### Matroids, Positroids, and Beyond!

Anastasia Chavez (she/her/hers)

Saint Mary's College of California



#### MAA Metro NYC Virtual Section Meeting 28-April-2024

- ∢ ⊒ →

▲ 同 ▶ → 三 ▶



Anastasia Chavez (SMC)

Matroids, Positroids, and Beyond



Anastasia Chavez (SMC)

Matroids, Positroids, and Beyond



Anastasia Chavez (SMC)

Matroids, Positroids, and Beyond





### Everywhere? YES!



Gian-Carlo Rota (1932 - 1999)

"It is as if one were to condense all trends of present day mathematics onto a single finite structure, a feat that anyone would a priori deem impossible, were it not for the mere fact that matroids exist." (circa 1986)

### Matroids - the early years



Hassler Whitney (1907 - 1989)



Takeo Nakasawa (1913 - 1946)

< 回 > < 三 > < 三 >

### Really, there are matroids here?



イロト イヨト イヨト イヨト

э

### Really, there are matroids here? YES!



イロト イヨト イヨト イヨト

э



#### Graphs

Anastasia Chavez (SMC)

< □ > < □ > < □ > < □ > < □ > < □ >



#### Graphs

▲ □ ▶ ▲ □ ▶ ▲ □ ▶



Graphs

13/37





Graphs

Graph = (Edges, Vertices)



Linear Spaces



Graphs

Graph = (Edges, Vertices)Dependent = Closed paths (CP)Min. Dependent = Cycles

28-April-2024



Graphs



 $\begin{aligned} \mathsf{Graph} &= (\mathsf{Edges}, \, \mathsf{Vertices}) \\ \mathsf{Dependent} &= \mathsf{Closed \ paths} \ (\mathsf{CP}) \\ \mathsf{Min. \ Dependent} &= \mathsf{Cycles} \\ &= \{ \mathit{cbd}, \mathit{cbe}, \mathit{ed}, \mathit{a} \} \end{aligned}$ 





Graphs

Graph = (Edges, Vertices)Dependent = Closed paths (CP)Min. Dependent = Cycles  $= \{cbd, cbe, ed, a\}$ 

Independent = {paths w/o CPs, trees} Max. Indep. ={Max. vertex cover w/o CPs $\}$ = {spanning trees}



#### Linear Spaces



Graphs

Graph = (Edges, Vertices)Dependent = Closed paths (CP)Min. Dependent = Cycles  $= \{cbd, cbe, ed, a\}$ 

Independent = {paths w/o CPs, trees} Max. Indep. ={Max. vertex cover w/o CPs $\}$  $= \{ spanning trees \}$  $= \{fcb, fce, fcd, fbd, fbe\}$  The search for (in)dependence: Which subsets are independent? dependent?



# The search for (in)dependence: Which subsets are independent? dependent?



< 1 k

# The search for (in)dependence: Which subsets are independent? dependent?



#### Let A = bdf, B = cef. Then A - d + e = bef is also a basis.

### Matroids: basis description

### Theorem (Nakasawa, Whitney 1935)

### A matroid is a pair $M = ([n], \mathcal{B})$ such that

• 
$$\mathcal{B} \subset 2^{[n]}, \mathcal{B} \neq \emptyset$$
,

• For all  $A, B \in \mathcal{B}$ ,  $a \in A \setminus B \Rightarrow b \in B \setminus A \text{ s.t. } A - a + b \in \mathcal{B}$ .

