The Problem of the Month Solution June 2023

In a 3-4-5 right triangle, if a curve γ joins points of its two legs to bisect the area of the triangle, identify and find the length of the shortest possible such curve.

Solution by Teawoo Kim, St. Paul's School, Concord, NH, USA

Claim: γ is a quarter circle with radius $\sqrt{\frac{12}{\pi}}$ that is centered at the vertex of the right angle. The length of γ is $\sqrt{3 \pi}$.

Proof:

Suppose there is a right triangle $\triangle O A B$ shown as below:

Reflect the figure with respect to $\overline{O A}$ to make a triangle $\triangle B B^{\prime} A$, then reflect $\triangle B B^{\prime} A$ with respect to $\overline{B B^{\prime}}$ to make the figure:

Now we obtain a closed curve $\gamma-\gamma_{1}-\gamma_{2}-\gamma_{3}$, having the area of 12 .
From the isoperimetric inequality, of all the areas that take up the same space, circle has the minimum perimeter.
Thus, the closed curve $\gamma-\gamma_{1}-\gamma_{2}-\gamma_{3}$ should be a circle.
The circle with area 12 has a radius $\sqrt{\frac{12}{\pi}}$, and the perimeter is $2 \pi \sqrt{\frac{12}{\pi}}$.
The length of γ is $\frac{2 \pi \sqrt{\frac{10}{\pi}}}{4}$, which is $\sqrt{3 \pi} \approx 3.06998$.

Teawoo Kim, St. Paul's School
Concord, NH, USA

