Matroids, Positroids, and Beyond!

Anastasia Chavez (she/her/hers)

Saint Mary's College of California

MAA Metro NYC Virtual Section Meeting 28-April-2024

My True Goal: "With a hammer, everything is a nail"

 MATPOID

My True Goal: "With a hammer, everything is a nail"

 MATPOID

My True Goal: "With a hammer, everything is a nail"

 MATPOID

My True Goal: "With a hammer, everything is a nail"

 MATPOID

My True Goal: "With a hammer, everything is a nail" MATROID

Everywhere? YES!

"It is as if one were to condense all trends of present day mathematics onto a single finite structure, a feat that anyone would a priori deem impossible, were it not for the mere fact that matroids exist." (circa 1986)

Matroids - the early years

Hassler Whitney (1907-1989)

Takeo Nakasawa (1913-1946)

Really, there are matroids here?

Computer vision made simple

Request Account Contact las

Deploy computer vision solutions in minutes, not months.

See like Superman with Matroid
See it, Detect itt Use Matroid to find defects, suspicious objects, and more on any type of visual media.

500 Marel

Really, there are matroids here? YES!

Matroids generalize dependence ... how is that?

Linear Spaces

$a=\left[\begin{array}{l}1 \\ 0\end{array}\right], b=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and $c=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.

Graphs

Matroids generalize dependence ... how is that?

Linear Spaces

$$
\begin{gathered}
a=\left[\begin{array}{l}
1 \\
0
\end{array}\right], b=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \text { and } c=\left[\begin{array}{l}
3 \\
2
\end{array}\right] . \\
{\left[\begin{array}{l}
3 \\
2
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1
\end{array}\right]}
\end{gathered}
$$

Graphs

Matroids generalize dependence ... how is that?

Linear Spaces

$$
a=\left[\begin{array}{l}
1 \\
0
\end{array}\right], b=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text {, and } c=\left[\begin{array}{l}
3 \\
2
\end{array}\right] .
$$

$$
\left[\begin{array}{l}
3 \\
2
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Linearly dependent!
and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are linearly independent

Matroids generalize dependence ... how is that?

Linear Spaces

$a=\left[\begin{array}{l}1 \\ 0\end{array}\right], b=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and $c=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.
$\left[\begin{array}{l}3 \\ 2\end{array}\right]=3\left[\begin{array}{l}1 \\ 0\end{array}\right]+2\left[\begin{array}{l}0 \\ 1\end{array}\right]$
Linearly dependent!
and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are linearly independent

Matroids generalize dependence ... how is that?

Linear Spaces

$a=\left[\begin{array}{l}1 \\ 0\end{array}\right], b=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and $c=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.
$\left[\begin{array}{l}3 \\ 2\end{array}\right]=3\left[\begin{array}{l}1 \\ 0\end{array}\right]+2\left[\begin{array}{l}0 \\ 1\end{array}\right]$
Linearly dependent!
and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are linearly independent

Graphs

Graph $=($ Edges, Vertices $)$
Dependent $=$ Closed paths (CP)
Min. Dependent $=$ Cycles

Matroids generalize dependence ... how is that?

Linear Spaces

$a=\left[\begin{array}{l}1 \\ 0\end{array}\right], b=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and $c=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.
$\left[\begin{array}{l}3 \\ 2\end{array}\right]=3\left[\begin{array}{l}1 \\ 0\end{array}\right]+2\left[\begin{array}{l}0 \\ 1\end{array}\right]$
Linearly dependent!
and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are linearly independent

Graphs

Graph $=($ Edges, Vertices $)$
Dependent $=$ Closed paths (CP)
Min. Dependent $=$ Cycles
$=\{c b d, c b e, e d, a\}$

Matroids generalize dependence ... how is that?

Linear Spaces

$a=\left[\begin{array}{l}1 \\ 0\end{array}\right], b=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and $c=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.

$$
\left[\begin{array}{l}
3 \\
2
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Linearly dependent!
and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are linearly independent

Graphs

Graph $=$ (Edges, Vertices)
Dependent = Closed paths (CP)
Min. Dependent $=$ Cycles

$$
=\{c b d, c b e, e d, a\}
$$

Independent $=$ \{paths w/o CPs, trees $\}$
Max. Indep. $=\{$ Max. vertex cover w/o CPs $\}$
$=\{$ spanning trees $\}$

Matroids generalize dependence ... how is that?