### Matroids: basis description

### Theorem (Nakasawa, Whitney 1935)

### A matroid is a pair $M = ([n], \mathcal{B})$ such that

• 
$$\mathcal{B} \subset 2^{[n]}, \mathcal{B} \neq \emptyset$$
,

• For all  $A, B \in \mathcal{B}$ ,  $a \in A \setminus B \Rightarrow b \in B \setminus A$  s.t.  $A - a + b \in \mathcal{B}$ .





| а | D | С | a | е | Т |
|---|---|---|---|---|---|
| 0 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 2 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 |

trees:

bases:

max. lin. ind. cols:

### $\{bcf, bdf, bef, cdf, cef\}$

< 4<sup>3</sup> ► <

# Matroids: independent set description

### Definition

```
A matroid over [n] has independent sets \mathcal{I} \subset [n] such that
```

```
(\mathsf{I1}) \ \emptyset \in \mathcal{I}
```

```
(12) If J \subset I and I \in \mathcal{I}, then J \in \mathcal{I}
```

```
(13) If I, J \in \mathcal{I} and |I| > |J|, then there exists i \in I - J such that J \cup \{i\} \in \mathcal{I}.
```

く 何 ト く ヨ ト く ヨ ト

# Matroids: independent set description

### Definition

A matroid over [n] has independent sets  $\mathcal{I} \subset [n]$  such that

(I1) 
$$\emptyset \in \mathcal{I}$$

(12) If 
$$J \subset I$$
 and  $I \in \mathcal{I}$ , then  $J \in \mathcal{I}$ 

(13) If  $I, J \in \mathcal{I}$  and |I| > |J|, then there exists  $i \in I - J$  such that  $J \cup \{i\} \in \mathcal{I}$ .





 a
 b
 c
 d
 e
 f

 0
 1
 1
 0
 0
 0

 0
 0
 1
 2
 1
 0

 0
 0
 0
 0
 0
 1

cycle-free edges:

independent sets:

indep. column sets:

 $\{\emptyset, b, c, d, e, f, bc, be, bf, cd, ce, cf, df, ef, bcf, bdf, bef, cdf, cef\}$ 

Anastasia Chavez (SMC)

## Matroids: a circuit description

#### Theorem

A matroid over [n] can be characterized by its set of circuits  $C \subset [n]$ , i.e. minimally dependent sets.

<日<br />
<</p>

## Matroids: a circuit description

#### Theorem

A matroid over [n] can be characterized by its set of circuits  $C \subset [n]$ , i.e. minimally dependent sets.



<日<br />
<</p>

### What matroids have we seen so far?

- Graphical Matroids
  - $E = \{ edges of connected graph G \} and B = trees of G.$



### What matroids have we seen so far?

- Graphical Matroids
  - $E = \{ edges of connected graph G \}$  and  $\mathcal{B} = trees of G$ .
- 2 Linear Matroids
  - $E = \{ \text{set of vectors spanning } \mathbb{R}^d \} \text{ and } \mathcal{B} = \{ \text{bases of } \mathbb{R}^d \text{ in } E \}.$



### What matroids have we seen so far?

- Graphical Matroids
  - $E = \{ edges of connected graph G \}$  and  $\mathcal{B} = trees of G$ .
- ② Linear Matroids  $E = \{ \text{set of vectors spanning } \mathbb{R}^d \} \text{ and } \mathcal{B} = \{ \text{bases of } \mathbb{R}^d \text{ in } E \}.$
- Representable Matroids
   E = {labeled columns of a matrix A over a field F} and
   B = {bases spanning the column space of A}.



## $\mathsf{Graphical} \subset \mathsf{Representable}$

Given a graph G with both vertices and edges labeled, one can describe a representable matroid over  $F_2$  via the vertex-edge matrix!



Cycles of G are the sets of minimally dependent spanning columns of A.

### Which Means ...



28-April-2024

A D N A B N A B N A B N

### Most matroids are NOT this special

**[Nelson 2018]** Almost all matroids are non-representable. (as  $|E| \rightarrow \infty$ )

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

# Most matroids are NOT this special

[Nelson 2018] Almost all matroids are non-representable. (as  $|E| \rightarrow \infty$ )



Vámos matroid

Facts:

- A non-representable rank 4 matroid (over any field) of 8 elements.
- All subsets of size 3 or less are independent.
- All subsets of size 4, except for those shown in the diagram below, are independent.
- A classic matroid to know!

Anastasia Chavez (SMC)

Matroids, Positroids, and Beyond!

