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Plan of the talk

• My path to a nonacademic career

• Cybersecurity 101 (accelerated version!)

• Graphs and hypergraphs via network flow

• Topology via high-dimensional data
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My path to PNNL

• My path was quite linear. Perhaps too linear…

• Undergrad @ University of Wisconsin

▪ Math education → Math

▪ Summer math programs for women

▪ Study abroad in math program

▪ Undergrad research

▪ Internship with small gov’t contractor 

• Grad @ Rutgers

▪ Planned to NOT work in academia after graduation

▪ Pure math, not applied. That was a choice.

▪ Fellowship with DHS → internships at PNNL

• Postdoc @ PNNL started summer 2011

Paul Heideman and I doing 

undergrad research at UW  
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DOE’s 17 national laboratories tackle 
critical scientific challenges



5

PNNL is advancing 

scientific frontiers

and providing 

solutions to critical 

national needs
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Scientific Discovery

• Join extreme scale 
computing and big data 

• Deliver advanced 
visualization technologies 
and novel algorithms

• Apply artificial intelligence 
and machine learning to 
complex computational 
problems

DATA SCIENCE

Search for internship and 

career opportunities at 

https://careers.pnnl.gov/ 

https://careers.pnnl.gov/
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Plan of the talk

• My path to a nonacademic career

• Cybersecurity 101 (accelerated version!)

• Graphs and hypergraphs via network flow

• Topology via high-dimensional data
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Internet of things – how many do you have?

May 3, 2025
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Where can defenders “see”?

May 3, 2025



?
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Internet communication – what you experience

May 3, 2025

https://www.google.com

https://www.google.com
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Internet communication – behind the scenes

May 3, 2025

First your browser must find the IP address for 

google.com via a DNS server

Then your browser establishes a connection with 

the google.com server via a TCP 3-way handshake

Each message is broken up into potentially multiple 

packets and reassembled at the destination

Packets can be aggregated into conversations 

called flow (e.g., IPFlow, NetFlow)

https://www.google.com

?

Google.com 

please

IP 142.251.33.110

I would like to see google.com

I acknowledge your request and 

will send when you are ready

I am ready to receive!

142.251.33.110

Here is the content

DATA!!

Flow record

Source IP

Source Port

Destination IP

Destination Port

Packet count

Byte count

Start time

End time
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A Sea of Data

Authentication: SSH, Kerberos, …

Process logs

Firewall logs

Signature-based alerts

Flow record

Source IP

Source Port

Destination IP

Destination Port

Packet count

Byte count

Start time

End time

DNS Requests
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Aligning data with the cyber kill chain

• The Cyber Kill Chain® lays out the steps that 
an adversary goes through to compromise a 
system and get what they are looking for

▪ This helps us organize how we think about 
detection – the earlier the better!

• How can we protect our networks?

▪ Inspect the data we have to discover:

✓ Known patterns of bad behavior

✓ Unknown anomalies

▪ Build in resilience

May 3, 2025

https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html

https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
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Challenges in Cyber Defense

• Cyber systems do not have “laws of physics” type 
rules. Every rule or standard can be broken. 

▪ They can be broken by benign people that do not realize 
there is a rule, or by sophisticated adversaries.

• Adversaries are finding and exploiting vulnerabilities faster than defenders can 
identify them

• Signature-based alerts are still necessary, 
but threat hunting and anomaly detection 
are finding traction

▪ Caution: An anomaly on one network is perfectly 
normal on another (e.g., off site backup vs. data 
exfiltration)
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“OODA loop” – where can mathematicians fit?

Observe

• Collect data

Orient

• Develop situational 
awareness

• Run “analytics” on collected 
data

Decide

• What should we do based on 
observed data

• E.g., patch, segment, target 
additional data collection

Act

• Carry out the actions



16
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Application #1: Host and network data

• Snapshot of data from Operationally Transparent Cyber (OpTC) data set 
which includes both host and network events

▪ Network data: communications between computers (recorded as “IP addresses”). 
Records the two computers and metadata about the connection. (See table above.)

▪ Host data: processes occurring on individual computers.

