Problem of the Month - March 2024 Solution

2	4	5	6	4	9	
7	10	12	10	6		

Table 1: Game board

Define the sequences $\langle a_n \rangle_{n=1}^6$ by $\langle 2, 4, 5, 6, 4, 9 \rangle$ and $\langle b_n \rangle_{n=1}^5$ by $\langle 7, 10, 12, 10, 6 \rangle$. That is, the two sequences represent the values of the top row (sequence a_n) and bottom row (sequence b_n) of the *n*th space on the board (where the board spaces are labeled 1 to 7 from left to right). Let v_n be the maximum value of the *n*th space on the board for *n* from 2 to 7 and define $v_1 = 0$. Clearly we have that $v_2 = 2$. Working backwards, we see that

$$v_n = \max\{v_{n-1} + a_{n-1}, v_{n-2} + b_{n-2}\}$$

for $n \ge 3$. That is, for $n \ge 3$, the maximum value at space n is either the maximum value at space n-1 plus the value of the top row on space n-1 or the maximum value at space n-2 plus the value of the bottom row at space n-2. This must be the case since these are the only two ways in which to arrive at space n. So now

$$v_3 = \max\{2+4, 0+7\} = 7$$

$$v_4 = \max\{7+5, 2+10\} = 12$$

$$v_5 = \max\{12+6, 7+12\} = 19$$

$$v_6 = \max\{19+4, 12+10\} = 23$$

$$v_7 = \max\{23+9, 19+6\} = 32.$$

So Dr. Math's highest possible score is 32.