### All you need is ... linear algebra!

- A great entry point for undergraduate students with linear algebra experience!
- Let  $\Delta_{ij}$  denote the determinant of the submatrix of columns *i* and *j*.

#### Example

Does  $M = ([4], \{12, 23, 34, 14\})$  define a representable matroid?

### All you need is ... linear algebra!

- A great entry point for undergraduate students with linear algebra experience!
- Let  $\Delta_{ij}$  denote the determinant of the submatrix of columns *i* and *j*.

#### Example

Does  $M = ([4], \{12, 23, 34, 14\})$  define a representable matroid? Find entries of A such that these pairs are the only bases of the column space,

$$A = \begin{pmatrix} a & b & c & d \\ e & f & g & h \end{pmatrix}.$$

### All you need is ... linear algebra!

- A great entry point for undergraduate students with linear algebra experience!
- Let  $\Delta_{ij}$  denote the determinant of the submatrix of columns *i* and *j*.

#### Example

Does  $M = ([4], \{12, 23, 34, 14\})$  define a representable matroid? Find entries of A such that these pairs are the only bases of the column space,

$$A = \begin{pmatrix} a & b & c & d \\ e & f & g & h \end{pmatrix}.$$

That is, find values for A such that  $\Delta_{12}$ ,  $\Delta_{23}$ ,  $\Delta_{34}$ ,  $\Delta_{14}$  are all nonzero AND that  $\Delta_{13} = \Delta_{24} = 0$ .

- A great entry point for undergraduate students with linear algebra experience!
- Let  $\Delta_{ij}$  denote the determinant of the submatrix of columns *i* and *j*.

#### Example

Does  $M = ([4], \{12, 23, 34, 14\})$  define a representable matroid? Find entries of A such that these pairs are the only bases of the column space,

$$A = egin{pmatrix} 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \end{pmatrix}.$$

That is, find values for A such that  $\Delta_{12}$ ,  $\Delta_{23}$ ,  $\Delta_{34}$ ,  $\Delta_{14}$  are all nonzero AND that  $\Delta_{13} = \Delta_{24} = 0$ .

- A great entry point for undergraduate students with linear algebra experience!
- Let  $\Delta_{ij}$  denote the determinant of the submatrix of columns *i* and *j*.

#### Example

What if we also wanted that  $\Delta_{12}$ ,  $\Delta_{23}$ ,  $\Delta_{34}$ ,  $\Delta_{14}$  all nonzero and positive?

$$A=egin{pmatrix}1&0&1&0\0&1&0&1\end{pmatrix}.$$

- A great entry point for undergraduate students with linear algebra experience!
- Let  $\Delta_{ij}$  denote the determinant of the submatrix of columns *i* and *j*.

#### Example

What if we also wanted that  $\Delta_{12}$ ,  $\Delta_{23}$ ,  $\Delta_{34}$ ,  $\Delta_{14}$  all nonzero and positive?

$$A = egin{pmatrix} 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \end{pmatrix}.$$

Oops! This gives us  $\Delta_{23} = -1$ . Can this be fixed?

- A great entry point for undergraduate students with linear algebra experience!
- Let  $\Delta_{ij}$  denote the determinant of the submatrix of columns *i* and *j*.

#### Example

What if we also wanted that  $\Delta_{12}$ ,  $\Delta_{23}$ ,  $\Delta_{34}$ ,  $\Delta_{14}$  all nonzero and positive?

$$A = egin{pmatrix} 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \end{pmatrix}.$$

Oops! This gives us  $\Delta_{23} = -1$ . Can this be fixed?



- A great entry point for undergraduate students with linear algebra experience!
- Let  $\Delta_{ij}$  denote the determinant of the submatrix of columns *i* and *j*.

#### Example

What if we also wanted that  $\Delta_{12}$ ,  $\Delta_{23}$ ,  $\Delta_{34}$ ,  $\Delta_{14}$  all nonzero and positive?

$$A=egin{pmatrix} 1&0&1&0\0&1&0&1 \end{pmatrix}.$$

Oops! This gives us  $\Delta_{23} = -1$ . Can this be fixed?

