MAA Metro NY November 2025, Problem of the Month

Prove by elementary means, using trigonometric identities, that

- (a) $\cos(1^{\circ})$ is irrational, and
- (b) $\cos\left(\frac{1}{n}^{\circ}\right)$ is irrational, where n is a positive integer.

Computer or AI assisted/generated solutions will not be accepted.

Solution by Dr. Philip Cobb

Begin by proving by induction that there exist polynomials $f_n(x)$ and $g_n(x)$ with integer coefficients such that $\cos(nx) = f_n(\cos x)$ and $\sin(nx) = \sin x g_n(\cos x)$. If n = 1, then $f_1(x) = x$ and $g_1(x) = 1$. Assume that both are true for n = k. Then

$$\cos(k+1)x = \cos(kx+x) = \cos(kx)\cos x - \sin(kx)\sin x = f_k(\cos x)\cos x - g_k(\cos x)\sin^2(x)$$
$$= f_k(\cos x)\cos x - g_k(\cos x)(1 - \cos^2 x)$$

so that $f_{k+1}(x) = f_k(x)x + g_k(x)(x^2 - 1)$. Similarly,

$$\sin(k+1)x = \sin(kx+x) = \sin(kx)\cos x + \cos(kx)\sin x = \sin xg_k(\cos x)\cos x + f_k(\cos x)\sin x$$

and $g_{k+1}(x) = g_k(x)x + f_k(x)$.

Now let $x=1^{\circ}$ and n=30. Assume for a contradiction that $\cos 1^{\circ}$ is a rational number r. Then $\cos(30x)=f_{30}(\cos x)$ and $\cos 30^{\circ}=f_{30}(r)$ would be a rational number. But $\cos 30^{\circ}=\sqrt{3}/2$ is irrational.

Finally, let $x = 1/n^{\circ}$. Assume that $\cos 1/n^{\circ}$ is rational. But $\cos(nx) = f_n(x)$ and $\cos(n \times 1/n^{\circ}) = f_n(\cos 1/n^{\circ})$, showing that $\cos 1^{\circ}$ is rational, a contradiction.