Linear Spaces

$a=\left[\begin{array}{l}1 \\ 0\end{array}\right], b=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and $c=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.

$$
\left[\begin{array}{l}
3 \\
2
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Linearly dependent!
and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are linearly independent

Graphs

Graph $=$ (Edges, Vertices)
Dependent = Closed paths (CP)
Min. Dependent $=$ Cycles

$$
=\{c b d, c b e, e d, a\}
$$

Independent $=$ \{paths w/o CPs, trees $\}$
Max. Indep. $=\{$ Max. vertex cover w/o CPs\}
$=\{$ spanning trees $\}$
$=\{f c b, f c e, f c d, f b d, f b e\}$

The search for (in)dependence:
Which subsets are independent? dependent?

a	b	c	d	e	f
0	1	1	0	0	0
0	0	1	2	1	0
0	0	0	0	0	1

The search for (in)dependence:
Which subsets are independent? dependent?

trees:
bcf
$b d f$
bef
$c d f$
cef

bases:
bcf
bdf
bef
$c d f$
cef

a	b	c	d	e	f
0	1	1	0	0	0
0	0	1	2	1	0
0	0	0	0	0	1

max. lin. ind. cols:
bcf
$b d f$
bef
$c d f$
cef

The search for (in)dependence:
Which subsets are independent? dependent?

a	b	c	d	e	f
0	1	1	0	0	0
0	0	1	2	1	0
0	0	0	0	0	1

trees:
bases:
bcf
$b d f$
bef
$c d f$
cef
max. lin. ind. cols:
bcf
$b d f$
bef
$c d f$
cef

Let $A=b d f, B=c e f$. Then $A-d+e=b e f$ is also a basis.

Matroids: basis description

Theorem (Nakasawa, Whitney 1935)
A matroid is a pair $M=([n], \mathcal{B})$ such that

- $\mathcal{B} \subset 2^{[n]}, \mathcal{B} \neq \emptyset$,
- For all $A, B \in \mathcal{B}, a \in A \backslash B \Rightarrow b \in B \backslash A$ s.t. $A-a+b \in \mathcal{B}$.

Matroids: basis description

Theorem (Nakasawa, Whitney 1935)
A matroid is a pair $M=([n], \mathcal{B})$ such that

- $\mathcal{B} \subset 2^{[n]}, \mathcal{B} \neq \emptyset$,
- For all $A, B \in \mathcal{B}, a \in A \backslash B \Rightarrow b \in B \backslash A$ s.t. $A-a+b \in \mathcal{B}$.

trees:

bases:
max. lin. ind. cols:
$\{b c f, b d f, b e f, c d f, c e f\}$

Matroids: independent set description

Definition

A matroid over $[n]$ has independent sets $\mathcal{I} \subset[n]$ such that
(I1) $\emptyset \in \mathcal{I}$
(I2) If $J \subset I$ and $I \in \mathcal{I}$, then $J \in \mathcal{I}$
(I3) If $I, J \in \mathcal{I}$ and $|I|>|J|$, then there exists $i \in I-J$ such that $J \cup\{i\} \in \mathcal{I}$.

Matroids: independent set description

Definition

A matroid over $[n]$ has independent sets $\mathcal{I} \subset[n]$ such that
(I1) $\emptyset \in \mathcal{I}$
(I2) If $J \subset I$ and $I \in \mathcal{I}$, then $J \in \mathcal{I}$
(I3) If $I, J \in \mathcal{I}$ and $|I|>|J|$, then there exists $i \in I-J$ such that $J \cup\{i\} \in \mathcal{I}$.

independent sets:

a	b	c	d	e	f
0	1	1	0	0	0
0	0	1	2	1	0
0	0	0	0	0	1

indep. column sets: $\{\emptyset, b, c, d, e, f, b c, b e, b f, c d, c e, c f, d f, e f, b c f, b d f, b e f, c d f, c e f\}$

Matroids: a circuit description

Theorem
A matroid over [n] can be characterized by its set of circuits $\mathcal{C} \subset[n]$, i.e. minimally dependent sets.

Matroids: a circuit description

Theorem
A matroid over [n] can be characterized by its set of circuits $\mathcal{C} \subset[n]$, i.e. minimally dependent sets.

cycles:

circuits:

min. lin. dep. cols:

$$
\{a, e d, b c d, b c e\}
$$

What matroids have we seen so far?