• Questions: What connection patterns exist? How do they change over time? 
Can we find unusual patterns or connections? What do they mean?

time action-

object
host principal pid source IP dest IP dest 

port

protocol image path

9/24 

10:45:00

MESSAGE-

FLOW

SysClient0501 bantonio 2192 10.20.5.191 10.20.2.66 5999 UDP python.exe

9/24 

10:45:02

START-FLOW SysClient0501 bantonio 836 132.197.158.98 202.6.172.98 80 TCP powershell.exe

9/24 

10:45:25

MESSAGE-

FLOW

SysClient0501 bantonio 5100 142.20.57.246 142.20.61.132 80 TCP outlook.exe

9/24 

10:45:29

START-FLOW SysClient0501 bantonio 648 142.20.57.246 202.6.172.98 443 TCP powershell.exe

https://github.com/FiveDirections/OpTC-data/

https://github.com/FiveDirections/OpTC-data/
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2 minutes of flow in LANL system:

|V|=842, |E|=1038

Data from http://csr.lanl.gov/data/cyber1/

Mathematical model for communications: 
Graph

• Graphs provide a mathematical model of 
data focused on 2-way relationships

▪ To ask certain kinds of questions 

✓Connectivity of entities

✓Clustering structure

▪ To model certain kinds of interactions

✓Pairwise relationships

▪ Network flow graph:

✓ V = IP addresses / hosts

✓ E = communications

“Vertex”

“Edge”

http://csr.lanl.gov/data/cyber1/
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Network science: methods to study structure of 
graphs from real data

Graph properties

• Degree (distribution)

• Walk, Path, Diameter

• Connected components

• Centrality

• Clustering coefficient

• Triangle counting

• …
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Network science: methods to study structure of 
graphs from real data

Graph properties

• Degree (distribution)

• Walk, Path, Diameter

• Connected components

• Centrality – measured for each vertex

▪ Betweenness: measure of belonging to shortest paths

▪ Closeness: measure of average distance to other vertices

▪ Eigenvector: Solution to Ax = λx

▪ Degree: degree of vertex

▪ Harmonic: measure of average distance, ok with 
disconnected graph

▪ Katz: related to number of reachable vertices from, with 
farther vertices penalized
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Network science: methods to study structure of 
graphs from real data

Graph properties

• Degree (distribution)

• Walk, Path, Diameter

• Connected components

• Centrality

• Clustering coefficient

• Triangle counting

• …*

* Number of edges, density, average distance, random graph models, link prediction

?

Recall our questions: What connection 

patterns exist? How do they change over 

time? Can we find unusual patterns or 

connections? What do they mean?
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Generative graph models – what and why

• What are they?

▪ Models that create graphs possessing properties we are 
interested in

• What are they good for?

▪ Null model for algorithm testing and experiments

▪ Create synthetic graphs on different scales

▪ Create surrogate graph to protect anonymity of data

▪ Graph generation process may give insight into properties 
being matched

• What makes them good?

▪ Inputs are compact & few 

▪ Easily measured from real data or generated artificially

▪ Generalized and formalized generation process

▪ Avoid ad hoc methods/restrictive assumptions on inputs

Our focus
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Classic simple generative models

Erdős-Rényi

• Matches: average degree / density

• Inputs: number of vertices (n), edge 
probability (p)

• Connected if 

Chung-Lu

• Matches: degree distribution

• Inputs: degree sequence {𝑑𝑖} where 
𝑑𝑖 is desired degree of 𝑣𝑖

• Typically 
small-world

𝑃(𝑢, 𝑣)  =  𝑝

𝑢 𝑣 All edges 

independent

Paul Erdős Alfred Rényi

𝑣𝑖 𝑣𝑗

𝑃(𝑣𝑖 , 𝑣𝑗)  =
𝑑𝑖𝑑𝑗

∑𝑑𝑘

Fan Chung Linyuan Lu

𝑝 >  log(𝑛)/𝑛
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Dynamic graphs – background 

•  

• Dynamic graph considered as a 3-tensor with dimensions 𝑇 × 𝑉 × 𝑉
▪ Entry at index (𝑡, 𝑣, 𝑤) if 𝑣, 𝑤 ∈  𝐸𝑡

• (Static) Random graph models often used as null models – Erdos-Renyi, Chung-Lu, other 
specialized models

• Random dynamic graphs:

▪ Dynamic Erdos-Renyi 1 – missing edges appear with probability α, existing edges disappear with 
probability β

▪ Dynamic Chung-Lu 1 – Poisson process, edges added at rate λ, removed at rate μ

▪ Dynamic block model 1 – Poisson process, rate of addition and removal of edges depends on group 
membership

▪ Additional survey of methods 2 

1 Xiao Zhang, Cristopher Moore, and Mark EJ Newman. "Random graph models for dynamic networks." The European Physical Journal B 90.10 (2017): 200.

