The Underlying Topology of Data

Jose Perea

Mathematics

Computer Sciences

Königsberg, 1700s

"This question is so banal, but seemed to me worthy of attention in that [neither] geometry, nor algebra, nor even the art of counting was sufficient to solve it"

Leonhard Euler, 1707 - 1783

Hopkins, Brian, and Robin Wilson. "The Truth about Königsberg." College Mathematics Journal (2004), 35, 198-207.

Leonhard Euler, 1707 - 1783

Leonhard Euler, 1707 - 1783

Euler, L. Solutio problematis ad geometriam situs pertinentis. Commentarii academiae scientiarum Petropolitanae, 1741

Objects are equal up to **continuous** deformations:

Topological Data Analysis

Computational Biology

Betti Numbers: $\beta_n(K) \sim \#$ number of *n*-dim holes

 $\beta_1(X) = 0$

$\beta_n(K) \sim \#$ number of *n*-dim holes

The Persistent Homology of Data:

Barcodes

Data

The Persistent Homology of Data:

Detecting Recurrence in Time Series Data

Exhibit 1 U.S. Housing Follows a More or Less Regular Cycle

Source: Bureau of the Census, GMO As of 6/30/11

G

Global control of cell-cycle transcription by coupled SDK and network oscillators, D. Orlando et. al., Nature, 2008

What is recurrence, and how do we quantify it?

Sliding Windows

Sliding Windows

Sliding window embedding

Sliding Windows and Persistence: An application of topology to signal analysis, J. Perea and J. Harer, FOCM 2015

f

 $\mathbb{SW}_{d,\tau}f$

SW1PerS: Sliding Windows and 1-Persistence Scoring

Sliding Windows and Persistence: An application of topology to signal analysis, J. Perea and J. Harer, FOCM 2015

Found Comput Math (2015) 15:799–838 DOI 10.1007/s10208-014-9206-z

FOUNDATIONS OF COMPUTATIONAL MATHEMATICS

The Journal of the Society for the Foundations of Computational Mathematics

Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis

Jose A. Perea · John Harer

Perea et al. BMC Bioinformatics (2015) 16:257 DOI 10.1186/s12859-015-0645-6

METHODOLOGY ARTICLE

Open Access

SW1PerS: Sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data

Jose A. Perea^{1,2*}, Anastasia Deckard³, Steve B. Haase^{4,5} and John Harer^{1,4,6}