(1) Graphical Matroids $E=\{$ edges of connected graph $G\}$ and $\mathcal{B}=$ trees of G.

What matroids have we seen so far?

(1) Graphical Matroids
$E=\{$ edges of connected graph $G\}$ and $\mathcal{B}=$ trees of G.
(2) Linear Matroids
$E=\left\{\right.$ set of vectors spanning $\left.\mathbb{R}^{d}\right\}$ and $\mathcal{B}=\left\{\right.$ bases of \mathbb{R}^{d} in $\left.E\right\}$.

What matroids have we seen so far?

(1) Graphical Matroids
$E=\{$ edges of connected graph $G\}$ and $\mathcal{B}=$ trees of G.
(2) Linear Matroids
$E=\left\{\right.$ set of vectors spanning $\left.\mathbb{R}^{d}\right\}$ and $\mathcal{B}=\left\{\right.$ bases of \mathbb{R}^{d} in $\left.E\right\}$.
(3) Representable Matroids
$E=\{$ labeled columns of a matrix A over a field $F\}$ and $\mathcal{B}=\{$ bases spanning the column space of $A\}$.

a	b	c	d	e	f
0	1	1	0	0	0
0	0	1	1	2	0
0	0	0	0	0	1

Graphical \subset Representable

Given a graph G with both vertices and edges labeled, one can describe a representable matroid over F_{2} via the vertex-edge matrix!

$$
A=\begin{array}{lllllll}
& \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} & \mathrm{e} & \mathrm{f} \\
1 & 0 & 0 & 0 & 0 & 0 & 1 \\
2 & 0 & 0 & 1 & 1 & 1 & 1 \\
3 & 0 & 1 & 1 & 0 & 0 & 0 \\
4 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}
$$

Cycles of G are the sets of minimally dependent spanning columns of A.

Which Means ...

Most matroids are NOT this special

[Nelson 2018] Almost all matroids are non-representable. (as $|E| \rightarrow \infty$)

Most matroids are NOT this special

[Nelson 2018] Almost all matroids are non-representable. (as $|E| \rightarrow \infty$)

Vámos matroid
Facts:

- A non-representable rank 4 matroid (over any field) of 8 elements.
- All subsets of size 3 or less are independent.
- All subsets of size 4, except for those shown in the diagram below, are independent.
- A classic matroid to know!

All you need is ... linear algebra!

- A great entry point for undergraduate students with linear algebra experience!
- Let $\Delta_{i j}$ denote the determinant of the submatrix of columns i and j.

Example

Does $M=([4],\{12,23,34,14\})$ define a representable matroid?

All you need is ... linear algebra!

- A great entry point for undergraduate students with linear algebra experience!
- Let $\Delta_{i j}$ denote the determinant of the submatrix of columns i and j.

Example

Does $M=([4],\{12,23,34,14\})$ define a representable matroid? Find entries of A such that these pairs are the only bases of the column space,

$$
A=\left(\begin{array}{llll}
a & b & c & d \\
e & f & g & h
\end{array}\right) .
$$

All you need is ... linear algebra!

- A great entry point for undergraduate students with linear algebra experience!
- Let $\Delta_{i j}$ denote the determinant of the submatrix of columns i and j.

Example

Does $M=([4],\{12,23,34,14\})$ define a representable matroid? Find entries of A such that these pairs are the only bases of the column space,

$$
A=\left(\begin{array}{llll}
a & b & c & d \\
e & f & g & h
\end{array}\right) .
$$

That is, find values for A such that $\Delta_{12}, \Delta_{23}, \Delta_{34}, \Delta_{14}$ are all nonzero

$$
\begin{gathered}
\text { AND } \\
\text { that } \Delta_{13}=\Delta_{24}=0 .
\end{gathered}
$$

All you need is ... linear algebra (ok, love too)

- A great entry point for undergraduate students with linear algebra experience!
- Let $\Delta_{i j}$ denote the determinant of the submatrix of columns i and j.

Example

Does $M=([4],\{12,23,34,14\})$ define a representable matroid? Find entries of A such that these pairs are the only bases of the column space,

$$
A=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

That is, find values for A such that $\Delta_{12}, \Delta_{23}, \Delta_{34}, \Delta_{14}$ are all nonzero

$$
\begin{gathered}
\text { AND } \\
\text { that } \Delta_{13}=\Delta_{24}=0 .
\end{gathered}
$$

All you need is ... linear algebra (ok, love too)

- A great entry point for undergraduate students with linear algebra experience!
- Let $\Delta_{i j}$ denote the determinant of the submatrix of columns i and j.

