We thank all the solvers for their solutions to the March 2023 MAA Metro NY Problem of the month. We feature a solution provided by Dr. Alexander Rozenblyum of New York City College of Technology, CUNY.

In the triangle below, let $\angle B A C=\angle A D C=\frac{\pi}{2}, A B=a, A C=b, A D=d$ and $B C=c$.
For the solution to the first part, we begin by finding the area of the triangle $A B C$ in two ways and equating them.

$$
\frac{1}{2} \cdot B C \cdot A D=\frac{1}{2} \cdot A B \cdot A C
$$

This will give us $c=\frac{a b}{d}$. Substituting for c into the Pythagorean identity, $a^{2}+b^{2}=c^{2}$ and simplifying gives the desired expression, $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{d^{2}}$.

For the solution to the second part, we begin with $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{d^{2}}$ and solve for b to get $b=\frac{a d}{\sqrt{a^{2}-d^{2}}}$, where $a>d$. If $a=b$, in this expression, we get that $d=a \sqrt{2}$, which is not integer-valued and we must have that $a \neq b$. Let $B D=m$ and $C D=n$. Without loss of generality, let us assume that $1<a<b$, and we can conclude that $m<n$, since $m=\sqrt{a^{2}-d^{2}}$ and $n=\sqrt{b^{2}-d^{2}}$. In addition, $\triangle A B D$ is similar to $\triangle C A D$, and it readily follows that $m n=d^{2}$, and this coupled with $m<n$ allows us to conclude that $m<d$ or $\sqrt{a^{2}-d^{2}}<d$. The latter inequality gives us $a<d \sqrt{2}$.

From the boxed expressions above, we have shown $d<a<d \sqrt{2}$ and we have the added requirement that $b=\frac{a d}{\sqrt{a^{2}-d^{2}}}$ is a positive integer. For our problem $d=$ 120 , and $121 \leq a \leq 169$. A quick calculator check for the 49 values of a shows that $a \in\{130,136,150\}$. We have that $(a, b) \in\{(130,312),(136,225),(150,200)\}$
which result in three distinct triangles. You can switch the order of a and b to get three additional algebraic solutions.

Editor's note: If we assume that $1<a<b$, it follows that $\frac{1}{b^{2}}<\frac{1}{a^{2}}$ or equivalently, $\frac{1}{a^{2}}+\frac{1}{b^{2}}<\frac{1}{a^{2}}+\frac{1}{a^{2}}=\frac{2}{a^{2}}$ and we get $\frac{1}{d^{2}}<\frac{2}{a^{2}}$ or $a<d \sqrt{2}$. This shortens the above proof for an upper bound of a.