x		- 🗢 🖁	▼ ∓		hughes2009	9-liver_res - I	Excel		SPARKLINE "	TOOLS									7	· • _	- >	٢.
	FILE H	IOME IN	SERT PAG	ge layout	FORMUI	LAS DATA	A REVIEW	VIEW	DESIG	N											Sign	in
Pa	Clipboz	t py 🔻 rmat Painter	Avenir Ne BIL	ext Re • 11	• A A • <u>A</u> •		Alignme	₩Wrap Te: Merge 8	xt « Center +	General \$ - % •	€.0 .00 .00 →.0	Conditiona Formatting	al Format as Table •	Cell Styles •	Insert Delet	e Format	∑ AutoSum ↓ Fill ▾ < Clear ▾	Sort & Filter	Find & Select -			~
M	154		× ✓	fr			,						btyres					Lannig				
	13-1			Ja																		-
4	М	N	0	Р	Q	R	S	Т	U	V	W	×	Y	Z	AA	AB	AC	AD	AE	AF	A	
1	Norm PI	18 💌	19	20	21	22 💌	23	24	25	26 💌	27	28	29	30	31 💌	32	33 💌	34 💌	35	36 💌	E	
2	Mrwh	11895.2	12898	11911.3	10194.2	11634.3	9322.2	11362.2	9880.3	11402.3	9936.2	8346.8	9777.8	10107.9	6893.2	7986.2	8590.2	8712	9665.2	9078.2	813	
3	www.www	19494.2	17352.1	18554.1	18380.1	19133.7	17574.4	16778.7	14786.6	17291.2	17252.2	13845.6	16773.6	18236.5	17100.1	17017.1	18457.5	16770.5	18643.4	21593.4	187	
4	MMWM	25261.2	24843.7	23924.7	27841	24070.2	26161.9	23777.7	27511.9	21394.7	22450.8	24288.4	26018.1	26731.8	22372.5	22325.2	22496	23327.2	24087.7	24628	248	
5	MM	3117.3	3732.7	3964.2	3111.2	3379	2959.5	2460.3	3250.3	2853	2272.1	3588.5	2691.6	2488.9	1873.1	1733.9	1710.5	2064.8	1919.4	2168.1	179	
6	Munth	5019.7	4949.6	4661.2	4852.6	4287.6	3668.6	4460.2	4930.9	3365.7	3093.2	3951.8	5614.6	6065.7	3268.9	4349.1	3656.8	5440.7	5067.7	5025.1	55	
7	mmult	2291.9	1924.7	1974.4	2114.4	2601.3	2184	2781.6	2603.2	2565.3	2421.2	2609.9	2189	2186.3	2167	2106	1908.3	2348.1	2218.4	2171.6	227	
8	Mmy	31688.7	32265.8	34335.7	32932.3	34843.3	28885.1	26908.4	28641.3	26995.8	29937.8	32894.9	32400.3	33468.2	26061.7	25781	24484.8	29700.4	31629	32161	256	
9	MM	32270.2	32399.8	30527.7	33447	28200.7	26104.6	24098.6	27367.5	17303.9	17192.4	18305.2	29987.3	28857.8	18378.8	22644.6	22858.7	26571.7	27955.2	30859	239	
10	mum	12132.3	12016.1	12976.3	11842.6	11746.3	12261.7	11203.4	9859.5	11791.3	13934.8	13435.6	12962.6	14130.5	15687.7	15616.2	14913.9	16606.3	16124.5	16905	160	
11	MMMMM	27906.8	24578	28547.9	25954.4	27405	28009.8	26748.6	26927.5	23337.6	25312.5	27580.3	26473.5	28164	25583.9	27012.6	25628.8	28332.6	29554	27519.3	276	
12	Marin	4213.7	3803.1	4142	3671.7	4110.5	3930.1	4336.3	3128.7	4498.3	4249.8	4238.2	3936.1	3804.3	4242.1	4079.7	3252.3	4084.6	4041	4102.6	37	
	math A	_{0070 ۶} hughes-	میں liver-v1 s	wft3 resc	omb d	0F00 7	c 0030	0024 7	00C0 F	onno	7255.2	7702 0	0070	9060 1	7106-1	7111.0	6024.0	0070 7	10227 /	0040 4	0A0	•

<∄ 🔒	5.0.	₽
FILE	HOME	INSER

FILE

VIEW PAGE LAYOUT FORMULAS DATA REVIEW

? 🗹 🗕 🗗 🗙

Sign ir

Paste Image: Clipboard Image: Cli		🔏 Cut 🖹 Copy 🗸	Aven	ir Next Re 🛛 11 📑	A A	≡ ₌ ≫ ∗ ₽ Wrap Text		General	~				~		Σ	∑ AutoSum Fill -	Z A	
	Paste	Format Paint	ter B <i>i</i>	Ι <u>U</u> - <u>□</u> - ◊	• • <u>A</u> • 5	E = ≤ > E Merge & Ce Alignment	nter 👻	\$ - % • Number	00. 0.⇒ 00 →.0	Conditional Formatting •	Format as Table ▼ Styles	s Cell Styles ⊤	Insert ,	Cells	mat 🧹	Clear 🔻	Sort & Find & Filter - Select - diting	^