Example

What if we also wanted that $\Delta_{12}, \Delta_{23}, \Delta_{34}, \Delta_{14}$ all nonzero and positive?

$$
A=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

All you need is ... linear algebra (ok, love too)

- A great entry point for undergraduate students with linear algebra experience!
- Let $\Delta_{i j}$ denote the determinant of the submatrix of columns i and j.

Example

What if we also wanted that $\Delta_{12}, \Delta_{23}, \Delta_{34}, \Delta_{14}$ all nonzero and positive?

$$
A=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) .
$$

Oops! This gives us $\Delta_{23}=-1$. Can this be fixed?

All you need is ... linear algebra (ok, love too)

- A great entry point for undergraduate students with linear algebra experience!
- Let $\Delta_{i j}$ denote the determinant of the submatrix of columns i and j.

Example

What if we also wanted that $\Delta_{12}, \Delta_{23}, \Delta_{34}, \Delta_{14}$ all nonzero and positive?

$$
A=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) .
$$

Oops! This gives us $\Delta_{23}=-1$. Can this be fixed?

Hmmmmm

All you need is ... linear algebra (ok, love too)

- A great entry point for undergraduate students with linear algebra experience!
- Let $\Delta_{i j}$ denote the determinant of the submatrix of columns i and j.

Example

What if we also wanted that $\Delta_{12}, \Delta_{23}, \Delta_{34}, \Delta_{14}$ all nonzero and positive?

$$
A=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) .
$$

Oops! This gives us $\Delta_{23}=-1$. Can this be fixed?

Hmmmmm (check if it's possible by looking at the relations needed!)

All you need is ... linear algebra (ok, love too)

- A great entry point for undergraduate students with linear algebra experience!
- Let $\Delta_{i j}$ denote the determinant of the submatrix of columns i and j.

Example

What if we also wanted that $\Delta_{12}, \Delta_{23}, \Delta_{34}, \Delta_{14}$ all nonzero and positive?

$$
A=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

Oops! This gives us $\Delta_{23}=-1$. Can this be fixed?

Hmmmmm (check if it's possible by looking at the relations needed!)

By now you're asking: What about this extra condition?

Positroids

Definition (Postnikov 2005)

A representable (over \mathbb{R}) matroid M on [n] of rank k is a positroid if there exists a $k \times n$ matrix A such that all maximal minors are nonnegative and A represents M. Said differently: all $\Delta_{B} \geq 0$ for $B \in\binom{[n]}{k}$.

Positroids

Definition (Postnikov 2005)

A representable (over \mathbb{R}) matroid M on [n] of rank k is a positroid if there exists a $k \times n$ matrix A such that all maximal minors are nonnegative and A represents M. Said differently: all $\Delta_{B} \geq 0$ for $B \in\binom{[n]}{k}$.

Example

The matroid $M=([5], \mathcal{B})$ where $\mathcal{B}=\{13,14,15,34,35,45\}$ is a positroid:

$$
A_{M}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 0 & -2 \\
0 & 0 & 1 & 1 & 2
\end{array}\right)
$$

One can check that $\Delta_{B}>0$ for all $B \in \mathcal{B}$ and otherwise 0 .

Positroids

Definition (Postnikov 2005)

A representable (over \mathbb{R}) matroid M on [n] of rank k is a positroid if there exists a $k \times n$ matrix A such that all maximal minors are nonnegative and A represents M. Said differently: all $\Delta_{B} \geq 0$ for $B \in\binom{[n]}{k}$.

Example

The matroid $M=([5], \mathcal{B})$ where $\mathcal{B}=\{13,14,15,34,35,45\}$ is a positroid:

$$
A_{M}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 0 & -2 \\
0 & 0 & 1 & 1 & 2
\end{array}\right)
$$

One can check that $\Delta_{B}>0$ for all $B \in \mathcal{B}$ and otherwise 0 .

Which means we now know what we need to check to see why $M=([4],\{12,23,34,14\})$ does not describe a positroid!

