The Problem of the Month
March 2021

The Problem:

Imagine that you have two cones, a big one and a smaller one. The big one has a height of H and a radius of its circular base equal to R. Your smaller cone has height and radius of circular base equal to h and r, respectively. These values satisfy the relation: $H/R = h/r$. Now, take the smaller cone and turn it upside down. Place its vertex at the center of the circular base of the large cone. Doing this yields the following: The circular base of the small inverted cone is tangent to the inside wall of the larger cone. (See figure, below.) Let V stand for the volume of the larger cone and v stand for the volume of the smaller. (Recall that the volume of a cone is equal to one third the area of the base times the height.) Show that V/v is a constant, independent of the values of H, R, h and r. What is this constant?

The Solution:

Let us consider the cross section of the picture above.
Since $R/H = r/h$, it is clear that angles ABC and DBC must be congruent. Likewise, angles ACB and DCB must be congruent. Thus, it is obvious that triangle BCD is congruent to triangle ABC by angle-side-angle.

This means that $2|DE| = 2h = |AD| = H$. Thus $h = H/2$.

Since $H/R = h/r$, we have $r = R/2$.

Now $V = \frac{1}{3} \pi R^2 H$ and $v = \frac{1}{3} \pi r^2 h$

But $v = \frac{1}{3} \pi r^2 h = \frac{1}{3} \pi \left(\frac{R}{2}\right)^2 \frac{H}{2} = \frac{1}{3} \pi \frac{R^2}{4} \frac{H}{2} = \frac{1}{3} \pi R^2 \times \frac{1}{8} = \frac{1}{8} \times V$

Thus, $\frac{V}{v} = 8$.