2 Holme, Petter, and Jari Saramäki. "Temporal networks." Physics reports 519.3 (2012): 97-125.
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Hagberg-Lemons-Misra (HLM)3 
Model

Gi Gi+1

M

• HLM was created to mimic 

network traffic 

• Each 𝐺𝑖 is Chung-Lu

• Cannot capture density changes 

over time.

3 A. Hagberg, N. Lemons, and S. Misra, Temporal 

reachability in dynamic networks, in Dynamic 

Networks and Cyber-Security, WORLD 

SCIENTIFIC (EUROPE), Mar 2016, pp. 181–208.

Pairs (𝑢, 𝑣) in 

M with prob. 𝛼

Note: can 

generalize to 

arbitrary edge 

probability 

matrix P and 

alphas for 

each edge
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Temporal HLM = THeLMa 
Model

• THeLMa: Include density 

parameter in evolution

• 𝐺𝑖 no longer Chung-Lu because 

of presence of τ parameters

Pairs (𝑢, 𝑣) in 

M with prob. 𝛼

Joint with Sinan Aksoy, Helen Jenne, Stephen Young
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THeLMa as a flexible network baseline model

• Assumption: anomalies are sparse in network data

• Measure simple parameters from observed data

▪ Average degree sequence across time = average degree for each vertex

▪ 𝜏 = Number of edges for each time step

▪ 𝛼… it’s not so simple, but it’s possible (MLE estimator) [paper in progress]

• Generate a THeLMa sequence using the measured parameters

• Use the generated dynamic graph as a baseline for:

▪ Anomaly detection

▪ Background identification/subtraction

▪ Anomaly injection for algorithm testing
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Case study: synthetic LANL data
Two days of network flow4 in 3-minute time windows

Number of 

components

Largest 

component

Number of 

edges (tau)

Normalized 

degree 

sequence (W)

4 https://csr.lanl.gov/data/cyber1/  

https://csr.lanl.gov/data/cyber1/
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Plan of the talk

• My path to a nonacademic career

• Cybersecurity 101 (accelerated version!)

• Graphs and hypergraphs via network flow

• Topology via high-dimensional data

Graphs model pairwise 

interactions. Random models 

can generate realistic data 

sets to help explore properties 

consistent with real systems.
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Graph structure is only part of the story…

• Network flow has so much more information than just pairs of IPs!

▪ Ports can be surrogates for type of communication

▪ Protocols dictate the format of communication

▪ Host, principal (not always present in network flow) indicate who on the computer is 
connected to the communication

▪ Image path and PID (also not always present) tie the communication to a specific 
process

• How do we incorporate this information in a structural way?

time action-

object
host principal pid source IP dest IP dest 

port

protocol image path

9/24 

10:45:00

MESSAGE-

FLOW

SysClient0501 bantonio 2192 10.20.5.191 10.20.2.66 5999 UDP python.exe

9/24 

10:45:02

START-FLOW SysClient0501 bantonio 836 132.197.158.98 202.6.172.98 80 TCP powershell.exe

9/24 

10:45:25

MESSAGE-

FLOW

SysClient0501 bantonio 5100 142.20.57.246 142.20.61.132 80 TCP outlook.exe

9/24 

10:45:29

START-FLOW SysClient0501 bantonio 648 142.20.57.246 202.6.172.98 443 TCP powershell.exe
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Mathematical model for group relationships: 
Hypergraph

• Hypergraphs provide a mathematical model of 
data focused on multi-way relationships

▪ To ask certain kinds of questions 

✓Connectivity of entities

✓Clustering structure

▪ To model certain kinds of interactions

✓Multi-way relationships

▪Cyber hypergraph:
✓ Vertices = IPs, ports, users, executables, …

✓ Hyperedges = “behaviors”

“Vertex”

“Hyperedge”
IPs (vertices) grouped 

into website domains 

(hyperedges)
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What kind of data generate Hypergraphs?

Imagine your tabular data:

• Attributes: Entities (rows) are 
indicated as having specific 
attributes or properties (columns)

• Joint relationships: Entities 
jointly participate in some 
relationship or activity 

• Numeric data: consider 
thresholding the data

e.g., cell value > 1
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What kind of data generate Hypergraphs?
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Hypernetwork science

Hypergraph properties

• Degree (distribution)

• Edge size (distribution)

• s-Walk, s-Path, s-Diameter

• s-Connected components

• s-Centrality

• Clustering coefficient?

