Arrangements of Stars on the American Flag

Johann Thiel - City Tech
Dimitris Koukoulopoulos - CRM

April 28, 2024

The Union Jack

- The Jack of the United States, or Union Jack, is the blue portion of the American flag containing one star for each state.

Current Union Jack

- From 1777 to 2002, the Union Jack was the official maritime flag representing the United States.

Puerto Rico

- In Chris Wilson's Slate article, 13 Stripes and 51 Stars, he mentions the possibility that Puerto Rico may vote to become the $51^{\text {st }}$ state.
- Problem: How do we add an additional star to the Union Jack so that is looks "nice?"

- How was this problem resolved in 1959 and 1960?
- Robert G. Heft!

Long - 50 Stars

Equal - 48 Stars

$$
\begin{aligned}
& \star \star \star \star \star \star \star \\
& \star \star \star \star \star \star \star
\end{aligned}
$$

Wyoming - 32 Stars
$\star \star \star \star \star \star \star \star$
$\star \star \star \star \star \star \star \star \star$
$\star \star \star \star \star \star \star \star$
$\star \star \star \star \star \star \star \star \star$
$\star \star \star \star \star \star \star \star$

Short - 42 Stars

$$
\begin{aligned}
& \star \star \star \star \star \star \star \star \\
& \star \star \star \star \star \star \star \\
& \star \star \star \star \star \star \star \star \star \\
& \star \star \star \star \star \star \star \star \\
& \star \star \star \star \star \star \star \star \\
& \star \star \star \star \star \star \star
\end{aligned}
$$

Alternate - 45 Stars

$$
\begin{aligned}
& \star \star \star \star \star \star \star \\
& \star \star \star \star \star \star \star \\
& \star \star \star \star \star \\
& \star \star \star \star \star \star \star \\
& \star \star \star \star \star \star \star
\end{aligned}
$$

Oregon - 33 Stars

1 to 100 Stars

- Heft designed arrangements for a flag with 51 to 60 stars.
- Skip Garibaldi created a program that finds arrangements for 1 to 100 stars using the arrangements from the previous slide.
- The N States of America (no longer working)
- What about 29, 69, and 87 ?

The Problem with 29

Let a and b represent the number of rows and columns of stars on a 29-star flag.

- For the equal arrangement, we need $29=a b$ with

$$
1 \leq b / a \leq 2
$$

- For the Oregon arrangement, we need $31=29+2=a b$ with $1 \leq b / a \leq 2$.
- For the Wyoming arrangement, we need $27=29-2=a b$ with a and b close to each other.
- For the remaining arrangements (long, short), we need 59 or 57 to factor as a product $a b$ with a and b close to each other.

Characterization of Arrangements

A nice arrangement of n stars on the Union Jack exists if at least one of the following holds:
(i) For the long pattern, $2 n-1=(2 a+1)(2 b+1)$ with

$$
1 \leq(b+1) /(2 a+1) \leq 2
$$

(ii) For the short pattern, $2 n+1=(2 a-1)(2 b+1)$ with

$$
1 \leq(b+1) /(2 a+1) \leq 2
$$

(iii) For the alternate pattern, $n=a(2 b-1)$ with $1 \leq b /(2 a) \leq 2$.
(iv) For the Wyoming pattern, $n-2=a b$ with $1 \leq(b+1) / a \leq 2$.
(v) For the equal pattern, $n=a b$ with $1 \leq b / a \leq 2$.
(vi) For the Oregon pattern, $n+2=a b$ with $1 \leq b / a \leq 2$.

Notation

- We write $f(N)=O(g(N))$ if

$$
|f(N)| \leq c|g(N)|
$$

for some constant $c>0$ as $N \rightarrow \infty$.

- For a set of non-negative integers A, we call

$$
\lim _{N \rightarrow \infty} \frac{\#\{n \leq N: n \in A\}}{N}
$$

the asymptotic density of A.

- Let $\Omega(n)=\sum_{\substack{p^{a} \mid n \\ a \geq 1}} 1$.
- $\Omega(20)=\Omega(4)+\Omega(5)=2+1=3$
- One can show that $\frac{1}{N} \sum_{n \leq N} \Omega(n)=\log \log N+O(1)$.
- For $n \leq 10^{100}, \Omega(n) \approx 6$.

