
The Problem of the Month

June 2024

Find with justification all multisets of eight positive integers whose sum equals
their product. For example, one such set is {1, 1, 1, 1, 1, 1, 2, 8}.

Computer or AI assisted/generated solutions will not be accepted.

We feature a solution submitted by Hannah Bahn, St Ann’s School, Brooklyn
NY.
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Find with justification all multisets of eight positive integers whose sum equals
their product. For example, one such set is {1, 1, 1, 1, 1, 1, 2, 8}.

At a certain point, the product of the eight integers will begin to exceed their
sum. This threshold occurs between the sets {1, 1, 1, 1, 1, 2, 2, 2} and {1, 1, 1, 1, 2, 2, 2, 2}.
Notice that the non-unit values in both sets are as small as possible, so that
the growth of the product can be minimized. The first set has a sum of 11 and
a product of 8. The second set has a sum of 12 and a product of 16. So, any
set {1, 1, 1, 1, w, x, y, z} will have a product that exceeds the sum; any set with
even fewer ones will also have a product that is too large.

The set {1, 1, 1, 1, 1, 1, 1, z} always yields a sum of z+7, while the product is z,
so we can discount this set.

The sets that remain are {1, 1, 1, 1, 1, x, y, z} and {1, 1, 1, 1, 1, 1, y, z}. The so-
lution for the first type of set is the example given: {1, 1, 1, 1, 1, 1, 2, 8}. Through
experiment, we can find the solution to the second type of set: {1, 1, 1, 1, 1, 2, 2, 3}.

More rigorously, we can prove that these two sets are the only solutions.

The question tells us that

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = x1 · x2 · x3 · x4 · x5 · x6 · x7 · x8. (1)

So, assuming that 0 < x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5 ≤ x6 ≤ x7 ≤ x8, it readily
follows that x1 · x2 · x3 · x4 · x5 · x6 · x7 · x8 ≤ 8 · x8.

We can divide both sides of the inequality by x8 and get that x1 · x2 · x3 · x4 ·
x5 ·x6 ·x7 ≤ 8. We can now test different cases where x1 ·x2 ·x3 ·x4 ·x5 ·x6 ·x7 ≤ 8.
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I.

x1 · x2 · x3 · x4 · x5 · x6 · x7 = 1

or x1 = x2 = x3 = x4 = x5 = x6 = x7 = 1

Now using (1),

7 + x8 = x8

Clearly this case leads to an empty set.

II.

x1 · x2 · x3 · x4 · x5 · x6 · x7 = 2

or x1 = x2 = x3 = x4 = x5 = x6 = 1;x7 = 2

Now using (1),

8 + x8 = 2 · x8

or x8 = 8

This case yields the solution {1, 1, 1, 1, 1, 1, 2, 8}.

III. If we use the same technique, this time setting x1 ·x2 ·x3 ·x4 ·x5 ·x6 ·x7 = 3,
it yields an empty set.

IV.

x1 · x2 · x3 · x4 · x5 · x6 · x7 = 4

or x1 = x2 = x3 = x4 = x5 = 1;x6 = x7 = 2

Now using (1),

9 + x8 = 4 · x8

or x8 = 3

This case yields the solution {1, 1, 1, 1, 1, 2, 2, 3}.
Note: the case x1 = x2 = x3 = x4 = x5 = x6 = 1;x7 = 4 leads to an empty set.

V. Continuing this technique, and looking at the cases:
x1 · x2 · x3 · x4 · x5 · x6 · x7 = 5 or 6 or 7 or 8.

We see that they lead to empty sets or duplicates of previously found sets. The
only distinct solutions are {1, 1, 1, 1, 1, 1, 2, 8} and {1, 1, 1, 1, 1, 2, 2, 3}.
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