- : 🗙 🖌 *f*x 1450869_at A2

INSERT

	Α	С	E	G	I	K	L	Μ	Ν	0	Р	Q	R	
1	Probe	Symbol 🗸	SW_rank _↓ ↑	DL_rank	LS_rank	JTK_rank	Max-Min	Norm Plot	18	19	20	21	22	
2	1450869 at	Fgf1	1	1451.5	39	116	10916.2	M.M.	15201.2	13204.8	15041.3	14251	11082.3	
3	 1416958_at	Nr1d2	2	26.5	10	25.5	62708.9	M	13006.6	12287.7	10224	9298	7393.1	
4	1417190_at	Nampt	3	242.5	48	5	17275.4	M	10043.8	9446.7	9994.4	7548.1	6338.7	
5	1450714_at	Azin1	4	4053.5	134	121	8391.4	W.M.	13494.8	14060.1	13963.6	12193.6	11334.7	
6	1436590 _a t		5	98	86.5	144.5	49573.2	M. My M	47739.7	38509.4	38855.4	30598.5	35784.8	
7	1420722_at	Elovl3	6.5	26.5	1	1	149978.3	M	76307.7	93712.8	98998.6	121038.2	127449	
8	1437250 _a t	Mreg	6.5	1534.5	38	34.5	30373.3	MM	29040.6	29839.6	31687.1	39536	35259.5	
	• hughe	es-liver-v1_swf	t3_rescomb_d	+			: •							•

x∎	• <u>4 · ج ، ج ا</u>	▼				hughes	2009-liver_res -	- Excel					? 🛧 🗕	₽ ×
FIL	E HOME IN:	SERT PAGE	LAYOUT FORMU	las data f	REVIEW VIEW									Sign in
Paste	Cut Copy → Format Painter Clipboard	Avenir Next	Re ▼ 11 ▼ A A A →	= ₌ »	 ✓ ■ Wrap Text → ■ ■ Merge & Alignment 	t General Center - \$ - 9	▼ 6 9 €.0 .00 .00 →.0 umber ⊑	Conditional Forma Formatting → Table Styles	t as Cell Ins	ert Delete Format Cells	∑ AutoSum ▾ ↓ Fill ▾ ✔ Clear ▾ Editi	A Z Sort & Find & Filter - Select -		^
A2	•	× 🗸	<i>fx</i> 1450869_	at										~
	Α	С	E	G		K	L	М	Ν	0	Р	Q	R	
1	Probe	Symbol	SW_rank ▼	DL_rank	LS_rank	JTK_rank ▼	Max-Min	Norm Plot	18	19	20	21	22	-
45096	1459877_x_at		44920	39869.5	40494	37728.5	2233.2	MMM	4848.7	4365.1	4505.4	4685.3	4858	
4509	1459917_at	Ggnbp2	44920	24121	30730.5	37728.5	1659.9	Mander	1132.3	1077.1	1122.8	1250	1164	
45098	1459948_at		44920	6142	21561	37728.5	7536.4	Mumm	3512.8	3705.9	4896	2755.5	2715	
4509	1459957_at		44920	27801.5	26601.5	21692.5	172.4	Murph	144.6	149.9	111.6	127.9	122.7	
4510	1460126_at		44920	27184	40494	37728.5	1024	MAMM	1065.1	734.9	986.6	810	883.5	
4510 ⁻	1460610_at	Ost4	44920	39204.5	31251	37728.5	55.7	Myyyy	95	94	95	95.3	90.4	
45102	FX-MURINE_b1	NA	44920	29424	21164.5	29740	12663.2	Mann	12215.2	10674.9	10611.6	11054.7	13470.4	•
4	bughes-	liver-v1 swf	t3 rescomb d	(+)			: 4							

Yeast Metabolic Cycle Data

Gene	sw	DL	LS	JTK	Amp	Plot
ECM33	137	1552	1194.5	1492	35.86	Mm
CDC9	291	1494	1993.5	2714.5	2.81	Mrs
SAM1,2	628	1133	1723	3289.5	60.82	MM
MSH6	715	3569	2381	3341.5	5.06	how

Rankings of genes in the top 10% (out of 9,330) according to SW, and not in the top 10% for any other algorithm

