Problem of the Month - March 2024 Solution

2	4	5	6	4	9	
7	10	12	10	6		

Table 1: Game board
Define the sequences $\left\langle a_{n}\right\rangle_{n=1}^{6}$ by $\langle 2,4,5,6,4,9\rangle$ and $\left\langle b_{n}\right\rangle_{n=1}^{5}$ by $\langle 7,10,12,10,6\rangle$. That is, the two sequences represent the values of the top row (sequence a_{n}) and bottom row (sequence b_{n}) of the nth space on the board (where the board spaces are labeled 1 to 7 from left to right). Let v_{n} be the maximum value of the nth space on the board for n from 2 to 7 and define $v_{1}=0$. Clearly we have that $v_{2}=2$. Working backwards, we see that

$$
v_{n}=\max \left\{v_{n-1}+a_{n-1}, v_{n-2}+b_{n-2}\right\}
$$

for $n \geq 3$. That is, for $n \geq 3$, the maximum value at space n is either the maximum value at space $n-1$ plus the value of the top row on space $n-1$ or the maximum value at space $n-2$ plus the value of the bottom row at space $n-2$. This must be the case since these are the only two ways in which to arrive at space n. So now

$$
\begin{aligned}
& v_{3}=\max \{2+4,0+7\}=7 \\
& v_{4}=\max \{7+5,2+10\}=12 \\
& v_{5}=\max \{12+6,7+12\}=19 \\
& v_{6}=\max \{19+4,12+10\}=23 \\
& v_{7}=\max \{23+9,19+6\}=32 .
\end{aligned}
$$

So Dr. Math's highest possible score is 32 .