(check if it's possible by looking at the relations needed!)

- A great entry point for undergraduate students with linear algebra experience!
- Let  $\Delta_{ij}$  denote the determinant of the submatrix of columns *i* and *j*.

#### Example

What if we also wanted that  $\Delta_{12}$ ,  $\Delta_{23}$ ,  $\Delta_{34}$ ,  $\Delta_{14}$  all nonzero and positive?

$$A=egin{pmatrix} 1&0&1&0\0&1&0&1 \end{pmatrix}.$$

Oops! This gives us  $\Delta_{23} = -1$ . Can this be fixed?



(check if it's possible by looking at the relations needed!)

By now you're asking: What about this extra condition?

Anastasia Chavez (SMC)

Matroids, Positroids, and Beyond!

#### Definition (Postnikov 2005)

A representable (over  $\mathbb{R}$ ) matroid M on [n] of rank k is a *positroid* if there exists a  $k \times n$  matrix A such that all maximal minors are nonnegative and A represents M. Said differently: all  $\Delta_B \ge 0$  for  $B \in {[n] \choose k}$ .

25 / 37

### Definition (Postnikov 2005)

A representable (over  $\mathbb{R}$ ) matroid M on [n] of rank k is a *positroid* if there exists a  $k \times n$  matrix A such that all maximal minors are nonnegative and A represents M. Said differently: all  $\Delta_B \ge 0$  for  $B \in {[n] \choose k}$ .

#### Example

The matroid M = ([5], B) where  $B = \{13, 14, 15, 34, 35, 45\}$  is a positroid:

$$\mathcal{A}_{\mathcal{M}} = egin{pmatrix} 1 & 0 & 1 & 0 & -2 \ 0 & 0 & 1 & 1 & 2 \end{pmatrix}.$$

One can check that  $\Delta_B > 0$  for all  $B \in \mathcal{B}$  and otherwise 0.

### Definition (Postnikov 2005)

A representable (over  $\mathbb{R}$ ) matroid M on [n] of rank k is a *positroid* if there exists a  $k \times n$  matrix A such that all maximal minors are nonnegative and A represents M. Said differently: all  $\Delta_B \ge 0$  for  $B \in {[n] \choose k}$ .

#### Example

The matroid M = ([5], B) where  $B = \{13, 14, 15, 34, 35, 45\}$  is a positroid:

$$\mathcal{A}_{\mathcal{M}} = egin{pmatrix} 1 & 0 & 1 & 0 & -2 \ 0 & 0 & 1 & 1 & 2 \end{pmatrix}.$$

One can check that  $\Delta_B > 0$  for all  $B \in \mathcal{B}$  and otherwise 0.

Which means we now know what we need to check to see why  $M = ([4], \{12, 23, 34, 14\})$  does not describe a positroid!

### Definition (Postnikov 2005)

A representable (over  $\mathbb{R}$ ) matroid M on [n] of rank k is a *positroid* if there exists a  $k \times n$  matrix A such that all maximal minors are nonnegative and A represents M. Said differently: all  $\Delta_B \ge 0$  for  $B \in {[n] \choose k}$ .

#### Example

The matroid M = ([5], B) where  $B = \{13, 14, 15, 34, 35, 45\}$  is a positroid:

$$\mathcal{A}_{\mathcal{M}} = egin{pmatrix} 1 & 0 & 1 & 0 & -2 \ 0 & 0 & 1 & 1 & 2 \end{pmatrix}.$$

One can check that  $\Delta_B > 0$  for all  $B \in \mathcal{B}$  and otherwise 0.

Which means we now know what we need to check to see why  $M = ([4], \{12, 23, 34, 14\})$  does not describe a positroid! EXERCISE

#### Definition

The uniform matroid  $U_{k,n}$  is the rank k matroid over [n] such that the set of bases is  $\mathcal{B} = {[n] \choose k}$ .