Positroids

Definition (Postnikov 2005)

A representable (over \mathbb{R}) matroid M on [n] of rank k is a positroid if there exists a $k \times n$ matrix A such that all maximal minors are nonnegative and A represents M. Said differently: all $\Delta_{B} \geq 0$ for $B \in\binom{[n]}{k}$.

Example

The matroid $M=([5], \mathcal{B})$ where $\mathcal{B}=\{13,14,15,34,35,45\}$ is a positroid:

$$
A_{M}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 0 & -2 \\
0 & 0 & 1 & 1 & 2
\end{array}\right)
$$

One can check that $\Delta_{B}>0$ for all $B \in \mathcal{B}$ and otherwise 0 .

Which means we now know what we need to check to see why $M=([4],\{12,23,34,14\})$ does not describe a positroid! EXERCISE

Are positroids graphical?

Definition

The uniform matroid $U_{k, n}$ is the rank k matroid over [n] such that the set of bases is $\mathcal{B}=\binom{[n]}{k}$.

Example

Consider $U_{2,4}$ with $\mathcal{B}=\{12,13,14,23,24,34\}$.

- Realizable?

Are positroids graphical?

Definition

The uniform matroid $U_{k, n}$ is the rank k matroid over [n] such that the set of bases is $\mathcal{B}=\binom{[n]}{k}$.

Example

Consider $U_{2,4}$ with $\mathcal{B}=\{12,13,14,23,24,34\}$.

- Realizable? Yes!

$$
A_{r e l}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4
\end{array}\right)
$$

Are positroids graphical?

Definition

The uniform matroid $U_{k, n}$ is the rank k matroid over [n] such that the set of bases is $\mathcal{B}=\binom{[n]}{k}$.

Example

Consider $U_{2,4}$ with $\mathcal{B}=\{12,13,14,23,24,34\}$.

- Realizable? Yes!

$$
A_{r e l}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4
\end{array}\right)
$$

- Positroid?

Are positroids graphical?

Definition

The uniform matroid $U_{k, n}$ is the rank k matroid over [n] such that the set of bases is $\mathcal{B}=\binom{[n]}{k}$.

Example

Consider $U_{2,4}$ with $\mathcal{B}=\{12,13,14,23,24,34\}$.

- Realizable? Yes!

$$
A_{\text {rel }}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4
\end{array}\right)
$$

- Positroid? Yes! Check the determinants above!
- Graphical?

Are positroids graphical?

Definition

The uniform matroid $U_{k, n}$ is the rank k matroid over [n] such that the set of bases is $\mathcal{B}=\binom{[n]}{k}$.

Example

Consider $U_{2,4}$ with $\mathcal{B}=\{12,13,14,23,24,34\}$.

- Realizable? Yes!

$$
A_{\text {rel }}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4
\end{array}\right)
$$

- Positroid? Yes! Check the determinants above!
- Graphical? No! EXERCISE ... what breaks down in the graph?

Positroids and physics

Artists rendition and notional visualization of an Amplituhedron
In 2013, Arkani-Hamed et. al. found a monumental link between particle physics and matroids, in particular positroids, that was described in Quantum Magazine in this way:
"Physicists have discovered a jewel-like geometric object that dramatically simplifies calculations of particle interactions and challenges the notion that space and time are fundamental components of reality." https://www.quantamagazine.org/physicists-discover-geometry-underlying-particle-physics-20130917/

MATROIDS IN SPACE

Combinatorics of positroids [Postnikov 2006]

Consider the positroid $M(A)$ with $\mathcal{B}=\{13,14,15,34,35,45\}$. Then it can be indexed by the following unique objects:

$$
\mathcal{I}_{M}:(13,34,34,45,51)
$$

Grassmann Necklace

Le Diagram

Decorated Permutation

Plabic Graph

Positroids in the "wild"

(1) Polytopes: Combinatorially characterize f-vectors of simplicial polytopes. [C - Yamzon '17]
(2) Posets: Combinatorially characterize the poset of Unit Intervals as a family of positroids. [C - Gotti '17]
(3) Flag Matroids: Combinatorially describe a "quotient of positroids" in terms of "decorated permutations". [Benedetti - C - Tamayo '22]

C. Benedetti

F. Gotti

N. Yamzon

Oh, the places we've been! And the matroids you'll find!

Oh, the places we've been! And the matroids you'll find!

Oh, the places we've been! And the matroids you'll find!

Oh, the places we've been! And the matroids you'll find!

Oh, the places we've been! And the matroids you'll find!

