Problem of the Month - May 2024 Solution

Let $L_{1}(x)$ be the tangent line of a^{x} at $x=b$ and $L_{2}(x)$ be the tangent line of $\log _{a} x$ at $x=c$. For these two lines to be identical, we would need their slopes and y-intercepts to agree. Since

$$
L_{1}(x)=a^{b} \ln a(x-b)+a^{b}
$$

and

$$
L_{2}(x)=\frac{1}{c \ln a}(x-c)+\log _{a} c
$$

if follows that

$$
\begin{equation*}
a^{b} \ln a=\frac{1}{c \ln a} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
a^{b}-b a^{b} \ln a=\log _{a} c-\frac{1}{\ln a} \tag{2}
\end{equation*}
$$

From (1) it follows that

$$
\begin{aligned}
\log _{a} c & =-\log _{a}\left(a^{b} \ln ^{2} a\right) \\
& =-b-2 \log _{a}(\ln a)
\end{aligned}
$$

Combining the above result with (2), we have

$$
\begin{equation*}
a^{b}-b a^{b} \ln a+b+2 \log _{a}(\ln a)+\frac{1}{\ln a}=0 \tag{3}
\end{equation*}
$$

Let $h(x)=a^{x}-x a^{x} \ln a+x+K_{a}$ where $K_{a}=2 \log _{a}(\ln a)+\frac{1}{\ln a}$. Using the Intermediate Value Theorem, it is enough to find two values of x that make $h(x)$ positive and negative. We have $h(0)=1+K_{a}$ and $\lim _{x \rightarrow \infty} h(x)=-\infty$, so to finish the problem we must show that $1+K_{a}>0$. This follows from the monotonicity of the logarithms since $K_{a}>2 \log _{a}(\ln a) \geq 2 \log _{a}(\ln e)=0$.