Sketch of the proof for $\Omega(n)$

Theorem (Mertens)
We have that

$$
\sum_{p \leq N} \frac{1}{p}=\log \log N+O(1)
$$

Sketch of the proof for $\Omega(n)$

From Mertens' result, it follows that

$$
\begin{aligned}
\frac{1}{N} \sum_{n \leq N} \Omega(n) & =\frac{1}{N} \sum_{\substack{n \leq N}} \sum_{\substack{p^{a} \mid n \\
a \geq 1}} 1 \\
& =\frac{1}{N} \sum_{\substack{p^{a} \leq N \\
a \geq 1}} \sum_{\substack{n \leq N \\
p^{a} \mid n}} 1 \\
& =\frac{1}{N} \sum_{\substack{p^{a} \leq N \\
a \geq 1}}\left(\frac{N}{p^{a}}+O(1)\right) \\
& =\sum_{p \leq N} \frac{1}{p}+O\left(\sum_{p \text { prime }} \frac{1}{p^{a}}\right)=\log \log N+O(1) .
\end{aligned}
$$

Theorem (Hardy, Ramanujan)
For any $\epsilon>0$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\{n \leq N:|\Omega(n)-\log \log N| \leq \epsilon \log \log N\}=1
$$

The Multiplication Table Problem

\times	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

The Multiplication Table Problem

\times	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2						12	14	16	18	20
3					15		21	24	27	30
4							28	32	36	40
5					25		35		45	50
6							42	48	54	60
7							49	56	63	70
8								64	72	80
9									81	90
10										100

Heuristic argument

- Let $A(N)=\#\left\{n \leq N: n=n_{1} n_{2}, n_{i} \leq \sqrt{N}\right\}$
- Suppose n is in the multiplication table where the axis ranges from 1 to \sqrt{N}.
- $n=n_{1} n_{2} \Rightarrow \Omega(n)=\Omega\left(n_{1}\right)+\Omega\left(n_{2}\right) \approx 2 \log \log \sqrt{N}$
- This implies that $\Omega(n) \approx 2 \log \log N$, which is not very common.
Note: $\log \log \sqrt{N}=\log \log N+\log \log 1 / 2 \approx \log \log N$.
- We expect $A(N)$ to be small.

A more complete argument

Suppose that n is an integer counted by $A(N)$. Then $n=n_{1} n_{2}$ with $n_{1}, n_{2} \leq \sqrt{N}$ and either

$$
\begin{aligned}
& \text { Case 1: } \Omega\left(n_{1}\right)<\frac{2}{3} \log \log N \text { or } \\
& \text { Case 2: } \Omega\left(n_{2}\right) \geq \Omega\left(n_{1}\right) \geq \frac{2}{3} \log \log N \Rightarrow \Omega(n) \geq \frac{4}{3} \log \log N .
\end{aligned}
$$

The number of integers $n \leq N$ counted by Case 1 is at most

$$
\#\left\{n_{1} \leq \sqrt{N}: \Omega\left(n_{1}\right) \leq \frac{2}{3} \log \log N\right\} \cdot \#\left\{n_{2} \leq \sqrt{N}\right\}
$$

The number of integers $n \leq N$ counted by Case 2 is at most

$$
\#\left\{n \leq N: \Omega(n) \geq \frac{4}{3} \log \log N\right\}
$$

A more complete argument

So

$$
\begin{aligned}
\frac{A(N)}{N} \leq & \frac{1}{\sqrt{N}} \#\left\{n_{1} \leq \sqrt{N}: \Omega\left(n_{1}\right) \leq \frac{2}{3} \log \log N\right\} \\
& \quad+\frac{1}{N} \#\left\{n \leq N: \Omega(n) \geq \frac{4}{3} \log \log N\right\} \\
& \rightarrow 0
\end{aligned}
$$

as $N \rightarrow \infty$.

Results on $A(N)$

Erdős (1960)

$$
A(N)=O_{\epsilon}\left(\frac{N}{(\log N)^{\delta-\epsilon}}\right), \delta=1-\frac{1+\log \log 2}{\log 2}=0.086071 \ldots
$$

Hall-Tenenbaum (1988)

$$
A(N)=O\left(\frac{N}{(\log N)^{\delta} \sqrt{\log \log N}}\right)
$$

Ford (2008)

$$
A(N) \asymp \frac{N}{(\log N)^{\delta}(\log \log N)^{3 / 2}}
$$

Equal Patterns

- Let $n \leq N$ be such that it admits an equal star arrangement.
- So $n=a b$ with $1 \leq \frac{b}{a} \leq 2$.
- $a \leq b \leq 2 a \Rightarrow \sqrt{n} \leq b \leq 2 \sqrt{n}$.
- In particular, $a, b \leq 2 \sqrt{N}$, so n is counted by $A(4 N)$.
- This implies that such n have asymptotic density 0 .

Note: We can argue in a similar way for the remaining arrangements.

Theorem (Koukoulopoulos, T)
The set of non-negative integers allowing for a nice arrangement of n stars on the U.S. flag has asymptotic density zero.

Thank you!