#### Example

Consider  $U_{2,4}$  with  $\mathcal{B} = \{12, 13, 14, 23, 24, 34\}.$ 

• Realizable?

イロト イポト イヨト イヨト 二日

#### Definition

The uniform matroid  $U_{k,n}$  is the rank k matroid over [n] such that the set of bases is  $\mathcal{B} = {[n] \choose k}$ .

#### Example

Consider  $U_{2,4}$  with  $\mathcal{B} = \{12, 13, 14, 23, 24, 34\}.$ 

• Realizable? Yes!

$$A_{rel} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$

イロト イポト イヨト イヨト 二日

#### Definition

The uniform matroid  $U_{k,n}$  is the rank k matroid over [n] such that the set of bases is  $\mathcal{B} = {[n] \choose k}$ .

#### Example

Consider  $U_{2,4}$  with  $\mathcal{B} = \{12, 13, 14, 23, 24, 34\}.$ 

• Realizable? Yes!

$$A_{rel} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$

• Positroid?

イロト イポト イヨト イヨト 二日

#### Definition

The uniform matroid  $U_{k,n}$  is the rank k matroid over [n] such that the set of bases is  $\mathcal{B} = {[n] \choose k}$ .

#### Example

Consider  $U_{2,4}$  with  $\mathcal{B} = \{12, 13, 14, 23, 24, 34\}.$ 

• Realizable? Yes!

$$A_{rel} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$

- Positroid? Yes! Check the determinants above!
- Graphical?

3

(1) マン・ション (1) マン・シュ

#### Definition

The uniform matroid  $U_{k,n}$  is the rank k matroid over [n] such that the set of bases is  $\mathcal{B} = {[n] \choose k}$ .

#### Example

Consider  $U_{2,4}$  with  $\mathcal{B} = \{12, 13, 14, 23, 24, 34\}.$ 

• Realizable? Yes!

$$A_{rel} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$

- Positroid? Yes! Check the determinants above!
- Graphical? No! EXERCISE ... what breaks down in the graph?

く 目 ト く ヨ ト く ヨ ト

### Positroids and physics



Artists rendition and notional visualization of an Amplituhedron

In 2013, Arkani-Hamed et. al. found a monumental link between particle physics and matroids, in particular positroids, that was described in *Quantum Magazine* in this way:

"Physicists have discovered a jewel-like geometric object that dramatically simplifies calculations of particle interactions and challenges the notion that space and time are fundamental components of reality." https://www.quantamagazine.org/physicists-discover-geometry-underlying-particle-physics-20130917/

### MATROIDS IN SPACE



Anastasia Chavez (SMC)

### Combinatorics of positroids [Postnikov 2006]

Consider the positroid M(A) with  $\mathcal{B} = \{13, 14, 15, 34, 35, 45\}$ . Then it can be indexed by the following unique objects:

$$\mathcal{I}_M$$
: (13, 34, 34, 45, 51)

Grassmann Necklace



**Decorated Permutation** 



Le Diagram



Plabic Graph

### Positroids in the "wild"

- Polytopes: Combinatorially characterize *f*-vectors of simplicial polytopes. [C - Yamzon '17]
- Posets: Combinatorially characterize the poset of Unit Intervals as a family of positroids. [C - Gotti '17]
- Flag Matroids: Combinatorially describe a "quotient of positroids" in terms of "decorated permutations". [Benedetti - C - Tamayo '22]



C. Benedetti

F. Gotti

D. Tamayo N. Yamzon

Anastasia Chavez (SMC)

Matroids, Positroids, and Beyond

28-April-2024

30 / 37



э

31 / 37

イロト イボト イヨト イヨト



A D N A B N A B N A B N



A D N A B N A B N A B N



(日) (四) (日) (日) (日)



< 4<sup>™</sup> >



A D N A B N A B N A B N



Anastasia Chavez (SMC)

Matroids, Positroids, and Beyond!