Arrangements of Stars on the American Flag

Johann Thiel - City Tech Dimitris Koukoulopoulos - CRM

April 28, 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Union Jack

The Jack of the United States, or Union Jack, is the blue portion of the American flag containing one star for each state.

Current Union Jack

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

From 1777 to 2002, the Union Jack was the official maritime flag representing the United States.

Puerto Rico

- In Chris Wilson's Slate article, 13 Stripes and 51 Stars, he mentions the possibility that Puerto Rico may vote to become the 51st state.
- Problem: How do we add an additional star to the Union Jack so that is looks "nice?"

- How was this problem resolved in 1959 and 1960?
- Robert G. Heft!

Long - 50 Stars

Short - 42 Stars

Equal - 48 Stars

Alternate - 45 Stars

Wyoming - 32 Stars

* \star $\star \star \star \star \star$ * * * * * * * *

Oregon - 33 Stars

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

1 to 100 Stars

- Heft designed arrangements for a flag with 51 to 60 stars.
- Skip Garibaldi created a program that finds arrangements for 1 to 100 stars using the arrangements from the previous slide.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- The N States of America (no longer working)
- What about 29, 69, and 87?

The Problem with 29

Let a and b represent the number of rows and columns of stars on a 29-star flag.

- For the equal arrangement, we need 29 = ab with $1 \le b/a \le 2$.
- For the Oregon arrangement, we need 31 = 29 + 2 = ab with $1 \le b/a \le 2$.
- ► For the Wyoming arrangement, we need 27 = 29 2 = ab with a and b close to each other.
- For the remaining arrangements (long, short), we need 59 or 57 to factor as a product *ab* with *a* and *b* close to each other.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Characterization of Arrangements

A nice arrangement of n stars on the Union Jack exists if at least one of the following holds:

- (i) For the long pattern, 2n 1 = (2a + 1)(2b + 1) with $1 \le (b+1)/(2a+1) \le 2$.
- (ii) For the short pattern, 2n + 1 = (2a 1)(2b + 1) with $1 \le (b+1)/(2a+1) \le 2$.

(iii) For the alternate pattern, n = a(2b - 1) with $1 \le b/(2a) \le 2$.

(iv) For the Wyoming pattern, n-2 = ab with $1 \le (b+1)/a \le 2$.

- (v) For the equal pattern, n = ab with $1 \le b/a \le 2$.
- (vi) For the Oregon pattern, n + 2 = ab with $1 \le b/a \le 2$.

Notation

• We write
$$f(N) = O(g(N))$$
 if
 $|f(N)| \le c|g(N)|$

for some constant c > 0 as $N \to \infty$.

▶ For a set of non-negative integers A, we call

$$\lim_{N\to\infty}\frac{\#\{n\leq N:n\in A\}}{N}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

the asymptotic density of A.

 $\Omega(n)$

• Let
$$\Omega(n) = \sum_{\substack{p^a \mid n \\ a \ge 1}} 1$$
.
• $\Omega(20) = \Omega(4) + \Omega(5) = 2 + 1 = 3$
• One can show that $\frac{1}{N} \sum_{n \le N} \Omega(n) = \log \log N + O(1)$.
• For $n \le 10^{100}$, $\Omega(n) \approx 6$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Sketch of the proof for $\Omega(n)$

Theorem (Mertens)

We have that

$$\sum_{p \le N} \frac{1}{p} = \log \log N + O(1).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Sketch of the proof for $\Omega(n)$

From Mertens' result, it follows that

$$\frac{1}{N} \sum_{n \le N} \Omega(n) = \frac{1}{N} \sum_{\substack{n \le N \\ a \ge 1}} \sum_{\substack{p^a | n \\ a \ge 1}} 1$$
$$= \frac{1}{N} \sum_{\substack{p^a \le N \\ a \ge 1}} \sum_{\substack{p^a \le N \\ p^a | n}} 1$$
$$= \frac{1}{N} \sum_{\substack{p^a \le N \\ a \ge 1}} \left(\frac{N}{p^a} + O(1) \right)$$
$$= \sum_{\substack{p \le N \\ p \le N}} \frac{1}{p} + O\left(\sum_{\substack{p \text{ prime} \\ a \ge 2}} \frac{1}{p^a} \right) = \log \log N + O(1).$$

