2m+1. By the mathematical induction, the result holds
whenever n ≥ 2 is a power of 2.

Necessity. Suppose that n ≥ 2 is not a power of 2. We need to show that there is
r with 1 ≤ r ≤ n− 1 such that Cn,r is odd. Let m ≥ 1 be the largest integer such
that 2m < n, and let r = n− 2m. Then 1 ≤ r < 2m. We derive by the sufficiency
that

(1 + x)n = (1 + x)2
m
(1 + x)r

≡ (1 + x2
m
)(

r∑
k=0

Cr,kx
k)

≡
r∑

k=0

Cr,kx
k +

r∑
k=0

Cr,kx
k+2m (mod 2).

Since r < 2m, we see that the coefficient of x2m in the last polynomial above is
Cr,0 = 1; so Cn,2m ≡ 1 (mod 2), which completes the proof.
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