The Problem of the Month
December 2023

Evaluate the integral below without the aid of AI or computer assistance. Give an exact answer.

$$
\int_{0}^{6} \frac{\sqrt{\ln (2023-x)}}{\sqrt{\ln (2023-x)}+\sqrt{\ln (x+2017)}} d x
$$

SOLUTION by Henry Ricardo, Westchester Area Math Circle.

It is easy to see that the substitution $x \mapsto a+b-x$ yields $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$. Denoting our given integral by I and replacing x by $6-x$, we have

$$
I=\int_{0}^{6} \frac{\sqrt{\ln (2017+x)}}{\sqrt{\ln (2017+x)}+\sqrt{\ln (2023-x)}} d x
$$

so that

$$
\begin{aligned}
2 I & =\int_{0}^{6} \frac{\sqrt{\ln (2023-x)}}{\sqrt{\ln (2023-x)}+\sqrt{\ln (x+2017)}} d x+\int_{0}^{6} \frac{\sqrt{\ln (2017+x)}}{\sqrt{\ln (2017+x)}+\sqrt{\ln (2023-x)}} d x \\
& =\int_{0}^{6} \frac{\sqrt{\ln (2023-x)}+\sqrt{\ln (2017+x)}}{\sqrt{\ln (2023-x)}+\sqrt{\ln (2017+x)}} d x \\
& =\int_{0}^{6} 1 d x=6
\end{aligned}
$$

which implies that $\quad I=3$.