• Triangle counting?

• …

Vertex 

or 

edge?

5

2



Walks on edges or vertices?

Walks between edges: sequence of successively intersecting edges

Walks between vertices: sequence of successively adjacent vertices
Our focus
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Hypergraph walks have width

• s-Walk:

• Walks/paths in hypergraphs have width in addition to length:

• s-Path = s-Walk where edges are not repeated

A 2-Uniform Hypergraph Path: 

(Edgewise) Length = 2

Width = 1

Weak interactions: Width=1 Strong interactions: Width=3

Two Hypergraph Paths:

Same length = 2

As a 2-uniform HG
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Hypernetwork science

Hypergraph properties

• Degree (distribution)

• Edge size (distribution)

• s-Walk, s-Path, s-Diameter

• s-Connected components

• s-Centrality

• Clustering coefficient?

• Triangle counting?

• …

Vertex 

or 

edge?
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Hypergraph construction from multi-column data

• Multi-dimensional data set: nD-array, n-column data frame

• Specify column set for hyperedges (yellow)

▪ Unique combinations: 
(142.20.59.255, 138), (224.0.0.252, 5355), (222.206.244.5, 443)

• Specify disjoint column set for vertices (blue)

▪ Unique vertices: 
142.20.59.149, 10.20.4.125, 142.20.59.255, 142.20.56.198

• A vertex is contained in a hyperedge if there is a record with that 
combination in the data. Think “hyperedges = common behaviors”

hostname principal pid src_ip dest_ip dest_port l4protocol image_path

SysClient0201.systemia.com NT AUTHORITY\SYSTEM 4 142.20.56.198 142.20.59.255 138 UDP System

SysClient0201.systemia.com NT AUTHORITY\NETWORK SERVICE 864 10.20.4.125 224.0.0.252 5355 UDP svchost.exe

SysClient0201.systemia.com NT AUTHORITY\NETWORK SERVICE 864 142.20.59.255 224.0.0.252 5355 UDP svchost.exe

SysClient0201.systemia.com SYSTEMIACOM\zleazer 636 142.20.56.198 222.206.244.5 443 TCP firefox.exe

SysClient0201.systemia.com NT AUTHORITY\SYSTEM 4 142.20.59.149 142.20.59.255 138 UDP System

SysClient0201.systemia.com NT AUTHORITY\NETWORK SERVICE 864 142.20.59.149 224.0.0.252 5355 UDP svchost.exe



Identifying anomalies via simple dynamic 
hypergraph measures

• “Do the simple thing first”

• Sometimes just counting 
things (vertices, edges, 
degrees, edge sizes) 
and looking for temporal 
changes gives you 
insight.

▪ A. Network simulation 
startup activity

▪ B. Actual red team 
activity – “Deathstar” to 
scan domain

• But there’s much more to 
find in this data…

39Joint with Helen Jenne
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Finding complex patterns 
of connectivity

• While adversaries try to fly below the radar they still operate within the 
network and likely do things that are abnormal. Their activities may create 
unusual patterns of connectivity.

Red singleton edge represents 

335 identical edges containing 

vertex for Sysclient0501

Edge containment 

structures

This structure is not always tied to 

malicious activity, but it is rare in this 

data and thus potentially of interest.

Jenne, H., Aksoy, S.G., Best, D., Bittner, A., Henselman-Petrusek, G., Joslyn, C., Kay, B., Myers, A., Seppala, G., Warley, J., Young, S.J., and Purvine, E. 

Stepping Out of Flatland: Discovering behavior patterns as topological structures in Cyber hypergraphs. The Next Wave, 25(1), 2024.
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Plan of the talk

• My path to a nonacademic career

• Cybersecurity 101 (accelerated version!)

• Graphs and hypergraphs via network flow

• Topology via high-dimensional data

When interactions are multi-way a 

hypergraph model can capture 

more information and sometimes 

identify additional structure.