・ロト・日本・モト・モー ショー もくら

Theorem (Hardy, Ramanujan) For any $\epsilon > 0$,

$$\lim_{N\to\infty}\frac{1}{N}\#\Big\{n\leq N: |\Omega(n)-\log\log N|\leq\epsilon\log\log N\Big\}=1.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

The Multiplication Table Problem

×	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The Multiplication Table Problem

×	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2		a estela				12	14	16	18	20
3				0.0	15		21	24	27	30
4							28	32	36	40
5	1.49		200		25		35		45	50
6	See.						42	48	54	60
7		1				111/2	49	56	63	70
8			5		5		12.00	64	72	80
9			19.905		18 5				81	90
10										100

Heuristic argument

• Let
$$A(N) = \#\{n \leq N : n = n_1 n_2, n_i \leq \sqrt{N}\}$$

Suppose *n* is in the multiplication table where the axis ranges from 1 to \sqrt{N} .

$$n = n_1 n_2 \Rightarrow \Omega(n) = \Omega(n_1) + \Omega(n_2) \approx 2 \log \log \sqrt{N}$$

This implies that Ω(n) ≈ 2 log log N, which is not very common.

Note: $\log \log \sqrt{N} = \log \log N + \log \log 1/2 \approx \log \log N$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• We expect A(N) to be small.

A more complete argument

Suppose that *n* is an integer counted by A(N). Then $n = n_1 n_2$ with $n_1, n_2 \leq \sqrt{N}$ and either

Case 1:
$$\Omega(n_1) < \frac{2}{3} \log \log N$$
 or
Case 2: $\Omega(n_2) \ge \Omega(n_1) \ge \frac{2}{3} \log \log N \Rightarrow \Omega(n) \ge \frac{4}{3} \log \log N$.
The number of integers $n \le N$ counted by Case 1 is at most

$$\#\left\{n_1\leq \sqrt{N}:\Omega(n_1)\leq \frac{2}{3}\log\log N\right\}\cdot\#\left\{n_2\leq \sqrt{N}\right\}.$$

The number of integers $n \leq N$ counted by Case 2 is at most

$$\#\left\{n\leq N:\Omega(n)\geq\frac{4}{3}\log\log N\right\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A more complete argument

So

$$\frac{A(N)}{N} \leq \frac{1}{\sqrt{N}} \# \left\{ n_1 \leq \sqrt{N} : \Omega(n_1) \leq \frac{2}{3} \log \log N \right\}$$
$$+ \frac{1}{N} \# \left\{ n \leq N : \Omega(n) \geq \frac{4}{3} \log \log N \right\}$$
$$\to 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

as $N \to \infty$.

Results on A(N)

Erdős (1960)

$$A(N) = O_{\epsilon}\left(\frac{N}{(\log N)^{\delta-\epsilon}}\right), \delta = 1 - \frac{1 + \log\log 2}{\log 2} = 0.086071\dots$$

Hall-Tenenbaum (1988)

$$A(N) = O\left(\frac{N}{(\log N)^{\delta}\sqrt{\log\log N}}\right)$$

Ford (2008)

$$A(N) \asymp rac{N}{(\log N)^{\delta} (\log \log N)^{3/2}}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Equal Patterns

• Let $n \leq N$ be such that it admits an equal star arrangement.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

So n = ab with $1 \le \frac{b}{a} \le 2$.

•
$$a \le b \le 2a \Rightarrow \sqrt{n} \le b \le 2\sqrt{n}$$
.

▶ In particular, $a, b \le 2\sqrt{N}$, so *n* is counted by A(4N).

This implies that such *n* have asymptotic density 0.
Note: We can argue in a similar way for the remaining arrangements.

Theorem (Koukoulopoulos, T)

The set of non-negative integers allowing for a nice arrangement of n stars on the U.S. flag has asymptotic density zero.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thank you!

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)