ACTION CLASSIFICATION FROM MOTION CAPTURE DATA USING TOPOLOGICAL DATA ANALYSIS

Alireza Dirafzoon, Namita Lokare and Edgar Lobaton

Fig. 4. (a) Separation of classes from the training set, (b) Confusion matrix over the predicted and true classes

Table	e 1. Class a	ccuracy re	sults for th	e activitie	S
Action	Bicycle	Golf	Walk	Wave	Sit
Accuracy	1.00	0.9787	0.9929	0.9858	1.00

SLIDING WINDOW PERSISTENCE OF QUASIPERIODIC FUNCTIONS

HITESH GAKHAR AND JOSE A. PEREA

arXiv:2103.04540

Commensurate

Non-Commensurate

Time Series

Sliding Window Point Cloud

Time Series

Sliding Window Point Cloud

Persistent Homology

SIAM J. IMAGING SCIENCES Vol. 11, No. 2, pp. 1049–1077 © 2018 Society for Industrial and Applied Mathematics

(Quasi)Periodicity Quantification in Video Data, Using Topology* Christopher J. Tralie[†] and Jose A. Perea[‡]

2D PCA, Tau = 1, d = 25 61.5 % Variance Explained

Sliding window embedding

Experiment: **amazon** Mechanical Turk

Instructions

There are two 5 second videos below. Enter the 3 digit number at the end of the video which has more perfect repetitions of motion both in time and location within the video frame.

Results: Humans (amazon turk) vs Computers

Correlation of rakings (from most periodic to least periodic) across 20 videos

Kendall's Tau	SW	CutlerDavis Freq	CutlerDavis Lattice	Humans
SW	1	-0.315	0.221	0.663
CutlerDavis Freq		1	-0.0842	-0.294
CutlerDavis Lattice			1	0.347
Humans				1

normal

Clinical asymmetry

Laryngeal video-endoscopy

normal

Mucus irregular

$\mathsf{dgm} \mapsto predict(\mathsf{dgm}) \in \mathbb{R}$

Approximating Continuous Functions on Persistence Diagrams Using Template Functions

Jose A. Perea · Elizabeth Munch · Firas A. Khasawneh

> To appear in **FoCM** 2022 https://arxiv.org/abs/1902.07190

Continuous and compactly supported

$$\mathbb{W} = \left\{ (x, y) \in \mathbb{R}^2 : 0 \le x < y \right\}$$

Remark:

 $\operatorname{dgm} \ \mapsto \ \sum_{\mathbf{x} \in \operatorname{dgm}} f(\mathbf{x})$

Is continuous.

J. A. Perea, E. Munch and F. Khasawneh, Approximating Continuous Functions on Persistence Diagrams, FoCM 2022

Theorem

Let $\mathcal{C} \subset \mathscr{D}$ be compact and let $F : \mathcal{C} \longrightarrow \mathbb{R}$ be continuous.

Then, given $\epsilon > 0$, there exist functions $f_1, \ldots, f_n \in C_c(\mathbb{W}, \mathbb{R})$

and a polynomial $p \in \mathbb{R}[x_1, \ldots, x_n]$ so that

$$\left| p\left(\sum_{\mathbf{x} \in \mathsf{dgm}} f_1(\mathbf{x}), \dots, \sum_{\mathbf{x} \in \mathsf{dgm}} f_n(\mathbf{x}) \right) - F(\mathsf{dgm}) \right| < \epsilon$$

for every dgm $\in \mathcal{C}$.

J. A. Perea, E. Munch and F. Khasawneh, Approximating Continuous Functions on Persistence Diagrams, FoCM 2022

Protein Classification Benchmark Collection (PCB00019) – SCOP40mini

1,357 proteins	# atoms ~ 1K	55 classification tasks
----------------	--------------	-------------------------

A protein classification benchmark collection for machine learning, P. Sonego et. al., Nucleic acids research, 2007.

L. Polanco and J. A. Perea, Adaptive template systems: Data-driven feature selection for learning with persistence, ICMLA 2019

Thanks!

http://www.joperea.com