Graphs model pairwise 

interactions. Random models 

can generate realistic data 

sets to help explore properties 

consistent with real systems.
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Application #2: High-dimensional data (generally)

This Photo by Unknown Author is licensed under CC BY-SA-NC

https://www.kaggle.com/c/cifar-10 

This Photo by Unknown Author is licensed under CC BY-SA

https://umap-

learn.readthedocs.io/en/latest/document_embedding.html

http://podcasting.commons.gc.cuny.edu/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://www.kaggle.com/c/cifar-10
http://www.flickr.com/photos/bburky_/5925354646/
https://creativecommons.org/licenses/by-sa/3.0/
https://umap-learn.readthedocs.io/en/latest/document_embedding.html
https://umap-learn.readthedocs.io/en/latest/document_embedding.html
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Creating high dimensional data from cyber logs: 
Feature engineering

• For a given time-window of data
we can create a feature vector

• Hand-crafted features:

▪ Count of unique values in a column

▪ Count occurrences of specific values 
in a column

▪ Numerical aggregations – min, max, 
mean, median, sum

▪ Max degree of a graph of the data

▪ …

• Machine learned features

▪ Train an autoencoder or LLM on log 
lines, aggregate all encoded lines in 
a window 

Feature Value

Count of Src IPs 4

Count of Dst Port = 443 1

Count of Image path = svchost.exe 3

Max in-degree in Src IP -> Dst IP graph 3

Max out-degree in Src IP -> Dst IP graph 2
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Temporal anomaly detection 
from feature point clouds

• Main assumption: Behavior varies smoothly from 
set of recent small time windows to the next window

• Method:

▪ Partition data into time intervals, create a single vector for 
each

▪ Baseline contains many time intervals – many vectors – 
current time interval is single vector

▪ How, and how much, does adding the single vector 
change the structure of the collection of baseline vectors?

Baseline data

Baseline with additional points added

Most anomalous

Least 

anomalousMedium 

anomalous
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Structure = Topology

• Geometry without distance; stretchy geometry

• Properties (= holes) of geometric objects preserved under 
“continuous deformation” – stretching and twisting are ok 
but tearing and gluing are not

• Abstract an object into a simpler version that preserves 
certain properties – “topological invariants”

Donut? Coffee cup?
Lucas Vieira, Public domain, via 

Wikimedia Commons

1736 Leonhard Euler, Seven Bridges of Königsberg

Bogdan Giuşcă, 

CC BY-SA 3.0, 

via Wikimedia 

Commons

http://creativecommons.org/licenses/by-sa/3.0/
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Persistent Homology

• Given a point cloud 
we want to 
understand its 
coarse topological 
structure

• Connect points at 
increasing distance 
thresholds

• Track birth and 
death threshold for 
topological features 
(“holes”)

Image credit: Sarah Tymochko
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Anomaly detection pipeline

Joint with Helen Jenne, Dan Best, Paul Bruillard, Alyson Gauthier, Greg Henselman-Petrusek, 

Cliff Joslyn, Bill Kay, Audun Myers, Kathleen Nowak, Garret Seppala, Stephen J. Young
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Use case example: 
BitTorrent Detection

Christopher R. Harshaw, Robert A. Bridges, Michael D. Iannacone, Joel W. Reed, and John R. 

Goodall. 2016. GraphPrints: Towards a Graph Analytic Method for Network Anomaly Detection. In 

Proceedings of the 11th Annual Cyber and Information Security Research Conference (CISRC '16). 

• Network flow for a single building was 
captured

▪ BitTorrent traffic added after the fact by node 
6893 during windows 278-301

• Feature vectors came from counts of 
small graph patterns

• Our pipeline was able to detect an 
anomaly from 6893 during the correct 
time windows
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Plan End of the talk

• My path to a nonacademic career

• Cybersecurity 101 (accelerated version!)

• Graphs and hypergraphs via network flow

• Topology via high-dimensional data

When interactions are multi-way a 

hypergraph model can capture 

more information and sometimes 

identify additional structure.

Graphs model pairwise 

interactions. Random models 

can generate realistic data 

sets to help explore properties 

consistent with real systems.

Topology captures global 

features in data sets



Thank you
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Check out our internships and jobs!

https://careers.pnnl.gov/

Contact me with questions!

Emilie.Purvine@pnnl.gov 

https://careers.pnnl.gov/
mailto:Emilie.Purvine@pnnl.gov
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101 54 12 220

123 95 88 23

32 86 44 7

99 10 8 167

255 199 63 8

123 95 88 46

32 86 44 99

99 10 8 87

255 231 42 21

123 95 88 9

32 86 44 103

99 10 8 112

255

231

42

21

123

95

92

167

…

142.20.56.198 142.20.59.255

10.20.4.125 224.0.0.252

222.206.244.5

142.20.59.149
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